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Abstract

QBF solving techniques can be divided into the DPLL-based and expansion-based. In this paper
we look at how these two techniques can be combined while using strategy extraction as a means of
interaction between the two. Once propagation derives a conflict for one of the players, we analyse the
proof of such and devise a strategy for the opponent. Subsequently, this strategy is used to constrain
the losing player. The implemented prototype shows feasibility of the approach. A number of avenues
for future research can be envisioned. Can strategies be employed in a different fashion? Can better
strategy be constructed? Do the presented techniques generalize beyond QBF?

1 Introduction

Qualified Boolean formulas (QBFs) can be seen from a number of different perspectives: as
two-player games, as a canonic PSPACE problem, or as a means of studying quantification
in general. This enables QBF to model a number of interesting problems and motivates the
development of efficient QBF solvers [4, 23]. Existing QBF solvers reveal an interesting di-
chotomy. Some solvers traverse the search space by assigning values to the individual variables
similarly as a backtracking algorithm would [30, 11, 21]. Other solvers expand quantifiers into
logical connectives according to their semantics [20, 6, 14]. In this paper we aim to bridge this
dichotomy by guiding quantifier expansion by conflicts found by traversal. The approach is
motivated by another well known phenomenon. If we look at a QBF as a two-player game,
solving a formula equates to finding a winning strategy of one of the players. Interestingly
enough, it is easy to construct a formula with a very simple winning strategy for one of the
players but the formula itself is very hard to solve for current solvers. This suggests that we
look for winning strategies ezplicitly rather than relying on them being discovered by search.
The strategy extraction we propose is anchored in conflict analysis. Once it is discovered that
one of the players loses in a certain part of the search space, the proof for such is used to devise
a strategy for the opposing player. Subsequently, this strategy is used to partially expand the
formula.

2 Preliminaries

Elementary notion of logic is assumed. Here we review the notation and concepts used through-
out the paper.
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2.1 Propositional Logic

Propositional variables are typically denoted by letters from the end of the alphabet, e.g. x, y;.
A literal is a variable or its negation, e.g. x, zZ, with Z = z A clause is a disjunction of finitely
many literals. The empty clause is denoted by L. A formula in conjunctive normal form (CNF)
is a conjunction of clauses. Whenever convenient, a CNF formula is treated as a set of clauses,
e.g. ¢ ={(xVz),(2)}. By a substitution we mean a mapping 7 from propositional variables to
Boolean expressions. For a formula ¢ and a substitution 7 we write ¢|, for the application of
T to ¢, i.e. a simultaneous replacement of each x € dom(7) by 7(z). Substitutions are denoted
as 0/u, x/u etc.

2.2 QBF

Quantified Boolean formulas extend propositional logic by the universal and existential quanti-
fiers (V,3), with the standard semantics 3. ¢ = @|o/5VP|1 /5 and Vz. ¢ = ¢o/z AP|1 /.. Note that
QzQy. ¢ = QyQx. ¢ for Q € {3,V}. A formula is closed if no variable appears unquantified.

A QBF is in prenex form if it is in the form ® = Q1 X4,...,Q,X,. ¢ where Q; € {V,3}
and X; are sets of variables and ¢ is purely propositional. The formula ¢ is referred to as the
matriz of the formula. Unless specified otherwise, prenex form closed formulas are assumed.
For a variable z, we write glevel(z) for the quantification level of z, i.e. glevel(z) =i iff z € X;.
Analogously, for a literal ¢, we write glevel(¢) for glevel(z) if £ = = of £ = Z. For a clause
C and @ € {3,V} we write qglevel,y(C) for the maximal quantification level appearing in C
that belongs to @, i.e. glevely(C) = max({qlevel(/ € C) | £ belongs to Q}). If C' contains no Q
literals, glevel, (C) = L.

It is often convenient to view a QBF as a game between the existential and the universal
player. The existential player assigns values to the variables that are existential he qualified and
the universal player assigns values to the universally quantified variables. The players assign
values to variables in the order of the prefix, starting from the outermost to the innermost. A
play is won by the existential player if the matrix evaluates to true and is won by the universal
player if the matrix evaluates to false. A formula is true if and only if there exists a winning
strategy for the existential player. The concept of strategies is formalised by the following
definition.

Definition 1 (strategy and winning strategy). A Boolean function S, is strategy for a variable
x if the input of S, are the variables {y | glevel(y) < glevel(x)}. A strategy . for player @ €
{3,V} is a set of strategies S, for variables x belonging to the player Q. For a formula ® =
Q1 X1,...,QnXy. ¢, a strategy & for 3 is a winning strategy if Ag co(r = Sz) E ¢. A
strategy ./ for ¥V is a winning strategy if Ag ¢ o (* = Sz) F .

Theorem 1. A closed QBF in prenex form is true if and only if there exists a winning strategy
& for the existential player.

Corollary 1. For any closed QBF in prenex form ® there exists a winning strategy for one
and only of the players. The existential player has a winning strategy for ® iff it does not have
a winning strategy for —®.

2.3 Propagation and Learning in QBF

We next recall propagation and conflict learning in the context of QBF. We will model the
propagator by the following three functions. Propagate(d, ®) infers new facts from formula @,
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based on the decisions §. StrengthenPropagator(®,Q,C) makes sure that player @ satisfies
the clause C in the future. Finally, the function Learn(loser,d, @) learns a new clause for a
player loser in the case when the propagator reaches a conflict for loser.

These operations can be seen as an extension of traditional CDCL SAT solving [25, 24] to
QBF [30, 12, 10] and are discussed in more detail in turn.

2.3.1 Propagate

Given the current set of decisions, a propagator derives some necessary facts for either of the
players. If this set of decisions leads to a conflict, the propagator learns a clause that prevents
this conflict in the future. By a conflict, we mean that it is deemed that one of the players
can no longer win the play. Recall that if the current set of decisions satisfies the matrix, the
universal player loses. Hence, some authors talk about solutions and conflicts to distinguish
the two losing scenarios. In this paper we always talk about conflicts for both of the players.

The function Propagate(d, ®) is used to model propagation, given the decisions § on a
QBF ®. The function returns a pair (7,loser), where 7 is the set of derived facts. If the
propagation leads to a conflict, 7 = L and loser € {3,V} contains the player for which the
conflict occurred. For instance, Propagate({e;}, JejeaVuIegeys. (81 V ea) A (uV ez V eq)) would
return ({e1,eq,u}, —).

Propagation can be realized in a number of different ways [30, 31, 19, 21, 12, 22]. For this
presentation we mainly rely on the approach of Goultiaeva et al. [12], with some ingredients
introduced by Klieber [19, 18]. We note, however that the presented algorithm is not limited to
this particular implementation of propagation. The input is a QBF (VY13X; ...VY,,3X,,. ¢), not
necessarily with a CNF matrix. The propagator produces two sub-propagators—one for each
player. One by translating ¢ to CNF and the second by translating —¢ to CNF while flipping the
quantifiers. Formulas are translated to CNF by introducing fresh (Tseitin) variables [28]. Hence,
obtaining (VY13X; ...VY,,3X,,T1.¢) and (3Y1VX;...3Y,VX,IT5.£) such that (3T1.¢) = ¢
and (37T,.€) = —¢. This enables symmetrical CNF-based propagation for both players.

Propagate(d, ®) is implemented by pushing § onto both sub-propagators. Once a sub-
propagator infers a new fact, this fact is pushed onto the other one. New facts are derived until
saturation. Tseitin variables are treated somewhat specially. Each sub-propagator may infer
facts regarding Tseitin variables but these are not pushed onto the other sub-propagator nor
reported on the output of Propagate.

In this setting, both sub-propagators work from the perspective of the existential player. In
another words, both sub-propagators try to satisfy their respective formulas. A sub-propagator
sets an existential literal £ € C' to true, if the clause C satisfies all the following conditions:

1. There is no literal set to true in C.

2. All existential literals of C' except for £ are false, i.e. £ is unassigned.

3. All universal literals at quantification level < glevel(¢) are false.
A conflict is reached when there is a clause whose all existential literals are set to false.
Example 1. Consider ® = JeqVuTJez. uV ((e1 V ea) A (€2) A (€1 V e2)). For the existential sub-
propagator we get the formula Je1VuTes. (€1 VuVea) A(uVea)A(er VuVes). For the universal
sub-propagator a formula of the form Ve;3uVeo3T. (u) A, with some Tseitin variables T' and
clauses 1 encoding the rest of the formula. The universal sub-propagator immediately propagates

the unit clause u, which yields es in the existential sub-propagator through the second clause, e;
due to the first clause and finally the third clause gives a conflict. Such conflict is irresolvable
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for the existential player since it doesn’t depend on any of its decision; in fact it didn’t make
any.

2.3.2 Strengthening Propagator

The function StrengthenPropagator(®,Q,C) returns a modified ® such that the player @ is
forced to satisfy the clause C. Semantically, this corresponds to strengthening the matrix ¢ as
o N C,if Q@ = 3, and weakening it as ¢ V ~C, if Q = V. Since we are following the approach
of two sub-propagators, this operation in practice corresponds to adding the clause C' to the
sub-propagator of player Q.

2.3.3 Learn

Given a conflict propagation, the function Learn(loser, d, ®) produces a clause C rectifying the
conflict. If the result of Learn is |, it means that the conflict is irresolvable and the formula is
solved (there is a winning strategy for the loser’s opponent). For instance,

Learn(3, {e1 }, Je;VuTdes. (61 V Ex) A (61 Vu Ves))

might return the clause (€1 V u). In general we assume that the learned clause is such that
strengthening the sub-propagator of loser by C' does not change the set of winning strategies of
loser. In practice, other properties are guaranteed—similar to unique implication point (UIP)
in SAT (see [30, Sec. 3.3]).

3 Combining Propagation and Refinement

This section presents an algorithm that combines ideas from several existing approaches to QBF.
It uses DPLL-style clause learning [30, 12], abstraction & refinement learning of RAREQS [15,
14], and the flat architecture of QESTO [16].

In the spirit of standard backtracking QBF algorithm, variables are given values from the
outermost ones to the innermost ones. The algorithm maintains a vector of propositional
formulas o = aq,...,q, such that for each quantification level k, the formula «j limits the
possible moves for the player at quantification level k. Concrete values of variables are obtained
by a SAT call on . At the same time, any newly decided value is propagated in the original
formula. The algorithm therefore alternates between QBF-style propagation and SAT solving
and invokes learning whenever a dead-end is reached. Since the formulas «j over-approximate
the possible moves of the player at the level k, we refer to these formulas as abstractions and
to their strengthening as refinement.

The pseudocode is presented in Algorithm 1. Initially the vector of abstractions a sets all
ay to true, thus allowing any moves. The algorithm iterates until one of the players is unable
to recover from a loss. From the hybrid nature of the algorithm, a loss might happen in two
places: if propagation reaches a conflict, or, one of the oy becomes unsatisfiable. We discuss
these situations in more detail later on.

At the beginning of each iteration, QBF propagation is performed on the input formula ®
and the set of current decisions J (see Section 2.3.1 for Propagate). If this propagation is
successful, it gives us the inferred literals 7 and we move to decision making. If the propagation
leads to a conflict for a player loser, conflict resolution is invoked. For this purpose we invoke
the subroutine LearnAndRefine, which either returns a quantification level where to backtrack
or returns |, meaning that the player loser cannot recover from the conflict. If the player
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Algorithm 1: Combined QBF Solving

input P = Q1X1 . let . Q”X”. (b
output: truth value of ®

160+ 0 // initialization of decisions
2 a <+ (o) =true,...,q, = true] // initialization of abstraction vector «
3 while true do

a (7, loser) <— Propagate(d, P) // inferring 7 by QBF propagation
5 if 7= 1 then // conflict resolution

6 (k,a, @) < LearnAndRefine(d, ®, o, loser) // refine at level k
7 if k = L then return (loser = V) 7 true : false // mno recovery
8 d« {led|qlevel(l) < k} // backtrack decisions
9 else // decision-making

10 k < minimal quantification level not fully assigned in 7

11 T < {€ € 7 | qlevel(¢) < k} // filtering out irrelevant values
12 (, ") < SAT(ay A T3) // consult «j for a decision
13 if £ = 1 then // abstraction unsatisfiable

14 ® < ResolveUnsat(7/, Q, @) // update ® based on the core 7’
15 L if ® = 1 then return (Qy = V) ?true : false // no recovery
16 else

17 v < a variable unassigned by 7 at quantification level k

18 L 0+ 0U{p)?v : o} // make a decision on v based on model p

cannot recover from a conflict, it means that the formula is solved because at this point we're
sure there is no winning strategy for that player—in particular, the formula is true iff loser = V.

If propagation does not yield a conflict, the algorithm calculates the quantification level &
for which a decision needs to be made. This level is determined as the outermost level for which
there exists some unassigned variable. Hence, at this point, any variable at a quantification
level < k was given a value by either a decision or propagation. Given all these current values 7,
a SAT solver is invoked on «y (line 12). If the SAT solver yields satisfiability, the obtained
satisfying assignment p is used to make a new decision. Otherwise, the routine ResolveUnsat
is invoked. The routine ensures that if the same decisions were to be repeated in the future,
the propagator will derive a conflict.

Before we discuss the routines LearnAndRefine and ResolveUnsat, let us look at some
global properties of the algorithm. The following definition tells us what is a correct abstraction.
Intuitively, the abstractions must be such that if the current decisions make aj unsatisfiable,
then the player @ can no longer win under those decisions.

Definition 2 (abstraction). Let Z) denote the free variables of oy except for the variables
Xi,..., Xy, i.e. Zp, = free(ay) \ Ule X;. Consider the formula Q1 X1 ... QrXk ... ..
We say that oy, is an abstraction for level k if the following conditions are satisfied:

1. If Qi = 3, then (Qg+1Xkt1-.. . &) implies (3Zy. ).
2. If Qr =V, then =(Qr41Xkt1 - .. . &) implies (IZk. a).

In the subsequent sections we will look at the implementation of LearnAndRefine and
ResolveUnsat—the two routines that handle a loss of one of the players. However, Algorithm 1
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Algorithm 2: Learning and refining from a conflict

1 Function LearnAndRefine(d, ®, o, loser)
input : A set of decisions ¢ that leads to the loss of the player loser. The formula ® and
abstraction a.
output: Quantification level or 1, the updated abstraction o and ®.

2 begin

3 C <+ Learn(loser, §, @) // clause learning
4 k < glevel ooy (C)

5 if k= L then return L

6 oy, < Refine(ay, loser, C)

7 ® + StrengthenPropagator(®, loser, C)

8 return (k, o, D)

can be seen as a template for a family of algorithms with these two routines implemented
differently. For the algorithm to be sound, the following requirements must be fulfilled. The first
requirement asserts that the abstraction vector a = a, ..., o, consists of correct abstractions
(see Definition 2).

Requirement 1. Fach abstraction oy is updated using the function Refine and we require
that this function maintains that oy is an abstraction.

The second requirement asserts that ResolveUnsat does not lose any possible solutions to the
formula.

Requirement 2. If ® = ResolveUnsat(r, Q,®) then both players have the same sets of
winning strategies for ® and ®'.

The above requirements ensure the following invariants.

Invariant 1. Algorithm 1 preserves the invariant that each cy is an abstraction for the quan-
tification level k.

Invariant 2. Let ®q be the input formula to Algorithm 1. Then ® and ®y have the same sets
of winning strategies for both of the players.

3.1 LearnAndRefine

Algorithm 2 details the LearnAndRefine routine, which is used whenever a conflict is reached.
It first invokes conflict analysis, which returns a learned clause C' (see Section 2.3.3 for Learn).
The backtracking quantification level k is then computed as the inner-most level of loser in C'.
If C does not contain any literals of loser, it means that the conflict is unresolvable. The reason
for that is that the opposing player can always falsify C' (a special case of this is C' = 1).
Otherwise, the abstraction «ay is refined based on the clause C, using the function Refine. This
refinement lies in the core of the algorithm and is discussed in greater detail in subsequent
section 3.3. Finally, the learned clause is inserted into the propagator (see Section 2.3.2 for
StrengthenPropagator).
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Algorithm 3: Analysing an unsatisfiable abstraction.

1 Function ResolveUnsat(7’, loser, @)
input : Set of decisions 7', losing player loser, formula ®.
output: Updated formula ® or L.

2 begin

3 k < qlevel oo (77)

4 if k= 1 then return L // no recovery
5 0 // reset propagator
6 C+ {l| e qglevel(l) <k} // blocking clause from core
7 return StrengthenPropagator(®,loser,C') // strengthening propag. for loser

3.2 ResolveUnsat

ResolveUnsat, shown in Algorithm 3, is invoked when an abstraction is unsatisfiable under the
current decisions. The parameter 7/, obtained from the SAT solver, is a subset of facts respon-
sible for the unsatisfiability. Hence, 7’ represents a no-good for the player loser. Analogously to
the previous routine, the quantification backtracking level is computed as the innermost level
of literals of loser in 7/. As before, if 7/ has no literals of loser, then the situation cannot be
resolved. Otherwise, the propagator is strengthened by a blocking clause constructed from 7’.
Observe that any literals of 7/ at levels inner to k& can be ignored because the opponent can
always choose to satisfy those if the rest is already true.

Proposition 1 (blocking soundness). The clause C' constructed on line 6 of Algorithm 3 is
such that if ® = StrengthenPropagator(®,Qx,C) then the player Qy has the same set of
winning strategies for ® as for ®.

The upcoming sections are devoted to the implementation of the function Refine, whose
objective is to strengthen the abstractions based on the conflict.

3.3 Refine

We present the function Refine for the existential player as it is symmetrical for the universal
case. Refinement of oy, takes place when there is a conflict in the propagator and QBF learning
learnt a clauses C' for which glevel;(C) = k. Refine has two principal ingredients:

Conflict-based Strategy Extraction Compute a strategy .# for the opposing player V,
based on the proof of C.

Abstraction Refinement Based on ., strengthen «y, so that the player 3 is not beaten by
the same strategy in the future.

We first describe our approach to abstraction refinement, which relies on a strategy.

3.3.1 Abstraction Refinement

Let us suppose that we are given a strategy . that contains strategies for those and only those
universal variables that are at a higher quantification level than k. Given the original matrix ¢
of that input formula, define refinement of «y, as

ar N Ple N\g e ? =S., where § ={z"/z | qglevel(z) >k} and 2’ is a fresh copy of z. (1)
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— (Axiom) Cive CyV —x

C v e, (LDQ-Res)

C' is a clause in the matrix. Variable x is existential. If there is some universal literal ¢
s.t. £ € Cy and —¢ € Cy, then qglevel(z) < glevel(¢) (ctf.[1]).

Figure 1: The rules of Q"-resolution.

The refinement strengthens the existing «y with the matrix ¢ where all variables inner to k
are freshened, and, the opponent’s variables are set to the values dictated by the strategy. The
intuition behind this is that we eliminate all the universal variables by fixing the strategy for
them. This means that any move of the existential player determined by «j must be such that
the universal player can no longer counter with the strategy in question.

This type of refinement is inspired by the approach of RAREQS [15, 14]. While in
RAREQS, only the universal variables at the quantification level k + 1 are set, strategies
enable setting multiple levels at the same time. This enables maintaining the flat architecture
of the solver—whereas recursive calls are needed in RAREQS.

The following proposition ensures that the refinement given by equation (1) gives us a correct
abstraction (see Definition 2).

Proposition 2. Consider the formula Q1 X1 ... 3XpVXgy1....0, and .7 a set of strategies for
the variables Xgy1, Xk+3,.... The following formula is an abstraction for level k:

Ble A /\ 2 =8, where £ ={z'/z | qlevel(z) > k} (2)
S.es

Proof. The strategies S, € % represent interpretations of the Herbrand functions for &, =
(VXkt1-...9|-). If &, is true, however, then the formula (2) must be satisfiable for any such
interpretations (cf. [17]).

O

Corollary 2. The formula (1) is an abstraction for level k.

Remark 1. To realize refinement for ¥ as the losing player, equation (1) uses —¢ rather than ¢.
Analogously, proof of Proposition 2 is adapted to Skolem, rather than Herbrand functions.

3.3.2 Conflict-based Strategy Extraction

The main idea for building a strategy after a propagator reaches a conflict is to look at the
proof of the learned clause and construct a strategy from the said proof. Known approaches
exist for constructing strategies from refutations [1, 13, 2]. We will essentially generalize this
for proofs of arbitrary clauses, rather than just the empty clause. At the same time, we will
maintain certain properties necessary for the overall functioning of the algorithm.

A number of proof systems exist that correspond to QBF solving. For the purpose of this
work, we use a calculus that is a modification of the existing ones and is more suitable for our
purposes.

Definition 3 (QY-resolution). The Q“-resolution calculus is defined by the rules in Figure 1.
A sequence of clauses C1,...,C, is a Q¥-resolution proof of a clause C, if C = C,, and each
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CVuc€qp CVueap Ceop

CVu:(u0) CVa:(ue 1) Ciner WUEC

Civa:(u+ fi) CoVT:(u+ fa)
CiVCy:(u2a?fy: f1)

We use ¢ for a CNF matrix. Variable z is existential. Furthermore, we simplify
realizer expressions as follows:

x?%: f = f
z?f % = f
f =1

x?f:

Figure 2: Build function: extracting strategies from QY resolution proofs

clause either belongs to the original matriz or is derived from previous clauses by a LDQ-
resolution step. A Q™ -resolution proof is a refutation if it is a proof of a clause C' that contains
only universal variables.

For the remainder of the paper we always assume that axiom clauses are non-tautologous.

Q%-resolution enables us to apply standard clause learning [25] in the QBF setting. As
usual, after a conflict has been reached through propagation, resolution steps are applied in the
inverse order of the propagation [30].

For a variable u, we build a strategy using a function Build(u, 7), which returns a strategy
for u based on a Q“-proof w. This strategy might be the special symbol *, meaning that 7 does
not impose any constraints on w. In the following we abuse the notation by writing Build(u, C'),
meaning that Build is invoked on a proof of C. The function is defined by the rules of Figure 2.
For the axiom clauses, it makes sure that the strategy falsifies the pertaining literal. For clauses
obtained by a resolution step, the following scenarios may be identified. If both antecedents
give the same strategy for u, that strategy is considered. If one of the antecedents does not
impose a strategy on u, then it is ignored. The last scenario is the most interesting one. If the
two antecedents yield different strategies for u, an if-then-else expression is built, splitting on
the pivot variable. The following lemma shows that the non-trivial strategies are obtained only
when C contains u with complementary signs.

Lemma 1. Let S, = Build(u,C). Ifu € C, u ¢ C, then S, = 0 and analogously, if u € C,
u¢ C, then Sy, = 1. Ifu,u ¢ C, then S, = *.

The following lemma shows that the non-trivial scenario only takes place when glevel(e) <
glevel(u), which ensures that the function Build returns a strategy for w.

Proposition 3. Build(u,C) is a strategy for u.

Proof. (By induction on the derivation of C.) If C' is an axiom, Build(u,C) is trivially a
strategy for u, since it’s a constant function.

From Lemma 1, if the if-the-else expression is created and not simplified, it must be that u
is in one of the antecedents and @ in the other. According to the rules of @, it must be that
glevel(e) < glevel(u). Hence, the constructed if-then-else expression is a strategy for w. O
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Algorithm 4: Refine an abstraction ay,

1 Function Refine(ay, loser, C)
input : An abstraction ay, learned clause C for the player loser.
output: Updated ay.
2 begin
3 S {Sg; £ Build(z, C) | Qqgevel(s) # loser, qlevel(z) > k,Build(z, C) # *}

a S S U {Sw £ false | Qqlevel() # loser, glevel(z) > k,Build(z, C) = *}

&+ {Z/z | qlevel(z) > k} // compute renaming to fresh variables
< loser =37¢ : =¢ // negate matrix if necessary
return o Ale A\g e ¥’ =S,

Proposition 4. Let U be a set of universal variables and C some clause derived by Q-
resolution proof m. Define C' as C where all of literals on U are removed and define the
substitution Tp = {Build(u, D)/u | Build(u, D) # %} for any clause D € w. Then ¢|,, = C".

Proof. (By induction on the derivation of C.) If C' is an axiom, then the implication holds
trivially because ¢ = C and because we assume non-tautologous axioms.

To show the hypothesis for a resolution step of C; Ve and Cs Ve, with e as the pivot variable,
we need to show that for any assignment p such that p = ¢|.., it holds that u = C’. Without
loss of generality u(e) = 0. Then it needs to be shown that ¢|, = ¢|,, . This is easily verified
by showing that 7, U {0/e} is more restrictive than 7« U {0/e}. O

Algorithm 4, summarises the content of the last two sections into the implementation of the
routine Refine. The function Build is used to construct strategies for the opponent variables
inner to the quantification level k. Any variables that are not constrained by Build, i.e.
Build(z,C) = *, are given a default value. The variables inner to k are all freshened and
additionally the opponent variables are fixed to the value set by the computed strategy. This
operation is performed on the matrix ¢ if the loser is the existential player and on the negation
of ¢ if the loser is the universal player.

3.4 Good Clauses for Strategies

An important property of clause learning in SAT as well as QBF is that any learned clause C
is asserting. This effectively means that 1) there is a unique literal £ € C' that is currently false
and is at a decision level k; 2) such that if decisions are retracted up to level k, the value of ¢
is forced to true by propagation. We refer to such ¢ as the asserting literal of C.

However, if we wish to carry this behaviour over by refinement, we cannot rely on an
arbitrary learned clause. The issue is that the asserting literal may not be the literal at the
highest quantification level. So for instance, for the prefix ...3eVudb. .., the clause (e V u V b)
can be a learned clause with e asserting, as long as b is propagated before e. Such learned clause
does not guarantee a good strategy. If this clause is used to refine agjevei(s), N0 new restriction
is imposed on the value of e since that is decided by models of agjeel(e)- If this clause is used to
refine agjevei(e), Proposition 4 only guarantees that the refined agievei(e) implies e V u V b', where
b’ is a fresh copy of b, but no guarantee that b’ is forced to 0 and hence not guarantee that the
refinement forces e = 1.
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final strategy: u1 = €3, us = 0

(c) strategy

Figure 3: Modified clause learning

The solution we propose is to construct strategies only from learned clauses where the
asserting literal is at the highest qualification level with respect to the rest of the existential
literals in the clause. This is achieved as follows. Perform clause learning by a sequence of
resolution steps in the reverse order of propagation, as usual. Once an asserting clause is
derived, record the quantification level k of the asserting literal. Continue resolution until there
are no existential literals with a higher qualification level than k in the clause. Additionally, if
the learned clause contains any Tseitin variables, resolution continues as well. This approach
is illustrated by the following example.

Example 2. Consider: JejesesVu3biVuoIbs. (él VbV Ug) A\ (ég \Y bg) A (é3 Vu V 61) AN (él V
esVurV bg)

Figure 3a shows an implication graph, with e; = eo = 1 as decisions, Figure 3b the corre-
sponding resolution proof, and Figure 3c the strategies corresponding to each clause.

For the UIP clause éf’\’l V 65’32 VupViuV l;f” we have the asserting literal éx. At the same
time, however, the literal with the highest qualification level is by. If, at this point we would
refine o based off the strategy & = {Su,(e1,ea,€3) = €3,Sy,(€1,€2,€3,b1) = %}, we would
only guarantee oy |= & V & V b, where b} is a fresh copy of by, due to Proposition 4. In
the propagator, after adding the UIP, deciding ey = 1 leads to ea = 0, while the refined oy
would not have this property. Therefore, we do not stop the learning procedure at the UIP, and
continue resolving, until the asserting literal becomes the literal with the highest quantification
level. This gives us the strategy . = {S., (e1, €2, e3) = €3, S, (€1, ea,e3,b1) = 0}, guaranteeing
ay = €1V ey, again, due to Proposition 4.
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Figure 4: Cactus plots for the experiments.

4 Experimental Evaluation

We have implemented a prototype based on Algorithm 1, named QOSTA—(Qbf sOlver with
Strategy exTrAction). Since the implementation requires a tight integration between propa-
gation and the main solver, we have decided to implement the QBF propagator from scratch.
MiniSAT 2.2 was used as the underlying SAT solver [9]. The experiments were carried out on
an Intel Xeon 5160 3GHz with 4GB of memory. The time limit was set to 800 seconds and the
memory limit to 2GB. All instances were preprocessed by blogger [8] (except for GhostQ, which
was given unpreprocessed inputs, since GhostQ has difficulty handling the output of blogqer).

To evaluate the effect of refinement, we considered two versions of the solver: one as de-
scribed in Algorithm 1-QOSTA and the second without the refinement—QOSTA-NOREF. QOSTA-
NOREF corresponds to Algorithm 1 without line 6, and effectively evaluates our QBF propagator.

Other solvers included in the evaluation are the non-CNF-based solver GhostQ [19], CDCL-
style solver with variable dependency computation DepQBF [21], the CEGAR-based solvers
RAREQS and AREQS [15, 14].

Figure 4 shows cactus plots for two benchmark families. Figure 4a is the QBF evaluation
2012 benchmark set.! Figure 4b the 2QBF? evaluation 2010 benchmark set.> QOSTA does not
perform well on the general set of benchmarks but it is the second best on the 2QBF family.
The version without refinement (QOSTA-NOREF) is significantly worse than the general version
and all the other solvers. This indicates that the refinement is essential to the algorithm’s
workings but also that there is a lot of space for improvement in the implementation.

Thttp://qbf.satisfiability.org/gallery/.
2By 2QBF is meant instances with 2 levels of qualification.
3http://www.qbflib.org/index_eval.php.
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5 Related Work

There are two distinctive strands in QBF solving. In one approach, a solver traverses the search
space, while pruning it by propagation, similarly to SAT solvers [30, 31, 19, 21, 12, 22]. In the
second approach, a solver eliminates (expands) quantifiers obtaining thus a SAT problem [26,
6, 20, 3.

The weak spot of expansion is the exponential blowup in space. This is mitigated by the
CEGAR approaches of the solver AREQS and its recursive extension RAREQS, which expand
the formula gradually [15, 14]. More recently the solvers QESTO [16], QELL [29], and CAQE [27]
build on RAREQS with variations in refinement but also in flat architecture, while RAREQS
builds a tree of abstractions. Expansion and search has been shown substantially different from
a theoretical perspective via proof complexity [5].

6 Summary and Future Work

This paper presents a novel technique for combining DPLL-style solving and abstraction refine-
ment in a QBF solver. Strategy extraction serves as the coupling between the two techniques.
Abstractions in the form of propositional formulas are maintained for each quantification level
and search-space is traversed while using abstractions for making new decisions. Once a con-
flict is reached via propagation, a strategy is extracted and used to refine the appropriate
abstraction.

The presented techniques open a number of avenues for future work. Other or complemen-
tary methods for strategy extraction could be envisioned. For instance, as different strategies
are learned throughout solving, new strategies could be devised by combining the existing ones.
More QBF techniques should be considered for integration into the solver, such as variable de-
pendencies, pure literal detection or in-processing in general. The constructed strategies were
applied for refining abstractions. However, they can be used in different settings. For instance
as a prediction for the opposing player in solvers like QESTO. Strategy extraction could be
employed in other domains than QBF. In particular, in SMT with quantification.
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