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Abstract

Logical reasoning as performed by human mathematicians involves an intuitive under-
standing of terms and formulas. This includes properties of formulas themselves as well
as relations between multiple formulas. Although vital, this intuition is missing when
supplying atomically encoded formulae to (neural) down-stream models.

In this paper we construct continuous dense vector representations of first-order logic
which preserve syntactic and semantic logical properties. The resulting neural formula
embeddings encode six characteristics of logical expressions present in the training-set
and further generalise to properties they have not explicitly been trained on. To facilitate
training, evaluation, and comparing of embedding models we extracted and generated data
sets based on TPTP’s first-order logic library. Furthermore we examine the expressiveness
of our encodings by conducting toy-task as well as more practical deployment tests.

1 Introduction

During the first half of the 20th century the concepts formal proof and proof systems were
introduced [23]. Unlike a “standard” human proof, a formal proof is a proof with respect to a
system of inference rules (i.e. axioms) where each step of the proof can only be the application
of one of those rules. In theory, every correct human proof can be transformed to a formal
proof. While these systems were not intended to be used in standard mathematics at the time,
subsequent algorithmic developments and modern day computers allow for a formal approach
to mathematical proofs [10]. Such developments include the proof of Kepler’s conjecture [11]
and the four colour theorem [8]. Formal proofs have also lead to the development of a formally
verified operating system [16] and a compiler [18]. Nevertheless, due to inherent complexities
involved in formal proof systems, automated or interactive theorem proving remains a cum-
bersome activity that requires a lot of human effort. With recent advancements in artificial
intelligence, using these techniques in formal reasoning to overcome those hurdles have emerged.
One hopes that these techniques will eventually lead to computers being able to derive theorems
as complex as the ones derived by mathematicians in a more informal setting [4].

Human proofs do not originate in a vacuum. First, they require a familiarity with the
concepts being used, i.e. the context of a statement. This may include auxiliary lemmas,
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alternative representations, or definitions. Sometimes it can happen that certain observations
are easier to make depending on the representation used [9]. An additional component is the
experience of a mathematician who may have seen or proven similar theorems, which can be
described as intuition. Once, a rough proof outline is developed, one can start filling in the
necessary steps required for other mathematicians to understand the proof.

Computer provers derive theorems by manipulating syntax according to inference rules hard
coded into the program. The aforementioned steps that a human goes through before finding
a proof are completely irrelevant to a computer. However, this is the reason why humans
are capable of deriving more involved theorems. Using deep learning we try to mimic this
process. In this paper we will make the assumption that deep learning will be able to find a
characterisation of mathematical objects that is good enough to reason with them efficiently.
To enable this, we develop a first layer of such a deep learning approach to theorem proving,
that is an embedding of formulas into a continuous vector space. That is, we develop a network
that turns a character sequence (discrete sequence of symbols) that represents a mathematical
statement (i.e. term, formula) into a potentially lower dimensional, continuous vector. We
hope that this embedding preserves “important” information about the original formula as
well as relations to other formulas. For example, when considering a distance metric, two
formulas that are closely related (i.e. can be derived from each other, are unifiable, etc.) may
be close in distance in the continuous vector space, even if they do not resemble each other
syntactically. We consider properties (e.g. unifiability, alpha equivalence, etc.) which are
important in theorem proving. We train encoding networks using such properties and with
that hope to be able to capture the informal notions of “intuition” and “familiarity” which are
used by human mathematicians.

Theorem Proving Problems and Artificial Intelligence In some ways automated theo-
rem proving can be compared to a search problem where the search space can grow unboundedly
depending on which decisions you make during the search. The method of estimating the “best
decisions” which lead to a goal as fast as possible are called proof guidance. In [7] simple
probabilistic models for such a task are used, while [19] connect deep learning models to an
automated theorem prover. The current state of the art proof guidance uses reinforcement
learning [14]. This and most other approaches (e.g. [15]) exclusively use human selected fea-
tures. A related problem is that of automatically proposing interesting conjectures and theory
exploration. Machine learning has been applied to this problem in the HipSpec system [6] which
generates provable conjectures for subsequent proof searches. A task that plays a central role
in interactive theorem proving is premise selection [17]. Here, we ask which previously proven
theorems could be useful in proving our current goal. Deep learning was applied to premise
selection in [1], and in [24]. The latter used embeddings based on the tree structure of formulas.
Also here, human selected features are used with great success. Semantic embeddings have been
proposed for related task such as [2] where the goal is deciding equivalence of propositional and
polynomial expressions. Similarly, [20] presents a neural network that predicts if propositional
logic formula is satisfiable. For many systems and tasks the best state of the art implementa-
tions all use human developed heuristics and features for simple learning models. We hope to
be able to improve the performance in proof guidance when using deep learning embeddings
that do not rely on humans to select features.

Contributions In this paper we develop a novel encoding or embedding of logical formulae
and expressions. The encoding networks are trained with properties that are important in
theorem proving procedures. In particular, we present the following contributions:
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• We specify a number of properties relevant for theorem proving and create data sets for
these properties.

• We design multiple two-part models. The first part, can be seen as a series of layers
combining embedding/convolution/pooling or long short-term memory (LSTM) layers,
that output an encoding of formulas and expressions. This encoding block is trained
through back propagation from the second part, which consists of multiple classifiers that
work purely on the generated encoding.

• These encodings are evaluated with respect to the aforementioned properties. We also
train support vector machines (SVMs) based on these encodings with properties that the
encoding networks were not specifically trained on. In addition, we evaluate the encodings
using simple distance metrics to show that concepts such as variables were learned.

In Section 2 we will introduce some logical preliminaries and introduce the properties we
will consider. We also present how the data was extracted and the structure of the data sets.
In Section 3 we will present our learning framework as well as the encoding models. These are
then evaluated in Section 4. Finally, we will discuss concluding remarks and future work in
Section 5.

2 Logical Preliminaries and Data Sets

Our focus lies on first-order logic (FOL) formulas. In this section will introduce the syntax of
first-order formulas and discuss some properties which will be used later. We will also argue
that the selected properties are well suited for our purpose. This section gives only a brief
overview, for a more detailed exposition we suggest a textbook on logic in computer science
such as Huth and Ryan [13].

An abstract Backus-Naur Form (BNF) for FOL formulas is presented below. The two main
concepts are terms (1) and formulas (2). A formula can either be an Atom (which has terms
as arguments), two formulas connected with a logical connective, or a quantified variable or
negation with a formula. Logical connectives are the usual connectives negation, conjunction,
disjunction, implication and equivalence. In addition we have universal and existential quanti-
fiers.

term := var | const | f(term, . . . , term) (1)

formula := Atom(term, . . . , term) (2)

| ¬formula | formula ∧ forumla

| formula ∨ formula

| formula→ formula | formula↔ formula

| ∃ var. formula | ∀ var. formula

For simplicity we omitted rules for bracketing. However, the “standard” bracketing rules ap-
ply. Hence, a formula is well-formed if it can be produced by 2 together with the mentioned
bracketing rules. As theorem provers only work with well-formed formulas we expected our
encodings to also reflect that the encoded formula is well formed. The parser is based on
the syntax of the FOL format used in the “Thousands of Problems for Theorem Provers”
(TPTP) library [21]1. This library is very diverse as it contains data from various domains

1The full BNF can be found here: http://tptp.cs.miami.edu/∼tptp/TPTP/SyntaxBNF.html
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including set theory, algebra, natural language processing or biology all expressed in the same
logical language. Furthermore, its problems are used for the annual CASC competition for
automated theorem provers. Our data sets are extracted from and presented in TPTP’s
format for first-order logic formulas and terms. An example for a TPTP format formula
is ![D]: ![F]: (disjoint(D,F) <=> ~intersect(D,F)) which corresponds to the formula
∀d. ∀f. disjoint(d, f) ⇐⇒ ¬ intersect(d, f). As part of the data extraction we developed a
parser for TPTP formulas where we took some liberties. For example, we allow for occurrences
of free variables, something the TPTP format would not allow. We can now introduce proper-
ties of these formulas that we will consider in subsequent sections and describe how the data
was extracted.

Well-formedness: As mentioned above it is important that the encoding networks preserve
the information of a formula being well-formed. The data set was created by taking TPTP
formulas as positive examples and permutations of the formulas as negative examples. We
generate permutations by randomly iteratively swapping two characters and checking if the
formula is well-formed, if it is not, we use it as a negative examples. This ensures that the
difference between well-formed formulas and non well-formed formulas is not too big.

Sub-formula: Intuitively, the sub-formula relation maps formulas to a set of formulas which
comprise the original formula. Formally, the sub-formula relation is defined as follows:

sub(φ) =



{φ} if φ is Atom

sub(ψ) ∪ {φ} if φ is ¬ψ
sub(ψ1) ∪ sub(ψ2) ∪ {φ} if φ is ψ1 • ψ2 and • ∈ {∨,∧,→,↔}
sub(ψ) ∪ {φ} if φ is ∀x. ψ
sub(ψ) ∪ {φ} if φ is ∃x. ψ

Notice, how we never recursively step into the terms. As the name suggests we only recurse
over the logical connectives and quantifiers. Hence, g(x) is not a sub-formula of ¬f(g(x), c)
whereas f(g(x), c) is (since “¬” is a logical connective of formulas). Importantly, the sub-
formula property preserves the tree structure of a formula. Hence, formulas with similar sets of
sub-formulas are related by this property. Therefore, we believe that recognising this property is
important for obtaining a proper embedding of formulas. In the presented data set the original
formulas φ are taken from the TPTP data set. Unfortunately, finding negative examples is not
as straightforward, since each formula has infinitely many formulas that are not sub-formulas.
In our data set we only provide the files as described above (positive examples). To create
negative examples during training, we randomly search for formulas in which are not a sub-
formula. Since, we want to have balanced training data we search for as many negative examples
as positive ones.

Modus Ponens: One of the most natural logical inference rules is called modus ponens. The
modus ponens (MP) allows the discharging of implications as shown in the inference rule (3).
In other words, the consequent (right-hand side of implication) can be proven to be true if the
antecedent (left-hand side of implication) can be proven.

P P → Q

Q
(3)
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Using this basic inference rule we associate two formulas φ and ψ with each other if φ can be
derived from ψ in few inference steps, including modus ponens. It turns out that despite its
simplicity, modus ponens makes for a sound and complete proof calculus for the (undecidable)
fragment of first-order logic known as Horn Formulas [5].

Example 2.1. We can associate the two formulas φ := ∀x. ((P (x) → Q(x)) ∧ P (x)) and
ψ := ∀x. Q(x) with each other, since ψ can be proven from φ using the modus ponens inference
rule (and some others).

Providing data for the this property required more creativity. We had two approaches:
Option one involves generating data directly from the TPTP data set, while the other option
comprised synthesising data ourselves with random strings. In the data set we provide both
alternatives are used. First, we search for all formulas in the TPTP set that contained an impli-
cation and added the antecedent using a conjunction. We paired this formula with the formula
containing only the consequent. We tried to introduce “diversity” to this data by swapping
around conjuncts and even adding other conjuncts in-between. Secondly, we synthesise data
using randomly generated predicate symbols.

Alpha-Equivalence: Two formulas or terms are alpha equivalent if they are equal modulo
variable renaming. For example the formulas ∀x y. P (x) ∧ Q(x, y) and ∀z y. P (z) ∧ Q(z, y)
are alpha equivalent. Alpha equivalence is an important property for two reasons. First, it
implicitly conveys the notion of variables and their binding. Second, one often works on alpha
equivalence classes of formulas and hence, alpha equivalent formulas need to be associated with
each other.

Term vs Formula: We generally want to be able to distinguish between formulas and terms.
This is a fairly simple property, especially since it can essentially be read of the BNFs 1 and 2.
However, it is still important to distinguish these two concepts, and a practical embedding
should be able to do so.

Unifiability: Unifiability plays an important role in many areas of automated reasoning such
as resolution or narrowing [3]. Unifiability is a property that only concerns terms. Formally,
two terms are unifiable if there exists a substitution σ such that s · σ ≈ t · σ. Informally, a
substitution is a mapping from variables to terms and the application of a substitution is simply
the replacing of variables by the corresponding terms. Formally one needs to be careful that
other variables do not become bound by substitutions. Example 2.2 showcases these concepts
in more detail.

Example 2.2. Substitution and Unifiability: The terms t = f(g(x), y)) and s = f(z, h(0))
are unifiable, since we can apply the substitution: {z 7→ g(x), y 7→ h(0)} such that t · σ =
f(g(x), h(0)) = f(g(x), h(0)) = s · σ.

Syntactic unification, which is the type of unification described above is quite simple and
can be realised with a small set of inference rules. However, even adding additional information
such as associativity or commutativity can make unification an extremely complex problem [3].
Putting unification into a higher-order setting makes it even undecidable [12].

In our supplementary material we include data sets of different sizes extracted from different
parts of the TPTP library. They were all extracted from the Set Theory library of TPTP. The
program we provide can be used to extract bigger data-sets from any set of TPTP formulas,
including the libraries of interactive theorem provers translated to the TPTP format [22] used
in a number of theorem proving challenges.
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3 Model(s)

We considered six different embedding models, four of which are based on Convolutional Neural
Networks (CNNs) and the others are based on long short-term memory networks (LSTMs).
However, the setup used for training the networks remains the same. Hence, we will discuss
the general architecture first. After that we will elaborate on each neural encoding model.

Problem Formulation Given a first-order formula φ we wish to learn a function enc(·).
When given the formula φ of length m the function enc(φ) should produce a continuous vector
representation of φ of length n. If m > n we call enc(·) an embedding, otherwise if m = n we
refer to it as encoding. The continuous vector representation of formulas enc(φ) has to preserve
the properties mentioned above. That is, if two formulas φ and ψ are alpha equivalent then this
is reflected in enc(φ) and enc(ψ) and if φ is well formed this should be deducible from enc(φ)
(and similarly for all other properties).

3.1 Training Framework

Our goal is to obtain an encoding2 network that preserves properties. For that we develop
multiple encoding networks (c.f. green box in Figure 1) that we will discuss later. All of them
produce an encoding enc(φ) of a formula φ. This continuous vector representation is then fed
into classifiers that recognise the properties discussed in Section 2. The total loss L is calculated
by taking the sum of the losses LP of each classifier of the properties p ∈ P discussed before.
L is then propagated back into the classifiers and the encoding network. This setup is end-to-
end trainable and ensures, that the resulting embedding preserves the properties discussed in
Section 2. The setup of the training phase is illustrated in Figure 1. We train the network on
this setup and evaluate the whole training setup (encoding network and classifiers) on unseen
data in Section 4. However, since our main goal is the encoding network, we can extract the
encoding network (c.f. Figure 1) and discard the classifiers after training and evaluation.

Classifiers The classifiers’ purpose is to train the encoding network. This is implemented
by jointly training each layer in the encoding networks and classifiers to extract continuous
representations for correct property classification in the final layer. There are two philosophies
that can go into designing these classifiers. The first is to make the classifiers as simple as
possible, i.e. a single fully connected layer. This makes the encoding networks encode the
properties in a “high-level” fashion as more complex relationships cannot be recognised by a
single fully connected layer. This is advantageous if one wants to train simpler machine learning
models on the encodings. On the other hand, when using multiple layers in the classifiers more
complex relationships can be recognised and the encoding networks can encode more complex
features without having to keep them “high-level”. However, if the problems for the classifiers
are too easy it could happen that only the classifier layers are trained and the encoding network
layers remain “untouched” i.e. do not change the char-level encoding significantly. We chose
to go a middle route by using two fully connected layers, although we believe that one could
investigate further solutions to this problem (e.g. adding weights to loss).

2We will mostly be talking about encoding networks but the same applies for embedding networks unless
specified otherwise.
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Input formula φ

Encoding Network

enc(φ)

Modus PonensWell-formedness
. . .

Classifiers

∑
p∈P Lp Loss

Figure 1: This graph shows the training framework we developed. The bottom area contains the
classifiers that get one or more continuous representations of formulas enc(φ) as input. If the classifier
takes two formulas as input (i.e. alpha-equivalence), we gather enc(φ1) and enc(φ2) separately and
forward the pair (enc(φ1), enc(φ2)) to the classifier. The encoding networks are described subsequently
(cf. Figure 2).

3.2 Embedding Models

In the previous section we treated the embedding models themselves as a green box (Figure 1)
without going into more detail. We considered two different types of encoding networks. First,
discuss the CNNs based models and later the ones based on LSTMs. The models’ graphs are
roughly depicted in Figure 2. The exact dimensions and sizes of the models are discussed in
Section 4 as they are not fixed in the models.

CNN based models The first encoding model we present is the basic model based on CNNs
(cf. left side in Figure 2). The first layer is a variable size embedding layer, the size of which
can be changed with a command line argument. Once the formulas have been embedded, we
pass them through a set of convolution and (max) pooling layers. In our current model we have
9 convolution and pooling layers with increasing filter sizes and ReLUs as activation functions.
The output of the final pooling layer comprises the encoding of the input formula. In the second
model we append an additional set of fully connected layers after the convolution and pooling
layers. However, these do not reduce the dimensionality of the vector representation. For that
we introduce a third type of models, which we call embedding models. For these the last layer
is a projection layer which we tested with output dimensions 32 and 64. Note that between the
last pooling layer and the projection layer one can optionally add fully connected layers like in
the previous model. In Section 4 we evaluate these models.
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Input φ

Embedding Layer

Convolution

Pooling

. . .

Convolution

Pooling

Fully Connected Layer(s)

Projection Layer

Fully Connected Layer(s)

Projection Layer

Bidirectional LSTM layers

Embedding Layer

Input φ

enc(φ) enc(φ)

Figure 2: The encoding models we considered with the layers that the input passes through. On the
left we show the CNN based models, while on the right the LSTM based models are presented. The
dashed boxes describe layers that are not present in each model of that type.

LSTM based models We considered three LSTM based models (see right side of Figure 2).
Much like in previous models, the first layer is comprised of an embedding layer. The output of
which gets fed into bidirectional LSTM layers. The output of these layers serves as the encoding
of our input formulas. As with the CNN based models we also considered models where an
additional set of fully connected or projection layers is added.

4 Evaluation

As mentioned in Section 1 there are many use cases for encodings of formulas. Hence, we will
discuss different possible ways of evaluation. First, we consider the properties the models have
been trained with (cf. Section 2). Here, we have two different ways of obtaining evaluation and
test data. We also want the encoding networks to generalise to, and preserve properties that it
has not specifically been trained on. Therefore, we encode a set of formulas and expressions and
train an SVM (without kernel modifications) with different properties on them. Finally, we will
also discuss a more informal nearest neighbour metric that we used to evaluate the encodings.

For the first and most straightforward evaluation we use the data extracted from the Graph
Theory and Set Theory library described in Section 2 as training data. In order to evaluate
the models, we could split this data before training into a training set and evaluation set.
Hence, the network is evaluated on unseen data. In this approach however, constants, for-
mulas, etc. occurring in the evaluation data may have been seen before in different contexts.
For example, considering the Set Theory library, terms and formulas containing union(X,Y),
intersection(X,Y), etc. will occur in training data and evaluation data. Indeed, in applica-
tions such as premise selection such similarities and connections are actually desired, which is
one of the reasons we use char level encodings. Nevertheless, we will focus on more difficult
evaluation/test data. We will use data extracted from the Category Theory library as evalu-
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Network
embedding
dimension

sub-formula
multi-label
classification

binary
sub-formula
classification

modus
ponens

term vs formula
classification

unifiability
well-
formedness

alpha
equivalence

CNN 32 0.999 0.625 0.495 0.837 0.858 0.528 0.498
CNN 64 0.999 0.635 0.585 0.87 0.73 0.502 0.55
CNN 128 0.999 0.59 0.488 0.913 0.815 0.465 0.587
CNN with Projection to 32 64 1.0 0.662 0.992 0.948 0.81 0.748 0.515
CNN with Projection to 64 64 1.0 0.653 0.985 0.942 0.718 0.85 0.503
CNN with Fully Connected layer 32 0.999 0.64 0.977 0.968 0.78 0.762 0.5
CNN with Fully Connected layer 64 0.999 0.668 0.975 0.973 0.79 0.77 0.548
CNN with Fully Connected layer 128 0.999 0.635 0.923 0.972 0.828 0.803 0.472
CNN with Fully Connected layer Pr to 32 64 1.0 0.648 0.973 0.922 0.865 0.69 0.487
CNN with Fully Connected layer Pr to 64 64 1.0 0.662 0.968 0.967 0.898 0.762 0.497
LSTM 32 1.0 0.652 0.488 0.975 0.883 0.538 0.508
LSTM 64 0.999 0.652 0.49 0.942 0.86 0.49 0.575
LSTM 128 1.0 0.643 0.473 0.96 0.885 0.51 0.467
LSTM Pr to 32 64 1.0 0.69 0.537 0.863 0.87 0.513 0.62
LSTM Pr to 64 64 1.0 0.598 0.535 0.845 0.902 0.515 0.575
LSTM with Fully Connected layer 32 0.999 0.638 0.485 0.855 0.902 0.532 0.692
LSTM with Fully Connected layer 64 1.0 0.63 0.491 0.882 0.848 0.52 0.833
LSTM with Fully Connected layer 128 1.0 0.635 0.473 0.968 0.887 0.51 0.715
LSTM with Fully Connected layer Pr to 32 64 1.0 0.657 0.495 0.96 0.883 0.505 0.672
LSTM with Fully Connected layer Pr to 64 64 1.0 0.62 0.503 0.712 0.898 0.492 0.662

Table 1: Accuracies of classifiers working on different encoding/embedding models. The models were
trained on the Graph/Set theory data set and the evaluation was done on the unseen Category Theory
data set. The LSTM based models are in grey. (Pr = Projection)

ation data and the Set/Graph Theory data as training data. Hence, training and evaluation
sets are significantly different and do not share terms, constants, formulas, etc. We train the
models on embedding dimensions 32, 64, and 128 (we only consider 64 for projective models).
The input length, i.e. the length of the formulas was fixed to 256, since this includes almost
all training examples. The CNN models had 8 convolution/pooling layer pairs of increasing
filters sizes (1 to 128), while the LSTM models consisted of 3 bidirectional LSTM layers each
of dimension 256. In the “Fully Connected”-models we append two additional dense layers.
Similarly, for the projective models we append a dense layer with a lower output dimension.

The evaluation results of the models are shown in Table 1. The multi-label sub-formula
classification is not relevant for this evaluation since training and testing data is significantly
different. However, the binary sub-formula classification is useful and proves to be a difficult
property to learn. Surprisingly, adding further fully connected layers seems to have no major
effect for this property regardless of the underlying model. In contrast, the additional dense
layers vastly improve the accuracy of the modus ponens classifier (from 49% to 97% for the
simple CNN based model with embedding dimension 32). It does not make a difference whether
these dense layers are projective or not. Interestingly, every LSTM model even the ones with
dense layers fail when classifying this property. Similar observations although with a smaller
difference can be made with the term-formula distinction. Classifying whether two terms are
unifiable or not seems to be a task where LSTMs perform better. Generally however, the
results for unifiability are similarly good across models. When determining whether a formula
is well formed CNN based models again outperform LSTMs by a long shot. In addition, a big
difference in performance can be seen between CNN models with additional layers (projective
or not) appended. Unsurprisingly alpha equivalence is a difficult property to learn especially
for CNNs. This is the only property where LSTMs clearly outperform the CNN models. Thus
combining LSTM and CNN layers into a hybrid model might proof beneficial in future works.
In addition, having fully connected layers appears to be necessary in order to achieve accuracies
significantly above 50%.

Generally, varying embedding dimensions does not seem to have a great impact on the per-
formance of a model, regardless of property. As expected, adding additional fully connected
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Figure 3: Cumulative loss in each epoch during training.

layers has no negative effect. This leads us to distinguish two types of the properties: Properties
where additional dense layers have a big impact on the results (modus-ponens, well-formedness,
alpha-equivalence), and those where the effect of additional layers is not significant (unifiability,
term-formula, bin. sub-formula). It does not seem to make a big difference whether the ap-
pended dense layers are projective or not. Even the embedding models that embed the formulas
to an 8th of the input dimension perform very well. Another way of classifying the properties is
to group properties where CNNs perform significantly better (modus-ponens, well-formedness),
and conversely where LSTMs are preferable (alpha equivalence).

We also present data that shows the performance of the models during training. In Figure 3
we show the cumulative loss in each epoch.

4.1 Other Problems and Properties

We also want the encodings of formulas to retain information about the original formulas and
properties that the networks have not specifically been trained on. We want the networks
to learn and preserve unseen structures and relations. We conduct two lightweight tests for
this. First, we train simple models such as SVMs to recognise certain structural properties
(that we did not specifically train for) in the encodings of formulas. To this end we train
SVMs to detected logical connectives such as conjunction, disjunction, implication, etc. These
classifications are important since logical connectives were not specifically used to train the
encoding networks (cf. Section 3) but are important nevertheless. Here, the SVMs correctly
predict the presence of conjunctions, etc. with an accuracy of 85%. We also train an ordinary
linear regression model to predict the number of occurring universal and existential quantifiers
in the formulas. This regression correctly predicts the number of quantifiers with an accuracy
of 94% (after rounding to the closest integer). These results were achieved by using the CNN
based model with fully connected layers. We also evaluated the projective models with this
method. We achieved 70% and 84% for classification and regression respectively using the CNN
model with fully connected and projection layer. When using models that were trained using
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Target union(intersection(D ,F ), intersection(D , I )) D

1st union(intersection(D ,F ), difference(D ,F )) C
2nd unordered pair(empty set , singleton(C )) K
3rd intersection(union(C ,D), union(C ,F )) L

Table 2: We show the 3 formulas and terms whose continuous vector representation is closest to the
vector of the target formula or term.

single layer classifiers as discussed in Section 3.1 we get better results for simple properties such
as the presence of conjunction.

Furthermore, we created a nearest neighbour (based on a distance metric) evalua-
tion that we conducted using the encoding of a set of formulas. The results of this
evaluation are displayed in Table 2. In the second column we see the term closest
to union(intersection(D ,F ), intersection(D , I )) is union(intersection(D ,F ), difference(D ,F )).
The last column shows that the closest point in space to variables are other variables, i.e. the
closest term to the variable D is the variable C , K and so on. This similarity is not surprising
given that their vector representations have the same structure (mostly zeroes apart from the
first entry). Nevertheless, it shows that first of all, the networks don’t introduce obfuscation
and second of all that it does not confuse variables with single letter predicate symbols. Fur-
thermore, the encoding network still retains similar strings even if they are in different positions
of the expression. In other examples not presented in Table 2 we can observe that different
formulas containing an implication with the same antecedent but different consequent are also
close to each other.

5 Conclusion

We discussed several problems related to automated reasoning where modern artificial intelli-
gence technologies can be utilised. We extracted data sets from the TPTP library that describe
several properties of formulas that are relevant for theorem proving. Using these we develop a
two-stage learning framework where we train an encoding network based on these properties.
We consider ten different encoding models which make use of LSTMs and CNNs. In Section 4
we evaluated these models on unseen data and verify that the encoding and embedding net-
works do indeed preserve important syntactic and semantic properties of the input formulas.
In order to verify that the networks also learn features that were not specifically trained, we
train SVMs and linear regression models to recognise unseen properties on the encodings of
formulas. In addition, we present a nearest neighbour evaluation.

The code and data sets are available at:
http://cl-informatik.uibk.ac.at/cek/gcai2020/

Future work can include the expanding to other types of input data. As mentioned we only
considered TPTP’s first-order logic. However, we hope to apply similar techniques to higher-
order logic where some of the considered properties become more complex or even undecidable.
Extending to higher-order logic would also enable us to directly incorporate the encodings in
premise selection and proof guidance for proof assistants based on more complex and unde-
cidable foundations including HOL, where automation has so far been much weaker than for
first-order logic. We also hope to use the encodings developed in this paper in order to improve
proof guidance of first-order logic theorem provers. In particular, we believe that the encodings
preserve relations between logical statements that can be leveraged to support these theorem
provers in their proof search.
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Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, et al. A machine-checked
proof of the odd order theorem. In International Conference on Interactive Theorem Proving,
pages 163–179. Springer, 2013.

[10] Thomas C Hales. Formal proof. Notices of the AMS, 55(11):1370–1380, 2008.

[11] Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harrison, Truong Le Hoang,
Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang Tat Nguyen, Truong Quang Nguyen,
Tobias Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev, An Hoai Thi Ta,
Trung Nam Tran, Diep Thi Trieu, Josef Urban, Ky Khac Vu, and Roland Zumkeller. A for-
mal proof of the Kepler conjecture. Forum of Mathematics, Pi, 5, 2017.

[12] Gérard P. Huet. Higher order unification 30 years later. In Victor Carreño, César A. Muñoz, and
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