
Kalpa Publications in Computing

Volume 4, 2018, Pages 248–263

28th International Workshop on
Principles of Diagnosis (DX’17)

Model-Based Diagnosis Meets Combinatorial Testing For

Generating an Abductive Diagnosis Model

Ingo Pill and Franz Wotawa

Institute for Software Technology, TU Graz,
Inffeldgasse 16b/II, 8010 Graz, Austria

{ipill, wotawa}@ist.tugraz.at

Abstract

The diagnostic model is certainly a key element for any model-based diagnosis process.
Experience shows though that in practice we often have no such model available for one
or the other reason. The consequence for many projects is thus that we cannot draw
on diagnosis processes when tackling problems. In this paper, we show how to improve
available automated processes for deriving a diagnostic model from the standard simulation
models that we usually create during development. We delve in particular into the question
how research in the context of combinatorial testing and fault injection can help to improve
the process, and consider several questions that arise.

1 Introduction

Precise problem descriptions and sound background theories for model-based diagnosis pro-
cesses have been around for quite a while [1, 2, 3]. Furthermore, the scientific community has
been improving on these ever since, as evident, for instance, in the work presented regularly
at dedicated venues like the DX workshop. Still, the well-founded diagnosis theory and the
availability of corresponding reasoning engines could not yet foster a wide-spread adoption in
practice. If talking, for example, to application engineers in the Electronic Design Automa-
tion (EDA) industry, we learn that they have been adopting formal verification techniques like
model-checking [4] that allow them to identify the presence of issues. When reasoning about
the origins of identified issues, as of yet they usually do not use automated diagnostic reasoning
though, but draw on expert knowledge in a still manual and laborious process. Support in
coming up with diagnostic models would certainly be an important prerequisite for adopting
also model-based diagnosis techniques for their toolset.

In [5], we surmised that in practice we often lack an appropriate model that is suitable
for diagnostic purposes in a project—certainly a stumbling block for adopting model-based
diagnosis (MBD). Evidently it is not an easy feat to come up with such a model, and available
resources (amongst other issues like the availability of white-box knowledge for all system parts)
might not enable a project manager to account for a diagnostic model. An issue here is that
a diagnostic model has a different focus compared to development models created, e.g., for
simulations (see Section 2). For some scenarios like formal specification development in the

M. Zanella, I. Pill and A. Cimatti (eds.), DX’17 (Kalpa Publications in Computing, vol. 4), pp. 248–263

MBD Meets Combinatorial Testing for Generating an Abductive Diagnosis Model I. Pill and F. Wotawa

context of temporal logics, we do have approaches that allow us to automatically derive models
for a consistency-oriented model-based diagnosis process [6]. For other problem domains where
we use, e.g, Modelica1 or Simulink2 simulation models for the development, we still need to
improve on available work.

In this context, we proposed in [5] an automated work flow for generating an abductive
diagnosis model based on fault effect descriptions. The underlying idea for extracting the fault
effects was to compare simulated expected behavior with simulated faulty one that we obtained
via automatically injecting faults into the correct simulation model. Isolating the individual
faults’ effects, we then formalized a knowledge base containing cause-and-effect rules connecting
the injected faults with the isolated fault symptoms. This knowledge base can then be used
in an abductive diagnosis process. An advantage of the derived abductive diagnostic model
is that it is similar in its structure to the cause-and-effect rules that designers would consider
during FMEA (failure mode and effect analysis) [7, 8]. With the same argument, also providing
the fault models for the fault injection step should not be an issue, so that the technique can
be easily integrated into existing development processes. This is backed by standards like ISO
262623 that suggest fault injection as a method for ensuring safety in the automotive domain.

While we showed in [5] that the work flow works out in principle, and that we can accommo-
date also multi-faults by design, tackling scalability in the direction of multiple faults certainly
is a pressing question. That is, for n components that have m fault modes each, ideally we
would have to cover mn mode combinations for an exhaustive investigation taking fault interac-
tions into account. Thus, an important issue left for future work was that of improving on the
management regarding an efficient and effective exploration of the input space and the fault
space. In other words, answering the question of how to deal best with the huge amount of
possible combinations of faults and inputs in practice. In this paper we contribute to addressing
this question, by discussing a structural and locally exhaustive approach for the exploration.

In [9], Wotawa adressed the issue of considering the input space for a familiar problem from
a point of view that is relevant also for our work. That is, focusing on the scenario of testing
self-adaptive systems, he proposed to draw on fault injection and combinatorial testing to come
up with a test suite that is strong in identifying faults (in his scenario this resembles to testing
the diagnosis engine providing the background information for the adaption process) without
exploding in size and thus busting the available budget. Fault injection [10], we did consider
also for [5], and pondering his findings it is evident that the reasoning behind combinatorial
testing [11, 12, 13] is attractive also for our scenario. In this paper we thus elaborate on our
earlier work presented in [5], and show how combinatorial reasoning can be used to conquer
the simulation space in terms of faults and inputs. We furthermore identify and discuss several
questions that arise with the use of combinatorial reasoning in our process.

In the remainder of this paper, we first present the basic definitions we’re using in our
presentation. Then, we show in Section 3 the details of our new abductive diagnosis model
generation algorithm. Following an illustration of our combinatorial exploration concept for
an electronic circuit in 3.1, we discuss several theoretical aspects of our approach and present
another algorithm variant in Section 3.2. Finally, we provide a brief summary and outline of
our future research in Section 4.

1http://www.modelica.org
2http://www.mathworks.com/products/simulink/index.html
3see, e.g., http://www.iso.org/iso/catalogue_detail?csnumber=43464

249

http://www.modelica.org
http://www.mathworks.com/products/simulink/index.html
http://www.iso.org/iso/catalogue_detail?csnumber=43464

MBD Meets Combinatorial Testing for Generating an Abductive Diagnosis Model I. Pill and F. Wotawa

2 Basic Definitions

Let us start this section with defining a system’s model as considered in our reasoning. Aggre-
gating several definitions of [5], this model is defined such as to allow for simulating a system’s
behavior when given (a) the desired input scenario, and (b) the desired fault scenario.

Definition 1. A system model is a tuple S = (COMP,MODES, µ, ρ, I, O,M) such that COMP
is a finite set of system components, {ok} ⊆ MODES is the nominal (correct) mode in a finite
set of modes that components can have, µ is a function mapping components ci ∈ COMP to
their individual sets MODES′ ⊆ MODES, I is a finite set of input signals and input variables,
O is a finite set of observable output signals and output variables, and M is a simulation model
that allows us to simulate the system’s behavior for a finite set TIME of discrete points in time
with a simulation function sim as of Definition 2, taking into account also mode assignments ρ
as of Definition 3.

Definition 2. Let us assume that we have a system model S = (COMP,MODES, µ, ρ, I, O,M)
as of Def. 1, a test case τ defining the input values for all i ∈ I over time, a mode assignment ρ
as of Def. 3 defining the modes for all ci ∈ COMP over time, and an end time te. A simulation
function sim(S, τ, ρ, te) computes via M the values of all variables o ∈ O over time (between 0
and te) considering (a) the test case τ for inputs i ∈ I, and (b) the mode assignment ρ for the
components’ modes.

Definition 3. Let TIME be a finite set of points in time. A mode assignment ρ is a set of
functions ρi(t) which define for the ci ∈ COMP the component’s mode for all time stamps
t ∈ TIME.

Please note that the finite set of points in time TIME will usually be determined by te and
the simulation function’s sampling frequency.

In contrast to a diagnostic model, a simulation model M ∈ S defines a specific value for each
o ∈ O given the input and fault scenario. When reasoning with a diagnostic model on the other
hand, given inputs and observed outputs, we would be interested in viable solutions (likely more
than one!) for assigning the individual components’ fault modes (health state variables) which
in turn creates the diagnoses. As we discussed in [5], this is one of the reasons why one cannot
perform diagnosis directly, e.g., in a Modelica simulator without adoptions as proposed in [14].

When we aim at testing a system, we have to exercise the system to the best of our knowledge
with input stimuli that would reveal hidden issues. Sometimes it requires a certain combination
of inputs and system parameters for a fault to become visible at the observable outputs. This
would require us in principle to explore all such combinations when verifying the correct behavior
of a system. Obviously this is infeasible, since even for a simple 64 bit adder, this would require
us to cover 2128 bit combinations for the two 64 bit registers—when neglecting sequential
effects and behavior entirely. So for n variables that can have m values each, this means mn

combinations. Combinatorial testing [11, 12] aims at addressing this issue via a structural
but local approach to conquering the input and parameter space. Instead of testing all mn

combinations, there exhaustiveness focuses on local variable interactions.

In particular, this means that every x-way interaction between variables shall be considered
in at least one test case. If the combinatorial strength x is 2, this means that between any two
variables, each possible value combination for these two variables shall be featured by at least
one test case in the test suite. Usually we have x < n (in most cases even x << n), since for
strength x = n the concept would translate to the globally exhaustive approach.

250

MBD Meets Combinatorial Testing for Generating an Abductive Diagnosis Model I. Pill and F. Wotawa

Let us assume now that we have three Boolean (s.t. m = 2) input variables i1, i2, i3 that
can be ⊥ (False) or > (True), and that we would like to derive a test suite with combina-
torial strength 2. This means that for any variable subset of size x = 2 (there are three
such sets: {i1, i2}, {i1, i3}, {i2, i3}), and for any of the mx = 4 possible value combinations
(⊥,⊥|⊥,>|⊥,>|>,>) for these variable subsets, there shall be at least one test case featuring
this exact combination. Compared to the globally exhaustive approach which would give us
mn = 8 test cases for three Boolean variables, the four test cases shown in the table below
define a test suite with combinatorial strenth 2 for the same example. As is evident from the
table, for any of the three variable subsets of size 2, the four test cases cover all four possible
value combinations. Please note that we will show a larger example in Section 3.1.

i1 i2 i3

test case 1 ⊥ ⊥ ⊥
test case 2 ⊥ > >
test case 3 > ⊥ >
test case 4 > > ⊥

The idea that we exploit in this combinatorial approach is that we can cover more than one
individual combination in a single test case, which allows us to reduce the number of test cases
compared to the globally exhaustive approach. An immediate question is now which strength
would be required in practice. There, Kuhn and colleagues showed in [15] that 6-way strength
might suffice to reveal all faults, where for some domains the limit was even lower.

If we have variables with varying domains, we can use the following definition of a mixed-
level covering array to describe such a “table”. Please note that the term mixed-level indicates
the support for variable sets such that each variable can have its own domain with an individual
size and an individual alphabet of possible values.

Definition 4. A mixed-level covering array MCA(I, (a1, . . . , ak), s) of strength s for k = |I|
variables with their individual finite alphabets ai is a two-dimensional k × N array such that
for any I ′ ⊆ I such that |I ′| = s we have that every combination in the cross product of the
individual alphabets of the variables in I ′ appears in at least one of the N rows.

Implementing a combinatorial approach at generating test cases requires us to follow a three
step process, starting with us providing an input model:

1. We have to describe the input space by listing the variables and signals that we would
like to cover, and we have to specify their alphabets. For the latter, we might not want
to specify the entire range of values for a variable (like all integer values), but either only
the subset of values used in practice, or in the light of our discussion in [5] a finite set of
exemplary values describing the variable’s individual features and trajectories (like values
near comparison values used in the program). This process is coined input parameter
modeling in the context of combinatorial testing, and we refer the interested reader to
[16] for an introduction.

2. The second step is to invoke a combinatorial design procedure like the combinatorial test
generation tool ACTS [17] that derives a mixed-level covering array as of Definition 4 with
the desired strength. The columns in the array relate to the considered input variables,
whereas the individual rows define each some combination of value assignments to these
variables considering the variables’ individual alphabets. The employed combinatorial

251

MBD Meets Combinatorial Testing for Generating an Abductive Diagnosis Model I. Pill and F. Wotawa

generation procedure [17, 18, 19] ensures that each value combination required to achieve
the desired strength is indeed covered by at least one row.

3. The third and final step is to consider each row as an individual test case of the test suite
under construction.

In Section 3, we show how to exploit such a combinatorial approach for generating an
abductive diagnosis model. That is, while we do not generate test cases like for the combinatorial
testing scenario, we use the technique to generate a representative parameter versus input
scenario list for our faulty behavior simulations. Each row in the obtained MCA will not
specify a test case as described above, but will define the inputs and parameters for a single
simulation scenario. The set of the simulation scenarios defined in the MCA will then be used
to derive a diagnostic model.

Before we can show the details of our approach in Algorithm 1, let us continue our definitions
with the one for the desired abductive diagnosis model. That is, in principle, our abductive
diagnosis model is a knowledge base (see [20] for more corresponding definitions):

Definition 5. A knowledge base is a tuple KB = (P,HYP,TH) where P is a set of propositional
variables, Hyp ⊆ P is a set of hypotheses, and TH is a set of horn clause sentences over P .

While a reader might now wonder why we would use propositional variables when considering
simulation models that often contain a mix of continuous signals, we do this on purpose. That
is, such variables state, for example, a component’s finite parameters or a comparison to a
constant such as to digitize the value (which is also in line with the input parameter modeling
task mentioned for combinatorial testing). For a discussion of how to identify an appropriate
task dependent qualitative abstraction and a corresponding automated approach, we refer the
interested reader to [21].

Please note that in our context, a knowledge base’s hypotheses correspond directly to the
causes of an encountered issue, i.e., the diagnosis elements, or in other words the faults. Let
us define now propositional horn clause abduction problems and their solutions, so that we can
define diagnoses formally.

Definition 6. Given a knowledge base KB = (P,HYP,TH) and a set of observations OBS ⊆ P ,
the tuple (P,HYP,TH,OBS) describes a propositional horn clause abduction problem (PHCAP).
A set ∆ ⊆ HYP is a solution to a PHCAP, if and only if ∆∪TH |= OBS and ∆∪TH 6|= ⊥. A
solution ∆ is parsimonious or subset-minimal if and only if no set ∆′ ⊂ ∆ is also a solution.

A solution ∆ of a PHCAP is a set of hypotheses that allows to derive the given observations
via TH. Consequently, ∆ is an explanation of the given observations—based on the background
theory described in TH—and we refer to ∆ thus also as abductive diagnosis or simply as diag-
nosis. While the definition itself does not require a diagnosis to be minimal in the first place,
please note that in practice we are often interested only in subset-minimal diagnoses.

“Determining whether a hypothesis is included in a minimal diagnosis is NP-complete” [20].
For a comprehensive complexity analysis of logic-based abduction we refer the interested reader
to [22]. If |HYP| is not too high, we can compute the solutions efficiently though. Such an
approach might use De Kleer’s Assumption-based Truth Maintenance System (ATMS) [23, 24],
encoding the observations as a single rule o1∧ . . .∧ok → σ for k = |OBS| and a newly generated
proposition σ. The label of σ’s node then is an abductive diagnosis for the observations, where
the rules for the node labels ensure that the solution is minimal, sound, complete, and consistent.
For more information we refer the interested reader to [25].

252

MBD Meets Combinatorial Testing for Generating an Abductive Diagnosis Model I. Pill and F. Wotawa

3 Generating a Model for Abductive Diagnosis Using
Simulation, Fault Injection, and Combinatorial Testing
Techniques

In the introduction, we outlined briefly the goal of our work. That is, like with the approach
presented in [5], we aim to generate an abductive diagnosis model in a fully automated fashion.
For our approach, we assume that while we have no model fit for diagnostic purposes, we do
have a simulation model available that allows us to derive the system outputs for given inputs.
Such a model is usually created in the system development process but has a different purpose
compared to a diagnostic model. That is, it shall be as precise as possible and shall allow a
designer to derive the system’s reactions to any desired input scenario, rather than deriving a
list of possible faults for observed faulty behavior.

Drawing on fault injection, we use this model not only to derive the correct expected behavior
for some input scenarios, but also to simulate faulty behavior triggered by injecting faults. As
outlined for Modelica models in [5], this means to define and describe alternative behavioral
modes for the individual components. The set of modes for a component contains one for the
nominal behavior (ok in our Definition 1) and some modes encoding faulty behavior like stuck-at
faults for signals, empty batteries, or broken connectors. Such data is usually considered also
in FMEA, so that it is available in practice. Otherwise, a designer has to provide the desired
fault modes. Using a special variable for each component to switch between its modes, we can
define any possible fault scenario (as allowed by the specified modes) via specific assignments
to these mode variables. Providing the same input stimulus to a correct and a faulty system
model, we can check for deviations (see [5] for a discussion of corresponding techniques), and
if we detect such a deviation, we extract a rule expressing that the activated faults lead to the
identified deviations.

The concept for automatically deriving an abductive diagnosis model is now to activate
different fault scenarios, and to extract the corresponding fault and effect rules, aggregating
them in a knowledge base. The algorithm for Modelica models that we presented in [5] limits
the fault scenarios to single fault activations. While this has the advantage that it requires
only a limited number of simulations per input scenario ((m − 1) ∗ n + 1 for n components
with m modes each), this also means that fault interactions would not be considered in the
knowledge base. Compared to the algorithm in [5], we thus aim to consider fault interactions in
the presented work. Conducting mn simulations per input scenario so that we would consider
all fault interactions is, however, certainly unattractive—simply due to the sheer amount of
required resources.

Inspired by the concept of combinatorial testing and Wotawa [25] using the concept for
testing a diagnosis engine (i.e. the system self-adaption) in a setting as outlined in [26], we
do aim to exploit combinatorial testing in order to keep the amount of required simulations
in manageable regions. The key question now is what we would consider as the “input space”
of these simulations, such as to consider in a combinatorial exploration. In principle, we have
three groups of “inputs” for a simulation:

1. system inputs: A system input like the register value of a microprocessor, the analog
measured temperature for a thermostat, or some input of a Boolean circuit represents an
interface via which the considered system recognizes its environment. Depending on the
scenario and the model, this usually means some temporal behavior, either in continuous
analog form or a clocked digital signal. For scenarios like a Boolean circuit, there would
not be such a temporal aspect though when we consider it at the digital level.

253

MBD Meets Combinatorial Testing for Generating an Abductive Diagnosis Model I. Pill and F. Wotawa

2. system parameters: Components might have parameters in order to configure the com-
ponent instances in a model. For example, resistors having a nominal value of 100Ω and a
tolerance of 5% will have an actual value in the range (95...105)Ω. System parameters will
allow a designer to explore some options for their simulations, for example via considering
the set {95, 100, 105} as alphabet (see Def. 4) for the resistor value system parameter.
Usually we would assume such a parameter to stay constant during a simulation.

3. mode assignment variables: These variables allow us to activate the individual com-
ponent faults. In principle we could have static faults, but also intermittent ones.

The first group describes in principle the system’s functional input model, i.e., those inputs
that the system was designed to act upon. The second and third group though could be seen as
exogenous influence on the system that we did not add by the functional design, but which were
added to the model for simulating reality and exogenous events not under control. In terms of
our system model as of Definition 1, the first two groups would form I, while the third group
is covered by the mode assignments (see also Definition 3).

Before we present our new algorithm, let us make the following assumptions. In order to
support static or intermittent faults, a user can specify a fault activation pattern which is a
function f(t) that maps any t ∈ TIME to > (True) if the fault shall be active for time stamp
t, or ⊥ (False) if it shall be inactive for t. For each input i ∈ I, we specify an alphabet Σ(i) of
input sequences such that each such sequence σ ∈ Σ defines input i’s value for each t ∈ TIME
and us denoting the individual values with σ(t). Aside a simulation function as of Definition 2,
we also require there to be a function diff(Bcorr,Bfaulty) for comparing simulation results and
identifying deviations. As discussed in detail in [5], this comparison function deserves special
attention and there are two basic implementation concepts.

Algorithm 1 encodes the various steps of our generation process. In line 1, we initialize the
sets forming the desired knowledge base. Lines 2 and 3 concern the definition of the variables
and their alphabets as considered when creating the MCA in Line 4. Each individual row in
the MCA C defines all the needed inputs and parameters for one simulation run. Consequently,
V contains all input variables and also the mode assignment variables hi for the individual
components in COMP. For all inputs i ∈ I we assume that there is an alphabet of input
sequences to choose from (so that we choose one behavior out if this alphabet as input for i in a
simulation). The alphabets for the mode assignment variables are determined by µ(ci), which
is a function of S that maps the individual components to their individual mode subsets (see
Def. 1). We furthermore assume that we can represent any sequence in an input’s alphabet by
propositional variables (which we done in Line 17).

In Line 5, we store in R the number of MCA rows—to be used as boundary for the number
of iterations of the Algorithm’s core loop described in Lines 7 to 28. The function defined in
Line 6 deserves special attention and is used to extract the sequence or mode for some i ∈ I
respectively ci ∈ COMP as given in a single row of the MCA C. The core of Algorithm 1 is
defined in Lines 7 to 28. There we consider the individual rows of C iteratively, and extract
ρ′ as the temporal mode assignment (in Lines 9 to 12), ∆ as the corresponding set of active
fault modes (all assignments other than the nominal one)—also in Lines 9 to 12—, and τ as
the input scenario (Lines 14 to 16)—all from the data given in the currently considered row
as selected in Line 7 with variable r. Every proposition required for describing the extracted
input scenario is then added to P in line 18. In Lines 19 and 20 we simulate the correct (Bcorr)
and faulty (Bfaulty) behaviors, comparing them afterwards in Line 21, isolating a possibly
empty set of deviations D. Please note that ρ for defining a constant assignment of mode ok
to all component’s mode variables for simulating Bcorr is provided via the algorithm’s input

254

MBD Meets Combinatorial Testing for Generating an Abductive Diagnosis Model I. Pill and F. Wotawa

Algorithm 1 Rule extraction when simulating the combinatorically explored input space

Require: (1) A model (COMP,MODES, µ, ρ, I, O,M) as of Def. 1 where ρ is defined such
that each component is in mode ok all the time, (2) a fault activation pattern f , (3) a
list A such that Σi = ai ∈ A is input i ∈ I’s alphabet,(4) a function MCA(V,A′, s) that
generates a mixed-level covering array (see Def. 4) of strength s for the set of variables V
with ai ∈ A′ being vi ∈ V ’s alphabet, (5) the desired strength s, (6) a simulation function
sim(P, τ, ρ, te) and end time te, and (7) a function diff(Bcorr,Bfaulty) comparing simulation
results and identifying deviations.

Ensure: A KB (P,HYP,TH)
1: Let P , HYP, and TH be empty sets.
2: V ← I ∪ {hi|ci ∈ COMP} % hi is ci’s mode variable
3: A′ ← A ∪ {µ(ci)|ci ∈ COMP}
4: C = MCA(V,A′, s)
5: R← number of rows in C
6: Let val(v ∈ V, r) be a function returning the value of v in row r of C
7: for r in range(1, R) do
8: Let ρ′, ∆, and τ be empty sets
9: for ci in COMP do

10: if val(hi, r) == ok then ρ′i = ok (∀t ∈ TIME)
11: else Let ∆ ← ∆ ∪ {hi}, and let ρi = f ′ be derived from f such that > is replaced

with val(hi, r) and ⊥ with ok
12: end if
13: end for
14: for i in I do
15: τ ← τ ∪ val(i, r) % add the sequence for i
16: end for
17: Let τp be the propositional representation of τ .
18: P ← P ∪ τp
19: Let sim(P, τ, ρ, te) be Bcorr.
20: Let sim(P, τ, ρ′, te) be Bfaulty.
21: Let D be the result of diff(Bcorr,Bfaulty) considering variables in O only.
22: Add all elements of D to P .
23: Let ∆P be the and (∧) of all hi in ∆
24: Add the propositions in ∆P to P and HYP.
25: for d in D do
26: Add the rule ∆P ∧ (

∧
p∈τp p)→ d to TH

27: end for
28: end for
29: return (P,HYP,TH)

parameter S. The deviations described in D represent the symptoms caused by the fault. For
being able to add our corresponding cause and effect rules to TH in Lines 25 to 27, we have to
add propositions needed to encode d ∈ D to P , which we do in Line 22.

Finally, the algorithm returns a knowledge base (P,HYP,TH) in Line 29. We can use this
knowledge base to create PHCAPs as of Definition 6 for some observations OBS. The solutions
to these PHCAPs then provide abductive diagnoses explaining the observations, based on the
knowledge about fault effects obtained by Algorithm 1.

255

MBD Meets Combinatorial Testing for Generating an Abductive Diagnosis Model I. Pill and F. Wotawa

It is easy to see that our algorithm works as expected by construction. If we now assume
that sim and diff terminate, we have that Algorithm 1 algorithm terminates, since the contained
loops iterate over finite sets only. For considering the algorithm’s complexity, let us assume unit
time for sim and diff, so that the complexity is entirely determined by the number of rows in
the MCA C (lines 9 to 16 for extracting the data from the row run linear in the amount of
C’s columns). While the simulation time will amount for most of the experienced run time
in practice, these simulations are required to be conducted only once—when establishing the
abductive diagnosis model—and not at run time when performing diagnosis.

If we consider the concept of Algorithm 1 in detail, some question arising immediately is
that of whether we should really cope with the three input types identified above in the same
manner. In particular, if considering this question a bit, we can unveil several arguments in
favor of treating them differently. Before pondering this question closely in Section 3.2, let
us illustrate the combinatorial concept of Algorithm 1 for the example of an analog circuit in
Section 3.1.

3.1 Deriving the set of simulations as of Algorithm 1 for an RC circuit

Let us consider the example of a small electronic circuit as showcase for the determination
of the simulation parameters, i.e., the MCA C, with Algorithm 1. In Figure 1, we show the
diagram of an example RC circuit comprising four components: a battery B, a changeover
switch S, a resistor R, and a capacitor C. Please note that in this section C thus refers to this
capacitor—rather than the MCA—,that is, if not specified otherwise.

As four second input sequence for the switch S, we assume that it is open initially, gets
closed after one second (1s), is opened again after another second (timestamp 2s), and stays
open until the end of the scenario. Thus, while the capacitor is empty for the first second, it
gets loaded when we close the switch. When opening the switch again at timestamp 2s, the
capacitor is almost full, but now the resistor R starts to discharge C. In Figure 2, we can see the
simulated resulting ordinary circuit behavior for this input scenario, i.e., the voltage drop vC
and the position of the switch S over time. For this simulation, we assumed a battery voltage
vB of 5V , a resistor value r of 10kΩ, and a capacitance c of 10µF . In reality, the circuit’s
behavior will obviously depend on its current health state and the component parameters. The
latter might vary due to manufacturing tolerances or deterioration. In the following, we assume
that the battery, the resistor, or the capacity might break, and that there is some variation in
the components’ parameters. For simplicity, we assume though that the switch S never fails.

Since we have a single input sequence for the switching signal, we do not need to consider it
as input in our combinatorial input model. For the component parameters r, c, and vB , we con-

S
R

CB VB
VC

VR

+

-

open
close

Figure 1: A circuit with a battery B, a changeover switch S, a resistor R, and a capacitor C.

256

MBD Meets Combinatorial Testing for Generating an Abductive Diagnosis Model I. Pill and F. Wotawa

Figure 2: The ordinary behavior of the simple electric circuit from Figure 1.

sider for their individual alphabets the respective nominal values and a 10% tolerance in both
directions (resulting in the set {4.5V, 5V, 5.5V } for vB). Regarding the mode assignment, we
assume that the battery can be full (ok) delivering its nominal voltage, or empty such that vB
is 0. A resistor or capacitor can have three modes: it is ok when it works as expected, or it can
be short or broken. For the former fault case, we would not see any voltage drop at R, whereas
for the latter, we would not have any current flowing through the resistor. As mentioned previ-
ously, there are no fault modes except ok for the switch S, so that we do not include S’s mode
in the input model. Summing up, we get the input model for this scenario as outlined in Table 1.

Considering the sizes of the individual variables’ alphabets, a globally exhaustive approach
would have to cover 3 × 3 × 3 × 2 × 3 × 3 = 486 combinations. If we would restrict ourselves
to 2-way component interactions, the ACTS tool [13] would compute 15 different scenarios for
this input model and strength 2, resulting in a significant reduction in the number of considered
scenarios—15 vs. 486, or in other words a reduction by 96.9%. In Table 2 we report all these
scenarios, where we have several ones for which it is assumed that two components behave
correctly. In Figures 2 and 3 we can see the simulated nominal behavior and the faulty
behaviors for scenarios 3 and 10 (as described in Lines 3 and 10 of Table 2—labeled 3 and
10 in column#) respectively. There we can see that we obtain different curves that we can
distinguish with the techniques outlined in [5]. Only for scenarios 3,4, and 6 we would not
be able to distinguish the simulation results. Please note that we assumed a constant fault
activation pattern for these simulations.

Table 1: Modeling the input space for the RC circuit.

category variable alphabet

inputs − −
parameters vB 4.5V , 5V , 5.5V

r 9kΩ, 10kΩ, 11kΩ
c 9µF , 10µF , 11µF

mode B ok, empty
assignments R ok, short, broken

C ok, short, broken

257

MBD Meets Combinatorial Testing for Generating an Abductive Diagnosis Model I. Pill and F. Wotawa

Table 2: Scenarios for the RC circuit and strength 2.

vB r c B R C
1 4.5V 9kΩ 10 µF empty short short
2 4.5V 10kΩ 11 µF ok broken broken
3 4.5V 11kΩ 9 µF empty ok ok
4 5V 9kΩ 11 µF ok ok short
5 5V 10kΩ 9 µF empty short broken
6 5V 11kΩ 10 µF ok broken ok
7 5.5V 9kΩ 9 µF empty broken short
8 5.5V 10kΩ 10 µF ok ok broken
9 5.5V 11kΩ 11 µF empty short ok

10 4.5V 9kΩ 9 µF ok short ok
11 5V 10kΩ 10 µF empty broken ok
12 5.5V 10kΩ 11 µF empty ok short
13 5.5V 11kΩ 11 µF ok broken short
14 5V 9kΩ 11 µF empty broken broken
15 4.5V 11kΩ 11 µF ok broken broken

3.2 Analyzing the concept and focusing the scope of the combinatorial
exploration in an algorithmic variant

For exploring the arguments about treating the system input, system parameter, and mode as-
signment variable groups differently, let consider some aspects of these three groups individually,
starting with those for the third one.

The mode assignment variables obviously correspond to the health state variables considered
in the diagnosis theory [2, 3] when using a strong fault model (i.e., when defining abnormal
behavior as opposed to the standard normal/abnormal predicates). In model-based diagnosis,
besides focusing on subset-minimal solutions, we also often limit the cardinality of computed
diagnoses. The rationale behind this is that we consider it unlikely that a lot of components
fail at the same time, and thus limit the search to, e.g., triple fault diagnoses. This allows us
to strategically limit the search space that is otherwise exponential in the amount of health
state variables. In combinatorial testing, we have a similar limit, but which focuses on the
interactions of component values. There the idea then is to have one test case combine several
of those interactions on different variable subsets. If we now do this for the mode assignment
variables (and thus in principle to diagnoses), we would have to investigate two questions:

1. Is the simulation space really good enough to trigger the possible deviations? In princi-
ple this seems to be the case, since the argument would be similar to the one why the
approach would be good for testing/triggering hidden faults in testing. While fault mask-
ing could avoid triggering effects in some cases, in line with the argumentation regarding
combinatorial testing, we would expect the set of simulations to cover (in other words
produce) the available set of effects.

This could directly help in configuring the fault detection steps, i.e., when defining the
allowed tolerances for some signals in order to detect the presence of a fault. Only when
these would be violated, we would trigger a diagnostic process. Aside for tuning tolerance
values, these data help when defining a corresponding temporal band sequence [27, 28] for

258

MBD Meets Combinatorial Testing for Generating an Abductive Diagnosis Model I. Pill and F. Wotawa

(a) scenario three

(b) scenario ten

Figure 3: Simulation results for two RC circuit scenarios.

fault detection, i.e., when approximating upper and lower hulls for the expected corridors
for the correct individual signals based on the simulation results with expected parameter
variations.

2. How to generate the rules for a knowledge-base that we can use for abductive diagnosis?
For single fault activation, rules of the type ”fault X being active implies effect Y for
input scenario Z” are attractive. If we now follow a combinatorial approach for the mode
assignment variables, this translates to stating “the union of all active faults together with
the given inputs implies the recognized effects” (see line 26 in Algorithm 1). Now, i.e., in
Algorithm 1, the health state variables are not “activated” in isolation though. In terms of
the diagnostic reasoning allowed by the derived knowledge base, this means that we could
deduce only diagnoses that are the union of some of the mode assignments in the MCA
C’s rows. Depending on the whole set of variables V and their domains A′ as fed into the
mixed-level coverage array algorithm (these would directly influence the total number of
rows, which in turn has an impact on the mode assignments of the individual rows), it is
less clear what the effects would be on the diagnostic reasoning. It is important to note
at this point that strength x only defines that all x-way interaction of variable subsets
of size x appear in some row, but not how independent ones (for different or intersecting
subsets) are combined to enhance efficiency, i.e., to get fewer rows.

The second group of variables, i.e., the system parameters (part of I for both algorithms),
are certainly a group of variables that is in line with the variables that combinatorial testing was

259

MBD Meets Combinatorial Testing for Generating an Abductive Diagnosis Model I. Pill and F. Wotawa

designed for. Of course we have to take care when designing the alphabet as of Definition 4 for
these variables. However, available work from Sachenbacher and Struss can help in finding an
appropriate abstraction in an automated fashion [21]. Please note that in most cases, we could
certainly define these variables’ alphabets as sets of elements rather than sets of sequences.

The first variable group of system inputs is also prone to be tackled with a combinatorial
exploration. Considering a Boolean circuit, we could even consider the full input domains of
these variables. When it comes to continuous signals and temporal behavior, obviously the
input space for these variables grows significantly. The before-mentioned input modeling task
is one where we should definitely take care thus, possibly drawing on work on automated
abstraction like [21]. For defining our algorithms, we took an approach where we could define
several individual patterns for each variable, to be chosen from in the generation process. This
implements a trade-off between conquering all possible values and having a presentation that
allows us to employ combinatorial exploration. Some further extension in this respect could be
to allow patterns over multiple variables. That is, obviously there are several ways to handle
a combinatorial exploration for these variables, and our algorithms can be easily adapted to
accommodate other strategies.

Summarizing our thoughts we see indeed some reasons for treating the variable groups
differently. Implicitly we do that already with the inputs in that we “mix” sequences for the
system inputs and constants for the system parameters. Considering our discussion of the two
questions regarding the mode assignment variables, some option where we could add constraints
on the mode assignments for some simulation (i.e., those in a single row in the MCA C) could
improve our confidence in the diagnostic model. That some MCA generation tools like ACTS
allow us to specify constraints for the MCA generation is thus certainly welcome.

For a simple solution, we could express for instance, a maximum limit of concurrently faulty
components in order to avoid uncertainty or a lack of confidence in this respect. Please note
that we could also think of more elaborate solutions in this respect. For example, if we derive
dependency graphs for the individual outputs and we see that some components can be faulty
concurrently without affecting the individually affected output signals, we could support a more
elaborate solution where we define such kernels that can be assigned independently. If now our
rule extraction as of Line 26 in Algorithm 1 would take care of these kernel descriptions, we
could overlay assignments in these kernels in a single simulation without loosing preciseness for
the cause-and-effect rules added to the knowledge base.

But for now, let us define a simple variant of Algorithm 1, such that we can set a limit on
the maximum number of components that simultaneously feature some mode 6= ok.

Definition 7. Let Algorithm 2 be like Algorithm 1, but using a different MCA generation
function MCA(V,A′, s,CONS) that deviates from Definition 4 by having an additional parameter
CONS. This parameter allows us to specify a set of constraints for the generation process.
For Algorithm 2, this set contains only constraints that limit the cardinality of the set ∆ (as
considered in line 23 in Alg. 1) containing all components whose mode is not ok to some value
s′. This value s′ shall be determined by a new parameter of Algorithm 2, and shall be referred
to as mode assignment strength.

Considering the changes for Algorithm 2 (which concern adding and handling the mode
assignment strength s′ only), we see that they do not change the termination or correctness
aspects of the algorithm. Only the number of simulations as specified in the MCA will vary.

For the example considered in Section 3.1, we would get 15 simulation scenarios with the
combinatorial exploration concept outlined for Algorithm 2 and a mode assignment strength of
1. For implementing the mode assignment strength, we added the constraint (B = ok ∧ R =

260

MBD Meets Combinatorial Testing for Generating an Abductive Diagnosis Model I. Pill and F. Wotawa

Table 3: The different scenarios computed for the RC circuit when desiring combinatorial
strength 2 and adding a constraint that requires two components to work as expected.

vB r c B R C
1 4.5V 9kΩ 10µF ok short ok
2 4.5V 10kΩ 11µF ok broken ok
3 4.5V 11kΩ 9µF ok ok short
4 5V 9kΩ 11µF ok ok broken
5 5V 10kΩ 9µF ok short ok
6 5V 11kΩ 10µF ok broken ok
7 5.5V 9kΩ 9µF ok broken ok
8 5.5V 10kΩ 10µF ok ok short
9 5.5V 11kΩ 11µF ok short ok

10 4.5V 9kΩ 9µF empty ok ok
11 5V 9kΩ 11µF ok ok short
12 4.5V 10kΩ 09µF ok ok broken
13 5.5V 11kΩ 10µF ok ok broken
14 5V 10kΩ 10µF empty ok ok
15 5.5V 11kΩ 11µF empty ok ok

ok)∨ (B = ok∧C = ok)∨ (R = ok∧C = ok) when invoking the ACTS tool. While the number
of scenarios is thus equal to the one we got without the constraint, we can see from Table 3 that
we indeed have only scenarios where no more than one component is faulty. If we consider the
algorithms, this could have an impact on the diagnostic granularity of the resulting knowledge
base.

Comparing the results of the two algorithms would certainly give us further insights into
the effects on the diagnostic capabilities of the derived abductive diagnosis models as resulting
from the simulation efficiency achieved in their generation. Such experiments have to be chosen
wisely though, as we discuss in our summary in the next section.

4 Summary

In this paper we extended previous work on automatically generating abductive diagnosis mod-
els from available simulation models. In order to strengthen the abductive diagnosis process
by considering fault interactions, we employ a combinatorial exploration of the huge amount
of possible simulation configurations. We showed how to draw on these techniques in order
to avoid busting available project resources, with the advantage being that this strategic and
locally exhaustive idea can be fully automated.

We furthermore discussed several aspects of adopting such an exploration in our algorithm
and unveiled several interesting questions where corresponding answers from future research will
allow to confirm or refine our surmises, and will also provide further potential for optimizing
the diagnostic model generation process.

While our presentation shows that the concept works in principle, an extensive set of ex-
amples will be needed to provide showcases and to understand which strengths or algorithmic
variants as discussed in the paper should be preferred. As Kuhn showed for combinatorial
testing in [15], this depends on the domains, so that we will have to explore several domains

261

MBD Meets Combinatorial Testing for Generating an Abductive Diagnosis Model I. Pill and F. Wotawa

when evaluating the effects of problem sizes, observation sizes, abstraction levels, combinatorial
strength, mode assignment strength, options for implementing the function diff and other pa-
rameters like repeatability of the MCA algorithm deployed. Such experiments will also unveil
pitfalls in terms of input-space models, and whether specific variable groups as mentioned in
the paper should be considered in specific manners.

The key result of the experiments will be the understanding which strength k is needed to
capture enough behavioral details with our simulations, so that in the end we come up with an
abductive diagnosis model that shows the desired effectiveness. Consequently, these results will
enable us to gain more confidence in understanding the achieved compromise in respect of what
the diagnostic model can deliver, and what we might miss due to the obbiously incomplete but
systematic exploration of a system’s behavior.

Acknowledgments

Parts of this work were created in the ENABLE-S3 project that has been receiving fund-
ing from the ECSEL Joint Undertaking under grant agreement No 692455. This joint un-
dertaking receives support from the European Union’s HORIZON 2020 research and innova-
tion program and Austria, Denmark, Germany, Finland, Czech Republic, Italy, Spain, Portu-
gal, Poland, Ireland, Belgium, France, Netherlands, United Kingdom, Slovakia, and Norway.
ENABLE-S3 is funded by the Austrian Federal Ministry of Transport, In-
novation and Technology (BMVIT) under the program “ICT of the Fu-
ture” between May 2016 and April 2019. More information is available at
https://iktderzukunft.at/en/.

References

[1] Randall Davis. Diagnostic reasoning based on structure and behavior. Artificial Intelligence,
24:347–410, 1984.

[2] Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–95,
1987.

[3] Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Artificial Intelligence, 32(1):97–
130, 1987.

[4] Edmund M. Clarke, Masahiro Fujita, Sreeranga P. Rajan, Thomas W. Reps, Subash Shankar, and
Tim Teitelbaum. Program slicing of hardware description languages. In Conference on Correct
Hardware Design and Verification Methods, pages 298–312, 1999.

[5] B. Peischl, I. Pill, and F. Wotawa. Abductive diagnosis based on modelica models. In 27th Int.
Workshop on Principles of Diagnosis (DX), 2016. No archival proceedings.

[6] I. Pill and T. Quaritsch. Behavioral diagnosis of LTL specifications at operator level. In Interna-
tional Joint Conference on Artificial Intelligence, pages 1053–1059, 2013.

[7] P. G. Hawkins and D. J. Woollons. Failure modes and effects analysis of complex engineering
systems using functional models. Artificial Intelligence in Engineering, 12:375–397, 1998.

[8] M. Catelani, L. Ciani, and V. Luongo. The FMEDA approach to improve the safety assessment
according to the IEC61508. Microelectronics Reliability, 50:1230–1235, 2010.

[9] F. Wotawa. Testing self-adaptive systems using fault injection and combinatorial testing. In 2016
IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C),
pages 305–310, 2016.

[10] J. Voas and G. McGraw. Software fault injection: inoculating programs against errors. Software
Testing, Verification and Reliability, 9(1):75–76, 1999.

262

https://iktderzukunft.at/en/

MBD Meets Combinatorial Testing for Generating an Abductive Diagnosis Model I. Pill and F. Wotawa

[11] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C. Patton. The
AETG system: An approach to testing based on combinatorial design. IEEE Trans. Softw. Eng.,
23(7):437–444, July 1997.

[12] D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. Sp 800-142. practical combinatorial test-
ing. Technical report, 2010. available via http://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-142.pdf.

[13] M. N. Borazjany, L. Yu, Y. Lei, R. Kacker, and R. Kuhn. Combinatorial testing of ACTS: A
case study. In 2012 IEEE Fifth International Conference on Software Testing, Verification and
Validation, pages 591–600, April 2012.

[14] K. Lunde. Object oriented modeling in model based diagnosis. In Modelica Workshop 2000
Proceedings, pages 111–118, 2000.

[15] R. Kuhn, R. Kacker, Y. Lei, and J. Hunter. Combinatorial software testing. Computer, 42(8):94–
96, 2009.

[16] D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. Introduction to Combinatorial Testing. Chapman
& Hall/CRC, 1st edition, 2013.

[17] L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn. Acts: A combinatorial test generation tool. In
2013 IEEE Sixth International Conference on Software Testing, Verification and Validation, pages
370–375, March 2013.

[18] Victor Kuliamin and Alexander Petukhov. Covering Arrays Generation Methods Survey, pages
382–396. 2010.

[19] C. Nie, J. Jiang, H. Wu, H. Leung, and C. J. Colbourn. Empirically identifying the best greedy
algorithm for covering array generation. In 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation Workshops, pages 239–248, March 2013.

[20] Gerhard Friedrich, Georg Gottlob, and Wolfgang Nejdl. Hypothesis classification, abductive di-
agnosis and therapy. In First International Workshop on Principles of Diagnosis, Menlo Park,
July 1990. Also appeared in Proceedings of the International Workshop on Expert Systems in
Engineering, Lecture Notes in Artificial Intelligence, Vol. 462, Vienna, September 1990, Springer-
Verlag.

[21] Martin Sachenbacher and Peter Struss. Automated qualitative domain abstraction. In Interna-
tional Joint Conference on Artificial Intelligence, pages 382–387, 2003.

[22] Thomas Eiter and Georg Gottlob. The complexity of logic-based abduction. Journal of the ACM,
42(1):3–42, January 1995.

[23] Johan de Kleer. An assumption-based TMS. Artificial Intelligence, 28:127–162, 1986.

[24] Johan de Kleer. A general labeling algorithm for assumption-based truth maintenance. In Pro-
ceedings AAAI, pages 188–192, 1988.

[25] Franz Wotawa. Failure mode and effect analysis for abductive diagnosis. In Proc. Intl. Workshop
on Defeasible and Ampliative Reasoning (DARe-14), 2014.

[26] Mihai Nica, Ingo Pill, and Franz Wotawa. Testing diagnostics components supervising functional
safety requirements. In Annual Conference of the Prognostics and Health Management Society
(PHM), 2015.

[27] Etienne Loiez and Patrick Taillibert. Polynomial temporal band sequences for analog diagnosis.
In 15th International Joint Conference on Artificial Intelligence, IJCAI 97, pages 474–479, 1997.

[28] Rim Mrani Alaoui, B. O. Bouamama, and P. Taillibert. Diagnosis based on temporal band
sequences - a empirical comparison to statistical approachs. In Proceedings of the Automation
Congress, volume 17, pages 435–440, June 2004.

263

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf

	Introduction
	Basic Definitions
	Generating a Model for Abductive Diagnosis Using Simulation, Fault Injection, and Combinatorial Testing Techniques
	Deriving the set of simulations as of Algorithm 1 for an RC circuit
	Analyzing the concept and focusing the scope of the combinatorial exploration in an algorithmic variant

	Summary

