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Abstract
Non-linear polynomial systems over finite fields are used to model functional behavior

of cryptosystems, with applications in system security, computer cryptography, and post-
quantum cryptography. Solving polynomial systems is also one of the most difficult problems
in mathematics. In this paper, we propose an automated reasoning procedure for deciding
the satisfiability of a system of non-linear equations over finite fields. We introduce zero
decomposition techniques to prove that polynomial constraints over finite fields yield finite
basis explanation functions. We use these explanation functions in model constructing
satisfiability solving, allowing us to equip a CDCL-style search procedure with tailored
theory reasoning in SMT solving over finite fields. We implemented our approach and
provide a novel and effective reasoning prototype for non-linear arithmetic over finite fields.

1 Introduction
Solving a system of polynomial equations is one of the hardest problems in mathematics, with
emerging applications in cryptography, software security, code optimizations, control theory,
and many other areas of computer science. Computing solutions to polynomial equations is
known to be decidable and algorithmically solvable over algebraically closed fields thanks to the
fundamental theory of algebra and Buchberger’s algorithms for Gröbner basis computation [8,37].
Yet, when restricting the algorithmic study of solving polynomial equations over integers, the
problem becomes undecidable [29].

Until recently, the algorithmic study of solving polynomial constraints, and hence automated
reasoning in polynomial arithmetic, was the sole domain of computer algebra systems [1,28,36,43].
These systems are very powerful in computing the set of all solutions of polynomial constraints,
but generally suffer from high computational overhead, such as doubly exponential computation
complexities in terms of number of variables [11].

With the purpose of scaling non-linear reasoning, especially for solving satisfiability instances
of polynomial arithmetic, exciting new developments in boolean satisfiability (SAT)/satisfiability
modulo theory (SMT) reasoning arose by combining a Conflict-Driven Clause Learning (CDCL)-
style search for a feasible assignment, called Model Constructing Satisfiability (MCSat), with
algebraic decompositions and projections over the solution space of polynomial inequalities [12,25].
Unlike the classic CDCL(T) approach of SMT-solvers, MCSat [12,24,25] combines the capabilities
of a SAT solver and a theory solver into a single procedure while keeping the search principles
theory independent. To the best of our knowledge, SMT solving over finite fields lacks a

R. Piskac and A. Voronkov (eds.), LPAR 2023 (EPiC Series in Computing, vol. 94), pp. 238–256



SMT Solving over Finite Field Arithmetic T. Hader et al.

dedicated approach for reasoning over finite fields. Encoding the problem in existing theories
(e.g. NIA) are inefficient [33].

In this paper we address this challenge and introduce a CDCL-style search procedure extended
with zero decomposition techniques for explaining and resolving (variable) conflicts while solving
polynomial constraints over finited fields.

Need for Finite Fields. Finite fields provide natural ground to model bounded machine
arithmetic, for example when considering modern cryptosystems with applications in system
security and post-quantum cryptography. Existing approches build for example private and
secure systems from Zero-Knowledge Proofs [18] or verify blockchain technologies, such as
smart contracts [38], with all these efforts implementing finite field arithmetic. Elliptic curve
cryptography [21] exploits polynomials over finite fields, with further use in TLS encryption [30],
SSH [35] and digital signatures [23]. Polynomial equations over finite fields are also used in
coding theory [27,31], decoding error-correcting codes of large error rates. In addition, solving
polynomials over finite fields has applications in finite biological models, such as modeling cycles
of biological networks as continuous dynamical systems [31,32].

SMT Solving over Finite Fields. In this paper we introduce an MCSat-based decision
procedure for solving polynomial constraints over finite fields, extending thus the landscape of
SMT solving with finite field arithmetic. We formalize SMT solving over finite fields as follows
(see Section 2 for relevant notation).

Given a finite field Fq with order q = pk, where p is a prime number and k ≥ 1, let F be a
set of polynomial constraints in Fq[X] and F a formula following the logical structure:

F =
∧

C⊆F

∨
f∈C

f =
∧

C⊆F

∨
f∈C

poly(f) ▷ 0 with ▷∈ {=, ̸=}.

SMT solving over finite fields: Does an assignment ν : {x1, . . . , xn} → Fq exists that
satisfies F?

Example 1. We show an instance of the SMT solving problem over finite fields, by considering
the finite field F5 whose elements are {0, 1, 2, 3, 4}. Note that −1 is 4 in F5. Let F be the formula
representing the conjunction of the polynomial constraints {x2

1 − 1 = 0, x1x2 − x2 − 1 = 0}
over F5[x1, x2]. In our work we address SMT solving of F over F5[x1, x2], deriving that F is
satisfiable using the variable assignment {x1 7→ 4, x2 7→ 2}.

To the best of our knowledge, existing SMT-based approaches lack the necessary theory
for reasoning over finite fields, and therefore assertions that model the behavior of finite fields
must be included in the input problem formalization (i.e. F ). As a workaround, one may use
so-called field polynomials ({xq

k − xk | 1 ≤ k ≤ n} for a ring Fq[X]) to characterize finite fields
and thus restrict the solution space of Fq[X] to the finite domain of the field Fq. Unfortunately,
using field polynomials is practically inefficient, as already witnessed in our initial attempts
from [19,20]: when used during variable elimination, field polynomials yield new polynomials as
logical consequences of the initial set F of polynomials and at the same time hugely increase
the degree and size of the newly derived polynomials in the search space.

Our contributions. In this paper we do not rely on field polynomials but extend the theory-
dependent rules of MCSat to natively support finite fields arithmetic. The main difficulty
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in MCSat-based reasoning comes with generating so-called explanation clauses for resolving
conflicting variable assignments during SMT solving. We therefore develop a novel theory
propagation rule for finite fields that admits propagation of theory literals (Section 4). Our
method exploits zero decomposition techniques [40] to prove that polynomial constrains over
finite fields yield finite basis explanation functions (Theorem 2), implying computabilty of such
functions. We use single polynomial projections and adjust subresultant regular subchains [42]
to calculate greatest common divisors with regard to partial variable assignments (Section 5),
allowing us to avoid the use of field polynomials when deriving explanation clauses during solving
polynomial constraints (Theorems 3–4). Our explanation clauses are integrated within MCSat,
restricting the search space of SMT solving over Fq[X]. We implement our approach in a new
prototype for SMT solving over finite fields (Section 6) and experimentally demonstrate the
applicability of SMT solving over finite fields (Section 7).

2 Preliminaries
We provide a brief summary of the relevant algebraic concepts of finite fields [15].

Fields and Polynomials. A field F consists of a set S on which two binary operators
addition “+” and multiplication “·” are defined. Both operators are commutative, associative,
have a neutral element in S (denoted as zero (0) and one (1), respectively), and each element
in S has additive and multiplicative inverses. Furthermore, distributivity holds. Informally
speaking, a field is a set S with well-defined operations addition, subtraction, multiplication,
and division (with the exception of division by zero). Field examples include Q and R.

Let X be the set of variables {x1, . . . , xn}. We sort the variables in X according to their
index x1 < x2 < · · · < xn. Since xi is the i-th variable in the order, we say it is of of class i,
denoted by cls(xi) = i. We have Xk = {xi ∈ X | i ≤ k}.

By F[X] we denote the ring of polynomials in variables X with coefficients in F. A term
τ = xd1

1 · · · xdn
n is a product of powers of variables for di ∈ N. If all di = 0, we have τ = 1. A

multiple of a term cτ with c ∈ F \ {0} is a monomial. A polynomial is a finite sum of monomials
with pairwise distinct terms.

The degree of a term τ is the sum of its exponents
∑n

i=0 dn. The degree of a polynomial p is
the highest degree of its terms. We write deg(p, xi) to denote the highest degree of xi in p.

For a polynomial p, the set of variables of p is denoted by vars(p). If vars(p) = ∅, then p
is constant. If |vars(p)| = 1, p is univariate, and otherwise it is multivariate. For a set of
polynomials P , we define vars(P ) =

⋃
p∈P vars(p).

An order ≤ is fixed on the set of terms such that for all terms τ, σ1, σ2 it holds that
1 ≤ τ and further σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2. One such order is the lexicographic term order : If
x1 < x2 < . . . xn, then for two terms σ1 = xd1

1 · · · xdn
n , σ2 = xe1

1 · · · xen
n it holds σ1 < σ2 iff there

exists an index i with dj = ej for all j > i, and di < ei.
For a polynomial p, the leading variable lv(p) is the variable xi of vars(p) with the highest

class. Let cls(p) = cls(lv(p)). We define the coefficient of x
deg(p,xi)
i as the leading coefficient of p

with respect to xi and write it as lc(p, xi). We denote red(p, xi) = p − lc(p, xi)xdeg(p,xi)
i as the

reductum of p with respect to xi.

Example 2. Given the polynomial p = 2x2
3x1 + 4x3x4

2 + x3x2 + 7x1 ∈ Q[x1, x2, x3], we
have vars(p) = {x1, x2, x3}, lv(p) = x3 and red(p, x3) = 4x3x2

2 + x3x2 + 7x1. Furthermore,
lc(p, x1) = 2x2

3 + 7, lc(p, x2) = 4x3, and deg(p, x3) = 2, deg(p, x2) = 4.
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A polynomial p ∈ F[X] is irreducible if it cannot be represented as the product of two
non-constant polynomials, i.e. there exist no q, r ∈ F[X] such that p = q · r. A polynomial
g ∈ F[X] is called a greatest common divisor (gcd) of polynomials p1, . . . , ps if g divides p1, . . . , ps

and every common divisor of p1, . . . , ps divides g.
A tuple of values α ∈ Fn is a root or zero of a polynomial p ∈ F[X] if p(α) = 0. A field F is

algebraically closed if every non-constant univariate polynomial in F[x] has a root in F.
Let K ⊆ F be a field with respect to the field operations inherited from F. We call F a field

extension of K and write F/K. An algebraic extension of F is a field extension G/F such that
every element of G is a root of a non-zero polynomial with coefficients in F. An algebraic closure
of a field F is an algebraic extension G that is algebraically closed; we call F the base field.

Finite Fields. In a finite field Fq the set S has only finitely many elements. The number of
elements is denoted by q and is called the order of the finite field. We denote the algebraic
closure of Fq as Fq. A finite field Fq exists iff q is the k-th power of a prime p, i.e. q = pk. All
finite fields with the same order are isomorphic, i.e. there exists a structure-preserving mapping
between them. In case k = 1, Fq can be represented by the integers modulo p and we have
S = {0, 1, . . . , p − 1} with the standard integer addition and multiplication operation performed
modulo p. For example for F5 we have S = {0, 1, 2, 3, 4} and 2 + 3 = 0 and 3 · 4 = 2.

The elements of Fq = Fpk with k > 1 are polynomials with degree k − 1 and coefficients in Fp.
Addition and multiplication of the polynomials is performed modulo a univariate irreducible
polynomial g ∈ Fq[a] with degree k. For example F4 = F22 is generated using the irreducible
polynomial g: a2 + a + 1. The elements are {0, 1, a, 1 + a} and ((a) + (1)) · (a + 1) evaluates to a.

Polynomial Constraints and Formulas. A polynomial constraint f over p in the ring Fq[X]
is of the form p ▷ 0 where p ∈ Fq[X] and ▷∈ {=, ≠}. Since a total ordering with respect to
the field operations on elements of a finite field Fq does not exist, we only consider inequality
constraints of the form p ̸= 0 and do not consider < and >. We define poly(f) = p, and
extend vars(f) = vars(poly(f)) and cls(f) = cls(poly(f)). For a set of constraints F we define
vars(F ) =

⋃
f∈F vars(f). A polynomial constraint f is negated by substituting ▷ in f with the

other element, i.e. ¬(poly(f) = 0) is equivalent to poly(f) ̸= 0.
Let ν : X → Fq denote an (partial) assignment of variables X. We extend ν to an evaluation

of polynomials in the natural way, i.e. ν(p) : Fq[X] → Fq. Given an assignment ν and a
polynomial constraint f = p ▷ 0, we say ν satisfies f iff ν(p) ▷ 0 holds. The function ν is
also used to evaluate a constraint f . If ν does not assign all variables of poly(f), we define
ν(f) = undef. If ν assigns all variables of poly(f), then ν(f) = true if ν satisfies f , and
ν(f) = false otherwise. Given a set of polynomial constraints F , we have ν(F ) = true iff ν
satisfies all elements in F . If such an ν exists, we say that F is satisfiable and ν satisfies F .

We refer to a single constraint as an atom. A literal is an atom or its negated form. A clause C
is a disjunction of literals. If C contains only one literal it is a unit clause. A formula F is a
set of clauses C. Logically a formula represents a conjunction of disjunctions of literals. An
assignment ν satisfies a clause C if at least one literal in C is satisfied by ν. Finally, ν satisfies
a set of clauses if every clause is satisfied by ν.

3 Model Constructing Satisfiability (MCSat)
In this section, we summarize the MCSat approach [12, 24, 25] as presented in [25]. Our MCSat
adjustments for finite fields are given in Sections 4 and 5.
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MCSat Terminology. The MCSat procedure is a transition system with each state denoted
by an indexed pair ⟨M, C⟩k of a trail M and a set of clauses C. The index k specifies the level of
the state. In our case, a clause C ∈ C is a set of polynomial constraints over Fq[X]. We require
the following terminology:
– Each trail element of M is either a decided or propagated literal, or a variable assignment.
– A decided literal f is considered to be true. A propagated literal, indicated C → f , denotes

that the status of clause C implies that f is true. A variable assignment xi 7→ α maps a
theory variable xi ∈ X to some α ∈ Fq.

– We say f ∈ M , if a constraint f is a trail element. Let constr(M) = {f ∈ M}.
– A trail is non-redundant if it contains each constraint at most once.
– For a constraint f let level(f) = i ⇔ xi ∈ vars(f) ∧ ∀j > i : xj /∈ vars(f) and define the level

of a clause level(C) = maxf∈C level(f). Let Ci = {C ∈ C | level(C) ≤ i}.
– We have level(M) = k, if xk−1 7→ α is the highest variable assignment in M , i.e. no variable

assignment for xk, . . . , xn exists.
– A trail is increasing in level, if all variables but the highest level variable of a constraint f are

assigned before f appears on the trail.
– Taking all theory variable assignments x1 7→ α1, . . . , xk 7→ αk of a trail M with level(M) = k+1,

we define αM = α1, . . . , αk and generate a (partial) assignment function νM : X 7→ Fq. We
overload νM to evaluate constraints and sets of constraints as discussed in Section 2.

– We further say that M is feasible if νM (constr(M)) has a solution for xk. The set of possible
values for xk is denoted by fsbl(M).

– Given an additional constraint f , with poly(f) ∈ Fq[X], we extend fsbl(f, M) = fsbl(JM, fK).
If fsbl(f, M) ̸= ∅ we say that f is compatible with M , denoted by comp(f, M).

– A state ⟨M, C⟩k is well-formed when M is non-redundant, increasing in level, level(M) = k,
fsbl(M) ̸= ∅, νM satisfies Ck−1, ∀f ∈ constr(M) : νM (f) = true, and all propagated literals
E→f are implied, i.e. f ∈ E and for all literals f ′ ≠ f in E, νM (f ′) = false or ¬f ′ ∈ constr(M).

– Given a well-formed state with trail M , assume constraint f with poly(f) ∈ Fq[Xk]. Let:

val(f, M) =


νM (f) xk /∈ vars(f), level(M) = k

true f ∈ constr(M)
false ¬f ∈ constr(M)
undef otherwise

We overload this function to handle clauses. As such, we define val(C, M) = true if there
exists f ∈ C such that val(f, M) = true; val(C, M) = false if val(f, M) = false for al f ∈ C;
and val(C, M) = undef in all other cases.

MCSat Calculus. The MCSat calculus is given in Figure 1 and detailed next. Given a set of
clauses C, in our case clauses of polynomial constraints over Fq[X], the goal is to move from
an initial state of ⟨J K, C⟩1 to one of the two termination states, namely ⟨sat, ν⟩ or unsat, by
continuously applying transition rules. A termination and correctness proof that is independent
of the used theory, is given in [25, Thm. 1].

The search rules either select a clause for further processing (Sel-Clause), detect a conflict
(Conflict), detect satisfiability (Sat), or assign a variable while increasing the level before
performing another search step (Lift-Level).

Clause satisfaction rules determine how a clause C is absorbed into the trail M given a
state ⟨M, C⟩k ⊨ C through semantic reasoning on the theory. The first two rules are similar
to classical DPLL-style propagation and differ in whether we meet a single compatible literal
(B-Prop) or can choose between multiple yet undetermined compatible literals (Decide-Lit).
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Search Rules
[Sel-Clause] ⟨M, C⟩k → ⟨M, C⟩k ⊨ C C ∈ Ck ∧ val(C, M) = undef
[Conflict] ⟨M, C⟩k → ⟨M, C⟩k ⊢ C C ∈ Ck ∧ val(C, M) = false
[Sat] ⟨M, C⟩k → ⟨νM , sat⟩ xk /∈ vars(C)
[Lift-Level] ⟨M, C⟩k → ⟨JM, xk 7→ αK, C⟩k+1 xk ∈ vars(C) ∧ α ∈ fsbl(M) ∧ val(Ck, M) = true

Clause Satisfaction Rules

[B-Prop] ⟨M, C⟩k ⊨ C → ⟨JM, C→fK, C⟩k
C = {f1, . . . , fm, f} ∧ val(f, M) = undef∧
comp(f, M) ∧ ∀i : val(fi, M) = false

[Decide-Lit] ⟨M, C⟩k ⊨ C → ⟨JM, f1K, C⟩k
{f1, f2, . . . } ⊆ C ∧ comp(f1, M)∧
∀fi : val(fi, M) = undef

[T-Prop] ⟨M, C⟩k ⊨ C → ⟨JM, E→fK, C⟩k
f ∈ {L, ¬L | L ∈ C} ∧ ¬comp(¬f, M)∧
val(f, M) = undef ∧ E = exp(f, M)

Conflict Resolution Rules

[Resolve-Prop] ⟨JM, E→fK, C⟩k ⊢ C → ⟨M, C⟩k ⊢ R
¬f ∈ C∧
R = resolve(C, E, f)

[Resolve-Dec] ⟨JM, fK, C⟩k ⊢ C → ⟨M, C ∪ {C}⟩k ⊨ C ¬f ∈ C

[Consume-Prop] ⟨JM, E→fK, C⟩k ⊢ C → ⟨M, C⟩k ⊢ C ¬f ∈ C

[Consume-Dec] ⟨JM, fK, C⟩k ⊢ C → ⟨M, C⟩k ⊢ C ¬f ∈ C

[Drop-Level-1] ⟨JM, xk+1 7→ αK, C⟩k+1 ⊢ C → ⟨M, C⟩k ⊢ C val(C, M) = false
[Drop-Level-2] ⟨JM, xk+1 7→ αK, C⟩k+1 ⊢ C → ⟨M, C ∪ {C}⟩k ⊨ C val(C, M) = undef
[Unsat] ⟨J K, C⟩1 ⊢ C → unsat

Figure 1: Transition Rules of MCSat

The T-Prop rule is the core component of any MCSat procedure. It utilizes theory knowledge
to propagate literals during the search. The explanation function exp generates a valid lemma
E that justifies the propagation. This rule was dubbed “R-Propagation” in [25] since the focus
was merely real arithmetic. However, the rule itself does not rely on reals, only the explanation
function does. For our purpose, we refer to this rule as “Theory-Propagation”, in short T-Prop.
In Section 4 we prove that explain functions for polynomials over finite fields always exists.
Moreover, in Section 5 we show that explanation functions are also computable using zero
decomposition procedures, avoiding the applications of field polynomials within MCSat.

The conflict resolution rules of Figure 1 rely on standard boolean conflict analysis [34], using
the standard boolean resolution function resolve. We either resolve propagation or decision
steps (Resolve-Prop, Resolve-Dec) or backtrack if there is no conflicting literal in the trail’s
top literal (Consume-Prop, Consume-Dec). The only theory-specific aspects of the conflict
resolution are the rules Drop-Level-1 and Drop-Level-2, where we undo theory variable
assignments. We add the conflict clause C to the clause set to avoid assignment repetition.
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4 Theory Propagation for Polynomials over Finite Fields
The key challenge in designing an MCSat-based decision procedure for a particular theory is
developing theory propagation in the respective theory to be used within the T-Prop rule of the
MCSat calculus of Figure 1. In this section, we introduce zero decomposition procedures over
polynomial constraints (Section 4.1) in support of theory propagation over finite fields, allowing
us to prove the existence of explanation clauses within MCSat over finite fields (Section 4.2).

Upon application of the T-Prop rule, a literal is selected for propagation and justified by
a newly generated explanation clause E. In our work we focus on propagating polynomial
constraint literals f and define their respective explanations using so-called theory lemmas.

Definition 1 (Polynomial Explanation). Let f be a constraint, M a trail, and E a clause
of constraints. E is a valid (theory) lemma if for any arbitrary assignment ν, ν(E) ̸= false.
The clause E justifies f in M iff f ∈ E and ∀f ′ ∈ E : f ̸= f ′ ⇒ val(f ′, M) = false. E is an
explanation clause for f in M if E is a valid theory lemma and justifies f in M .

Note that the explanation clauses E for f are generated using an explanation function exp
during the applications of the T-Prop rule of Figure 1. We define the exp function as follows.

Definition 2 (Polynomial Explanation Function exp). A function exp : {constraint} × {trail} →
{clause} is an explanation function exp(f, M) = E iff f /∈ M , ¬comp(¬f, M), and E is an
explanation clause for f in M .

Example 3. A most trivial explanation function propagates f by excluding the current trail M
of level k via E = {f} ∪ {¬f ′ | f ′ ∈ M and xk−1 ∈ vars(f ′)} ∪ {x ̸= α | (x 7→ α) ∈ M}.

As any (non-trivial) explanation function may introduce new literals, the termination of a
general MCSat procedure requires that all newly introduced literals are taken from a finite basis.

Definition 3 (Finite-basis Polynomial Explanation). The function exp(f, M) is a finite basis
explanation function if it returns an explanation clause E for f in M and all new literals in E
are taken from a finite basis.

In conclusion, if a theory admits a finite basis explanation function, then MCSat-based
reasoning in that respective theory is terminating. Yet, providing a finite basis explanation
function is not trivial. A key piece is an efficient procedure to decompose polynomial sets. We
present our tailored procedures in Section 5.

4.1 Zeros in Polynomials over Finite Fields
Let us arbitrarily fix the sets of polynomials P, Q ⊂ Fq[Xk]. We assume that P contains
polynomials from equality constraints, and Q consists of inequality constraints.

We define the following sets of solutions: zero(P ) = {α ∈ Fk

q | p(α) = 0 for all p ∈ P} and
zeroq(P ) = {α ∈ Fk

q | p(α) = 0 for all p ∈ P}. Clearly, zeroq(P ) ⊆ zero(P ). For simplicity, we
use set subtraction to define zero(P/Q) = zero(P )\zero(Q) and zeroq(P/Q) = zeroq(P )\zeroq(Q).
We further write P̂ for P \ Fq[Xk−1]. We use the tuple S = (P, Q) to mean a (polynomial)
system and write zero(S) = zero(P/Q). We finally define the projection set projkzeroq(P/Q) =
{α ∈ Fk−1

q | ∃β ∈ Fq such that (α, β) ∈ zeroq(P/Q)}. Intuitively, projection sets are used to
reduce the problem of solving polynomials over k variables into the smaller problem of solving
polynomials over k − 1 variables, providing thus means for eliminating the variable xk.
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Definition 4 (Zero Decomposition). A zero decomposition procedure is an algorithm that given
P, Q ⊂ Fq[Xk] generates a set of systems ∆ = {(P1, Q1), . . . , (Pm, Qm)} such that

zeroq(P/Q) =
⋃

(P ′,Q′)∈∆

zeroq(P ′/Q′). (1)

The zero decomposition procedure is projecting in case P ′, Q′ ∈ Fq[Xk−1] for all (P ′, Q′) ∈ ∆ and

projkzeroq(P/Q) =
⋃

(P ′,Q′)∈∆

zeroq(P ′/Q′).

Given additionally α ∈ Fk−1
q which cannot be extended to a zero, i.e. there is no β ∈ Fq such

that (α, β) ∈ zeroq(P/Q), we say that an algorithm is a weak projecting zero decomposition
procedure for α if

projkzeroq(P/Q) ⊆
⋃

(P ′,Q′)∈∆

zeroq(P ′/Q′) (2)

with P ′, Q′ ∈ Fq[Xk−1] and α /∈ zeroq(P ′/Q′) for all (P ′, Q′) ∈ ∆.

For many zero decomposition procedures [42], the pseudo division operation plays an
important role, as follows. Consider polynomials f, g ∈ Fq[Xk], with f ̸= 0. Let r, o ∈ Fq[Xk]
denote polynomials. We define the pseudo-remainder formula (in xk) as

ld · g = o · f + r

where l = lc(f, xk), d = max(deg(g, xk) − deg(f, xk) + 1, 0), and deg(r, xk) < deg(f, xk).
The pseudo-remainder r and pseudo-quotient o of g with respect to f in xk are denoted as
prem(g, f, xk) and pquo(g, f, xk), respectively. The polynomials o and r are uniquely determined
by f and g and are computable [42].

Example 4. Let f = x2 + x1 and g = 3x2x2
1 + x1 in F5[x1, x2]. Noting that −2 = 3 in F5, we

have eliminated x2 in both the pseudo remainder and pseudo quotient by

(3x2x2
1 + x1)︸ ︷︷ ︸
g

= (−2x2
1)︸ ︷︷ ︸

pquo(g,f,x2)

· (x2 + x1)︸ ︷︷ ︸
f

+ (2x3
1 + x1)︸ ︷︷ ︸

prem(g,f,x2)

.

Calculating gcds is another method for reducing the degree of xk and thereby eliminating it.
We employ subresultant regular subchains (SRSs) to calculate gcds with respect to a partial
assignment, as shown in Lemma 2.4.2 of [42]. Given two polynomials f, g ∈ Fq[Xk] with
deg(f, xk) ≥ deg(g, xk) > 0, we denote by srs(f, g, xk) = h2, . . . , hr the SRS of f and g with
regard to xk. Let l = lc(g, xk) and lℓ = lc(hℓ, xk). Then for 2 ≤ ℓ ≤ r, we have

gcd(f(α, xk), g(α, xk)) = hℓ(α, xk)

if α ∈ zero({lℓ+1, . . . , lr}/{l, lℓ}). When f , g, and hℓ are partially evaluated w.r.t. α, the above
gcd is equivalent to computing a univariate gcd.

Example 5. Let f = x2
3 + x3x2 + 4 and g = x3x2 + x1 in F5[x1, x2, x3]. Then srs(f, g, x3) =

[h2, h3] = [x3x2 + x1, −x2
2x1 − x2

2 + x2
1]. Using the assignment function ν = {x2 7→ 1, x1 7→ 3}

we have ν(f) = x2
3 + x3 − 1 and ν(g) = ν(h2) = x3 − 2 which is indeed the gcd of ν(f) and ν(g).
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4.2 Explaining Propagated Literals
We now show that polynomial constraints over finite fields have finite basis explanation functions.

Our MCSat-based theory propagation works as follows. Let M be a level k trail, implying
that variable xk is not yet assigned. Suppose f is a constraint such that f /∈ constr(M) and
¬comp(¬f, M). We derive polynomial constraints that are false for JM, ¬fK to generate an
explanation clause E in order to justify propagating f . To enable an instant application of
T-Prop, we ensure that for all e ∈ E either e = f , level(e) < k, or ¬e ∈ constr(M) must hold.

Finite Basis Explanations. Towards generating explanation clauses E, we consider the
polynomial constraint systems

A = {f ′ ∈ constr(M) | level(f ′) = k} ∪ {¬f} and A▷ = {p | (p ▷ 0) ∈ A} for ▷∈ {=, ̸=}. (3)

Further, we fix the system A = (A=, A̸=). From ¬comp(¬f, M) follows that (αM , β) /∈ zeroq(A)
for all β ∈ Fq. Based on Definition 4, we use a weak projecting zero decomposition procedure for
αM and decompose A into multiple systems A1, . . . , Ar such that for every 1 ≤ ℓ ≤ r we have
that αM /∈ zero(Aℓ). Then each Aℓ = (Pℓ, Qℓ) contains (at least) one polynomial u in Fq[Xk−1]
that excludes αM . Depending on whether u ∈ Pℓ or u ∈ Qℓ, we generate an appropriate
constraint cℓ as u = 0 or u ̸= 0, respectively, to ensure that cℓ(αM ) = false. As a result, we set
C = {c1, . . . , cr}.

For any (α, β) ∈ zeroq(A), by Definition 4 we have that α ∈ zeroq(Aℓ) for some 1 ≤ ℓ ≤ r and
thus cℓ(α) = true. Hence, anytime an assignment function fulfills all constraints from A, it also
fulfills at least one constraint of C. We generate the explanation clause E = {¬a | a ∈ A} ∪ C.

Theorem 1 (Explanation Clause E). Given a trail M of level k. Let f be a constraint such that
f /∈ constr(M) and ¬comp(¬f, M). Further let A = {f ′ ∈ constr(M) | level(f ′) = k}∪{¬f} and
C = {c1, . . . , cr} constructed as defined above. Then E = {¬a | a ∈ A} ∪ C is an explanation
clause for f in M .

Proof. By Definition 1 we show that E is a valid theory lemma and justifies f in M .
By construction we have that ¬f ∈ A and thus f ∈ E. Let a ∈ A be a constraint such that

a ̸= ¬f . Then ¬a ∈ constr(M), therefore, val(a, M) = false. Let c ∈ C, from the construction
of C it immediately follows that level(c) < k and c(αM ) = false, thus νM (c) = false. Since all
constraints in E but f evaluate to false under M , we derive that E justifies f in M .

Let ν be an arbitrary assignment. We distinguish the following two cases:
Case 1: Assume ν(¬a) = false for all a ∈ A. Let A = (A=, A̸=) as defined in (3) and α be ν
represented as a k-tuple. Since ν(a) = true for all a ∈ A, we have α ∈ zero(A). Since A was
zero decomposed into systems A1, . . . , Ar, there exists 1 ≤ i ≤ r such that α ∈ zero(Ai). Thus
ci(α) = true for ci ∈ C. As C ⊆ E, it follows that ν(E) = true.
Case 2: Assume ν(¬a) ̸= false for some a ∈ A. As ¬a ∈ E, we obtain ν(E) ̸= false.

As ν(E) ̸= false in both of the cases above, we conclude that E is a valid lemma.

Example 6. (Example 1) We have F5[x1, x2] and two unit clauses C1 = {c1} = {x2
1 − 1 = 0}

and C2 = {c2} = {x1x2 − x2 − 1 = 0}. Assume the current trail is M = Jx2
1 − 1 = 0, x1 7→ 1K.

We cannot add c2 as we have ¬comp(c2, M). Towards a conflict, we propagate ¬c2. Then
A = {x1x2 − x2 − 1 = 0}, A= = {x1x2 − x2 − 1}, and A ̸= = ∅. Using a weak zero decomposition
procedure (cf. Example 7), we derive the zero decomposition ∆ = {(∅, {x1 − 1})} and generate
E = {¬c2, x1 − 1 ̸= 0} to justify ¬c2 on M . However, ¬c2 on M results in a conflict with C2.
Thus, we resolve E with C2 and learn that x1 − 1 ̸= 0 must hold. We backtrack the assignment
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of x1 and end up with M = Jx2
1 − 1 = 0, x1 − 1 ̸= 0K. Assigning x1 7→ 4, we eventually reach

Sat with M = Jc1, x1 − 1 ̸= 0, x1 7→ 4, c2, x2 7→ 2K and νM = {x1 7→ 4, x2 7→ 2}.

We next show that our explanations from Theorem 1 can be turned into explanations with
finite basis. As such, using our explanation functions in the T-Prop rule ensures that MCSat
terminates for our theory (Section 5).

Theorem 2 (Finite Based Explanations). Every explanation function for theory of Fq[X] can
be finite based.

Proof. The proof relies on application of Fermat’s little theorem. We show that every polynomial
p in the explanation clause can be translated to an equivalent polynomial p′ from a finite basis.
Given Fq, by the generalized Fermat’s little theorem, every element a ∈ Fq satisfies aq ≡ a. Let
t = c

∏r
i=1 xpi

i be a term of p. Then by Fermat’s little theorem an equivalent term t′ can be
found such that pi ≤ q for all 1 ≤ i ≤ r. When c ∈ Fq, r is finite, and di ≤ q for 1 ≤ i ≤ r,
there is only a finite set T of different terms. As a polynomial is a sum of terms, there are
2|T | − 1 different polynomials that can be constructed from T . By replacing all terms of p by an
equivalent term from T , we have an equivalent polynomial p′ from a finite basis.

5 Explanation Functions over Finite Fields in MCSat
Section 4 established the generation of explanation clauses for the theory of polynomials over finite
fields (Theorem 1) and proved the existence of a finite basis explanation function (Theorem 2).

The primary component of the provided explanation generation procedure is a weak projecting
zero decomposition procedure. It remains to show in this section that such a procedure exists. We
provide a novel method for giving such a decomposition that does not rely on field polynomials,
as in [20]. This is the last piece to providing a finite basis explanation function and thus to
turning the MCSat calculus of Figure 1 into an SMT solving approach over finite fields.

Projecting Zero Decomposition. Recall the generation of finite basis explanations in
Section 4.2 for a trail M of level k. Again, we have αM ∈ Fk−1

q and A = (A=, A̸=) be the
polynomial system of constraint set A as defined in (3), such that (αM , β) /∈ zero(A) for all
β ∈ Fq. Depending on |A|, |A=|, and |A ̸=|, we utilize different projecting procedures to find
explanation clauses E. Each procedure takes A and αM as input and decomposes A in the
set of systems ∆ = {A1, . . . , Ar}, according to Definition 4. By the construction of E, it thus
suffices to return one constraint fℓ of each system Aℓ ∈ ∆ such that fℓ(αM ) = false.

Based on the structure of A, we use single polynomial projections (Section 5.1) or SRS-based
projections (Section 5.2) to derive the explanation constraints fℓ of each system Aℓ.

5.1 Single Polynomial Projection for Deriving Explanation Constraints
In case |A| = 1 the coefficients of the polynomial constraint f ∈ A can be used for projecting.
By the construction of A we have that A = {¬f}, level(¬f) = k and αM cannot be extended to
satisfy ¬f . We write poly(¬f) = c1 · xd1

k + · · · + cm · xdm

k . By the definition of this polynomial,
we have that each ci ∈ Fq[Xk−1] and thus ci can be fully evaluated by αM . Let γi = ci(αM ) for
1 ≤ i ≤ m and set F = {ci −γi ̸= 0 | 1 ≤ i ≤ m}. Each fℓ ∈ F represents one (single-polynomial)
system which is returned by a zero decomposition procedure. We denote this procedure as
ProjCoeff and prove the following.
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Theorem 3 (Single Polynomial Weak Projection). Let A be a polynomial system with a single
polynomial a ∈ Fq[Xk] and let α ∈ Fq[Xk−1] be an assignment that cannot be extended to be a
zero of A. Then ProjCoeff(A, α) is a weak projecting zero decomposition procedure for α.
Proof. Termination of ProjCoeff is obvious. Let a = c1 · xd1

k + · · · + cm · xdm

k . Furthermore,
there is no β ∈ Fq such that (α, β) ∈ zeroq(A). Then ProjCoeff(A, α) returns a set of systems
∆ = {(∅, {ci − γi}) | 1 ≤ i ≤ m} where γi ∈ Fq is ci(α). Let ξ = (ξ1, . . . , ξk) ∈ zeroq(A).
Towards a contradiction, assume that ξ /∈ zeroq(S) for all S ∈ ∆. Then for all ci, we have that
ci(ξ) = γi = ci(α), i.e. all coefficients of a evaluate to the same value for α and ξ. As there is
no value to be assigned to xk such that α can be extended to a zero of A, ξ cannot exist, as ξk

would extend α. Therefore, ξ ∈ zeroq(S) for some S ∈ ∆. Furthermore, note that α is excluded
from all systems in ∆ by construction.

Example 7. Filling the gap in Example 6, we use ProjCoeff to decompose A = ({x1x2 −x2 −1}, ∅)
with α = (1). Let a be the polynomial in A. We write a = (x1 − 1)x1

2 + (−1)x0
2. Evaluating the

coefficients, we get γ1 = 0, γ0 = −1 and generate F = {(x1 − 1) − 0 ̸= 0, (−1) − (−1) ̸= 0}. As
there are no zeros in the second system, we return ∆ = {(∅, {x1 − 1})}.

5.2 SRS-Based Projection for Deriving Explanation Constraints
For |A| > 1, we use the procedure PReg(A, α) as shown in Algorithm 1 and described next.
Algorithm 1 is a weak projecting zero decomposition procedure for α that decomposes the
system A. It utilizes SRS chains to calculate gcds that reduce the degree of xk. This idea is
based on the algorithm RegSer presented in [41,42]. While this original work presents RegSer
for polynomials over fields with characteristic 0 only, the work of [26] claims validity of the
approach also over finite fields. Algorithm 1 relies on this result and proceeds as follows.

Consider two polynomials p1, p2 ∈ Fq[Xk] with lv(p1) = lv(p2) = xk and let h2, . . . , hr =
srs(p1, p2, xk). Further, let li = lc(hi, xk) for all 2 ≤ i ≤ r. Then, by case distinction over the
evaluation of l2, . . . , lr ∈ Fq[Xk−1], the set of zeros can be decomposed to guarantee that each
hi is a gcd of p1 and p2 in one newly generated system. The gcd property is then used to reduce
deg(p1, xk) and deg(p2, xk) in this system. The original approach of [41,42] splits the zero set
for every hi and thus generates exponentially many systems. In our setting, a full decomposition
can be avoided by guiding the search using α. This is done by evaluating l2, . . . , lr with α
and not further exploring systems that already exclude α. Therefore, only a linear amount of
systems is generated in Algorithm 1. This computation is performed until a polynomial is found
that excludes α. In case there are polynomials in xk left, we exclude them using ProjCoeff .

The return call if c statements of Algorithm 1, where call is a recursive call and the guard
c is a polynomial constraint, are used to track which path the search takes. If c evaluates to
true under α then the recursive call is performed and its result is returned. In addition, the
procedure keeps a set of tracked constraints C that is empty in beginning. Whenever a guard c
is reached but false under α, it is added to C, otherwise, ¬c is added. The constraints in C are
added to the returned sets accordingly. Thus, the constraints in C describe the search space
that was not visited during the search.

Recall the notion of P̂ , Q̂ from Section 4.1. Lines 1–2 of Algorithm 1 return an excluding
polynomial in case one is found. Line 5 ensures that lc(p, x2) ̸= 0 which is a requirement for any
further gcd operation. Lines 6-12 are used to remove polynomials of P until only one is left,
which is then used in lines 14-19 to remove polynomials from Q. Lines 10 and 17 handle the
special case lv(hr) < xk. By definition of SRS, lv(hi) = xk for 2 ≤ i ≤ r − 1, but not necessarily
for hr. Roughly speaking, lv(hr) < xk denotes a constant gcd and, thus, divisor-free polynomials.
Line 22 splits elements in Q to remove xk in case all polynomials p ∈ P are free of xk.
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Algorithm 1: PReg(A = (P, Q), α)
1 return ({p}, ∅) for any p ∈ P with lv(p) < xk and p(α) ̸= 0
2 return (∅, {q}) for any q ∈ Q with lv(q) < xk and q(α) = 0
3 if |P̂ | > 0 then
4 select p ∈ P with the smallest positive deg(p, xk)
5 return PReg(P \ {p} ∪ {red(p, xk)}, Q, α) if lc(p, xk)(α) = 0
6 if |P̂ | > 1 then
7 select any p′ ∈ P̂ \ {p}
8 compute h2, . . . , hr = srs(p′, p, xk) and let li = lc(hi, xk) for 2 ≤ i ≤ r
9 if lv(hr) < xk then

10 return PReg(P \ {p, p′} ∪ {hr, hr−1}, Q, α) if lr−1(α) ̸= 0
11 r ← r − 2
12 for i = r, . . . , 2 do return PReg(P \ {p, p′} ∪ {hi, li+1, . . . , lr}, Q, α) if li(α) ̸= 0

13 else if |Q̂| > 0 and lv(p) = xk then
14 select any q ∈ Q̂
15 compute h2, . . . , hr = srs(q, p, xk) and let li = lc(hi, xk) for 2 ≤ i ≤ r
16 if lv(hr) < xk then
17 return PReg(P \ {p} ∪ {pquo(p, hr, xk)}, Q \ {q}, α) if lr(α) ̸= 0
18 r ← r − 1
19 for i = r, . . . , 2 do return PReg(P \ {p} ∪ {pquo(p, hi, xk), li+1, . . . , lr}, Q, α) if li(α) ̸= 0
20 return PReg((P, Q) ∪ ProjCoeff(p, α), α)

21 else if |Q̂| > 0 then
22 forall q ∈ Q̂ do return PReg(P, Q \ {q} ∪ {red(q, xk)}, α) if lc(q, xk)(α) = 0
23 return PReg((P, Q \ Q̂) ∪ ProjCoeff(

∏
q′∈Q̂

q′, α), α)

Example 8. Assume we have the system A = ({x2
3 + x3x2 + 4}, {x3x2 + x1}) in F5[x1, x2, x3]

and let α = (3, 1). At line 15, PReg we will calculate the first SRS according to Example 5.
Eventually, the computation terminates with a zero decomposition represented by the constraints
{x2 = 0, −x2

2x1 − x2
2 + x2

1 ̸= 0, −x4
2 + 2x2

2x1 ̸= 0}, each representing one generated system.

Theorem 4 (SRS-Based Weak Projection). Let A be a polynomial system and let α ∈ Fk−1
q be

an assignment that cannot be extended to be a zero of A. Then PReg(A, α) of Algorithm 1 is a
weak projecting zero decomposition of A for α.

Proof. We show that PReg(A, α) terminates and is a weak projecting zero decomposition for α.

Termination: As the first two loops in Algorithm 1 are bound by the size of the SRS decomposition
r and the size of a SRS is bound, both loops certainly terminate. The third and last loop
iterates over the finite amount of elements in Q̂ and thus terminates. It remains to show that
the recursion depth of Algorithm 1 is bound. Note that for every recursive call of PReg the
degree in xk for at least one polynomial in A = (P, Q) decreases. Once P̂ = Q̂ = ∅ no further
recursive call is performed. We distinct two cases:
Case 1: Assume |P̂ | > 0. Then, the degree of xk in polynomials of P is reduced in each recursive

call of lines 4-19 of Algorithm 1. In case one polynomial p ∈ P̂ remains, we use ProjCoeff to
remove xk.

Case 2: Assume |P̂ | = 0. Algorithm 1 proceeds by splitting polynomials in Q̂ in line 22. For a
given polynomial q ∈ Q̂ the recursion depth of the call in line 22 is bound by the number of
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coefficients of q in xk. For each call the leading coefficient is removed. Once xk is removed, we
have lc(q, xk) = q. Then, we either return in line 2 or the guard of the call in line 22 is false.

As all recursive calls eventually terminate, Algorithm 1 terminates. Note that from the zero
decomposition argument below follows that the recursion always ends in line 1 or 2. This usually
happens before all xk are eliminated.

Zero Decomposition: Results of [41, 42] imply that RegSer is a zero decomposition procedure
that generates a sequence of regular systems. Besides other properties, for a regular system
(P, Q) holds that either P̂ = ∅ or Q̂ = ∅. Furthermore, P is a triangular set, thus |P̂ | ≤ 1. With
a very similar argument can be proven that PReg performs a zero decomposition towards regular
systems, although the systems are not fully computed. In PReg the decomposition ends after xk

has been fully processed as for generating explanations further decomposition is not required.
Let A′ = (P, Q) be one decomposed system from A. We first show that P, Q ∈ Fq[Xk−1]

and α /∈ zeroq(A′). From the lemmas presented in [42] for RegSer, it follows that the each
decomposition step in lines 4-19 of Algorithm 1 as well as line 22 performs a zero decomposition
according to equation (1); thus, α cannot be extended to a zero of any such generated system.
In case A′ is a systems that was not further expanded in a conditional recursive call, i.e. the
negation of the guard is in A′, then the desired property holds by construction. In case A′

contains a polynomial from Fq[Xk−1] which excludes α directly, Algorithm 1 stops in lines 1 or 2,
returning only this one polynomial. In case the regular decomposition procedure has concluded
for xk and no such polynomials can be found, by definition of a regular system, we end up with
either exactly one polynomial p ∈ P̂ or Q̂ ̸= ∅, but not both. We distinct two cases:
(a) Assume Q̂ = ∅, then P̂ = {p}. Since α cannot be extended to a zero of A′ but is not

excluded by any other polynomial in A′, we conclude that it cannot be extended to become
a zero of p. Therefore, we may call ProjCoeff in line 20 to further decompose A′. The weak
projecting zero decomposition property of ProjCoeff concludes the proof.

(b) Assume Q̂ ̸= ∅, then P̂ = ∅. Since the regular decomposition process has concluded, the
recursive call in line 22 is not executed for any q ∈ Q̂. We know that α cannot be extended
such that all q ∈ Q̂ evaluate to a non-zero value, we have that the product of all q ∈ Q̂ when
evaluated with (α, β) for all β ∈ Fq. We thus use ProjCoeff to concludee the weak projecting
zero decomposition property.
We finally show that PReg fulfills equation 2. Let ξ ∈ zeroq(A). As PReg performs a zero

decomposition, there is a system A′ such that ξ ∈ zeroq(A′). If Algorithm 1 returns in lines 1
or 2, then ξ is a zero of the returned single polynomial (sub-)system of A′. If A′ is not further
expanded because of a guard c in an conditional recursive call, the polynomial of ¬c is in the
according set of A′ and returned as a single polynomial sub-system of A′. As ξ is a zero of A′,
it is also a zero of the returned sub-system. Finally, in case PReg utilizes ProjCoeff to remove
a polynomial in xk from A′, we have by Theorem 3 that ξ is a zero of one of the returned
(projected) systems. In any case, ξ is a zero of the decomposition and thus equation 2 holds.

6 Implementation
We have implemented our MCSat approach for SMT solving over finite fields in a new prototype1,
written in Python and using the computer algebra system Sage [36] for handling polynomials.
While our work is not limited to a specific field order, practical implementation constraints
(from our implementation as well as Sage) are a limiting factor in the prototype’s ability to

1The source code of the prototype together with the generated test instances are available:
https://github.com/Ovascos/ffsat
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handle large(r) field. Besides the general procedure of MCSat and the theory specific details
presented in Sections 4 and 5, the performance of our approach therefore depends on certain
implementation details. In the sequel we discuss our design decisions.

Selecting literals for propagation. While the general MCSat framework does not restrict
the application of theory propagation beyond the conditions of the T-Prop rule, it is up to
the theory to determine whether a theory propagation is applicable and appropriate. For the
theory of polynomials over finite fields, we utilize a similar propagation strategy as [25] uses for
reals. Let ⟨M, C⟩k be the current state with feasible trail M and f ∈ C a literal of a previously
selected (yet unsatisfied) clause C ∈ C such that level(f) = k and val(f, M) = undef. If this
happens, we use T-Prop to add f to M in order to satisfy C.

Let Xk ⊆ Fq be the set of possible values for xk that satisfy ν[M ](f). We can distinguish
four different scenarios of propagation by comparing feasible values for xk, namely:

(i) If Xk = Fq, then f is propagated.
(ii) If Xk = ∅, then ¬f is propagated.
(iii) If Xk ⊇ fsbl(M), i.e. f does not restrict the feasible values of M , then f is propagated.
(iv) If Xk ∩ fsbl(M) = ∅, then ¬f is propagated.

Informally, a propagation of f demonstrates the (theory) knowledge that C is fulfilled by
M . By propagating ¬f with explanation E, it is very likely that a conflict will arise right away
(cf. Example 6). The design of E results in an immediate resolution of E with C. Because
generating explanation clauses is costly, they are not generated at the moment of propagation
but only when they are needed for conflict analysis.

Storing feasible values. As we work with finite set Fq of theory values, feasible values for a
reasonable small q can be enumerated. Even for larger field orders, the number of zeros of a
polynomial given a partial assignment is still constrained by the length of the polynomial.

Variable Order. The order in which the theory variables are assigned in the trail can
hugely influence the number of conflicts and thus generated explanations. Finding a beneficial
variable order is a general consideration for both MCSat style approaches and computer algebra
algorithms alike. While it is highly important for practical performance, our procedure is correct
for any ordering; optimizing the variable order is an interesting task for future work.

7 Experiments and Discussion
We compare the performance of our Python prototype in solving polynomial systems to state-
of-the-art Gröbner basis techniques provided by Sage. It is important to note that by design
Gröbner basis techniques require polynomial systems (cf. Section 4.1) as inputs and are incapable
of handling polynomial constraints (i.e. disjunctions and conjunctions of polynomials). We
therefore limit our experimental comparison to polynomial benchmarks with a small subset of
inputs, as Gröbner basis algorithms with general polynomial constraints over finite fields would
involve exponential many calls (in the number of constraints) to the Gröbner basis algorithm.

We further note that SMT-LIB standard and repository [4] does not support finite field
arithmetic. For this reason, we cannot yet directly compare our work to SMT-based solvers.
To circumvent such limitations, we represent polynomial constraints directly in our Python
framework and compare our work only to Gröbner basis approaches supporting such input.
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Type q n c FFSat GB GBlex
Rand 3 8 8 25 25 25
Rand 3 16 16 12 11 0
Craft 3 32 32 25 25 0
Craft 3 64 64 25 24 0
Rand 13 8 4 25 0 0
Rand 13 8 8 1 0 0
Craft 13 32 16 19 18 1
Rand 211 8 4 17 0 0
Rand 211 8 16 0 0 0
Craft 211 16 8 24 25 25

Table 1: Instances solved by FFSat, GB, and GBlex, out of 25 polynomial systems per test set.

Experimental setup. For our experiments on SMT solving over finite fields, we created
250 polynomial systems over a range of finite field orders (3, 13, 211) and different numbers of
variables (up to 64). To get better insights, we have utilized two different methods of polynomial
system generation:
– Rand: All polynomials in this test set are fully random generated by Sage’s random_element

function. The degree of the polynomials is at most 4. These created systems are more
frequently unsatisfiable and have fewer zeros on average. This category of tests has smaller
systems and fewer variables since they are challenging to solve (for any strategy). It is ensured
that at least one polynomial has a constant term to avoid trivial 0-solutions, as this would
give our approach an unfair advantage.

– Craft: These polynomial systems are crafted to have multiple solutions by explicitly
multiplying zeros. They tend to be easy to solve. Thus, these systems are considerable larger
with a huge amount of variables. Polynomial constraints are restricted to up to 5 distinct
variables with up to 3 zeros each.

Each test set consists of 25 polynomial systems with fixed field order and a fixed number of
variables and constraints; see Table 1. Our experiments were run on an AMD EPYC 7502 CPU
with a timeout of 300 seconds per benchmark instance.

We compare our procedure (FFSat) to a Gröbner basis approach (GB). The latter uses field
polynomials to limit the solutions to those for the base field. To get an elimination ideal and
thus ensure to get a satisfiable assignment from a calculated Gröbner basis, one typically relies
on lexicographic term-ordering, which is especially expensive. However, to “only” check whether
a polynomial system is satisfiable without returning an assignment, it suffices to calculate the
Gröbner basis in any term ordering. In our experiments we therefore calculate two different bases.
GB uses the (efficient) default ordering provided by Sage, while GBlex uses a lexicographic
term ordering.

Experimental results. For analyzing our experimental findings, let us note that the already
highly engineered Gröbner basis algorithms written in C/C++ utilized by Sage have an inherent
performance advantage compared to our Python implementation. Yet, Table 1 demonstrates
that our approach works well for satisfiable cases. The number of instances that were resolved
between FFSat and GB within the predetermined timeout of 300s for each instance is also
compared in Table 1. Each test is identified by its type, the finite field size q, the number of
variables n, and the number of constraints per system c.
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Experimental analysis and discussions. We note the following key insights of our approach
in comparison to Gröbner basis approaches:
– Our Python prototype can already keep up with highly engineered Gröbner basis approaches

on some classes of instances but further engineering work is required to match existing Gröbner
basis implementations consistently.

– The strength of our work comes with solving satisfiable instances. This is because we can
often find a satisfying assignment without fully decomposing the polynomial system.

– While the MCSat approach is capable of detecting conflicts by deriving empty clauses, the
point in time when an empty clause can be derived is highly dependent on the variable order.

– The lack of an order on finite fields leads to the generation of many inequality constraints
when a partial assignment cannot be extended. Developing further optimizations to detect
such cases, especially for unsat instance with large field orders, is a task for future work.

– Gröbner basis approaches are saturation based, thus they have a conceptually advantage on
unsatisfiable instances. This is due to the fact that Gröbner basis methods terminate once
a non-zero constant is determined, which is why we feel inventing and employing extremely
efficient monomial orderings would aid our work.

– It is notable that our approach seems to show complementary performance characteristics to
existing Gröbner basis techniques, indicating that a portfolio approach could be valuable.

In summary, our current experiments show the general effectiveness of our approach, indicating
also how present weaknesses can be mitigated with existing techniques from MCSat and CDCL
solving (e.g. heuristics on the variable order, restarts, pre- and improcessing techniques to reduce
clause complexity, clause deletion, etc.).

8 Related Work
Gröbner bases [8] and triangular sets [2, 3] have been introduced to compute the solution space
of polynomial equations, by reducing the degree of polynomials through variable elimination.
Solving polynomial equations in general entails finding all of its solutions in the algebraic closure
of the underlining coefficient field. Yet, for the purpose of satifiability, solutions in the base field
are usually of the most interest. Obviously, there are only a finite number of solutions if the base
field is finite; yet, enumerating all of the finitely numerous possibilities is not practically viable.

To limit the solutions of Gröbner bases and triangular sets to finite fields, a common technique
is to introduce and add the set of field polynomials to the set of polynomial equations [16,22]
Using field polynomials though greatly impacts practical performance, as showcased in [20].
Specialized ways for computing Gröbner bases and triangular sets over finite fields have therefore
been created, such as the XL algorithm [9], F4 [13], and F5 [14] for Gröbner bases. Although
all of these strategies are aimed at solving polynomial systems over finite fields, none of them
explicitly address inequalities even though inequalities may be converted into equalities using
the Rabinowitsch trick [10, 4.2 Prop. 8].

Optimization concepts for triangular sets have been introduced in [42], including efficient
characteristic set algorithms [17,22] and polynomial decomposition into simple sets [26]. Although
these approaches integrate reasoning over inequalities, none of them considers systems of clauses
with polynomial constraints as needed for our SMT solving problem. Furthermore, they all
require the generation of exponentially many sets to fully describe the systems. Our approach
only explores a linear sized decomposition on demand.

A related approach to our search procedure is given in the hybrid framework of [5, 6]. Here,
a partial evaluation of the system is performed by fixing some variables before starting multiple
Gröbner bases computations. Instead, in our work we show that subresultant regular subchain

253



SMT Solving over Finite Field Arithmetic T. Hader et al.

computations allows us to avoid working with Gröbner bases (and hence their double-exponential
computational complexities).

Substantial progress has also been devoted to the problem of dealing with specific boolean
polynomials, i.e. finite fields with only two elements. PolyBoRi [6, 7] is fairly effective in this
domain, but it does not generalize towards arbitrary finite fields, which is the focus of our work.

Recently, an algebraic SMT decision technique for computing satisfiability of polynomial
equalities/inequalities over large prime fields has been introduced in [39]. As polynomial systems
are a subset of our polynomial constraint clauses, our work complements this effort, by also
establishing a computational approach for deriving explanation clauses within MCSat reasoning.

9 Conclusion
We introduce a novel reasoning approach for determining the satisfiability of a given system of
non-linear polynomial constraints over finite fields. As a framework, we adopt an MCSat decision
procedure and expand it with a specific theory propagation rule that allows variable propagation
over finite fields by adding so-called explanation clauses. To show the existence of these
explanation clauses over finite fields, we apply zero decomposition procedures over polynomial
constraints. Based on the structure of the polynomial system, we construct explanation clauses
to resolve conflicting variable assignments. We distinguish between single polynomial projections
and projections of multiple polynomials using subresultant regular subchains. Our work avoids
using field polynomials while reducing the size of the projected polynomials.

We aim to further optimize our prototype through specific design decisions. For example, we
will investigate the effect the variable order has on SMT solving over finite fields. Furthermore,
we wish to improve performance if the given polynomial system is unsatisfiable; in this case, we
are also interested in generating proof certificates. Finally, integrating our prototype within a
high-performance SMT solver is another line for future work.
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