
EPiC Series in Computing

Volume 50, 2017, Pages 64–77

GCAI 2017. 3rd Global Con-
ference on Artificial Intelligence

Properties of Constrained Generalization Algorithms

Thierry Boy de la Tour

Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
thierry.boy-de-la-tour@imag.fr

Abstract

Two non deterministic algorithms for generalizing a solution of a constraint expressed
in second order typed λ-calculus are presented. One algorithm derives from the proof of
completeness of the higher order unification rules by D. C. Jensen and T. Pietrzykowski,
the other is abstracted from an algorithm by N. Peltier and the author for generalizing
proofs. A framework is developed in which such constrained generalization algorithms can
be designed, allowing a uniform presentation for the two algorithms. Their relative strength
at generalization is then analyzed through some properties of interest: their behaviour on
valid and first order constraints, or whether they may be iterated or composed.

1 Introduction

In [2] a method for generalizing proofs in LK with equality is presented. It consists of three steps:
by expressing inference rules, side conditions included, as second order equational constraints,
the first step extracts from a given LK-proof a constraint expressing its syntactic validity. The
second step lifts the proof by introducing as many variables as possible, yielding an abstract
proof P that may not correspond to a valid LK-proof, an abstract constraint X that may not be
valid, and a solution θ of X , such that Pθ is the original proof. In the third step a minimization
algorithm is applied to X , θ in order to find a more general solution γ of X , so that Pγ is
guaranteed to be a valid LK-proof, of which Pθ is therefore an instance.

As a very simple example consider the (trivial) proof of the sequent P paq $ P paq by the LK
axiom ϕ $ ϕ. We express this axiom as a constrained sequent ϕ $ ψ |ϕ

.
“ ψ, where ϕ and ψ are

first order variables. In this constrained system the proof translates as P paq $ P paq |P paq
.
“

P paq, with a valid constraint. Note that P paq $ P pbq |P paq
.
“ P pbq is a valid proof in the

constrained system, but since the constraint is unsatisfiable it does not correspond (translates)
to a valid LK-proof. By introducing variables the proof is then lifted to the constrained proof
x $ y |x

.
“ y (this is the proof P whith its constraint X , which is not valid) together with

the solution θpxq “ θpyq “ P paq. The minimization algorithm, applied to x
.
“ y, θ yields a

solution γpxq “ γpyq “ x more general than θ, and the proof Pγ of x $ x is an LK-proof more
general than the initial one. Since the quantifier and equality rules of LK introduce second order
variables, there is generally no most general proof such as this Pγ, see [2] for more elaborate
examples.

This method is of course not restricted to LK-proofs in principle, it could be adapted to
other proof systems as long as inference rules can be represented by second order constraints.

C. Benzmüller, C. Lisetti and M. Theobald (eds.), GCAI 2017 (EPiC Series in Computing, vol. 50), pp. 64–77

Properties of Constrained Generalization Algorithms Boy de la Tour

Yet the minimization algorithm presented in [2] depends in a non trivial way on peculiarities
of LK with equality, especially the fact that the types that are admissible for variables (they
stand not only for free and bound variables in first order formulæ but also for elements of
signatures, i.e., function and predicate symbols) do not match the types of all logical symbols.
Only the equality has the type of a predicate, and this strangely requires a special rule in the
algorithm. Besides, this algorithm presents a complex behaviour and, being non deterministic,
may output very different generalizations of θ, though in finite number. It is therefore liable
to improvements, both in control (to find specific solutions) and extension (among a greater
choice).

In order to design such algorithms it is therefore appropriate to adopt a simpler, more
abstract setting, and the obvious choice is the simply typed λ-calculus (without constants)
where the types of variables have no other restrictions than being of order at most 2. We thus
assume a given pattern P and constraint X on the variables of P, that defines the kind of objects
we are interested in, namely the instances Pγ of P where γ is a solution of X . Assuming we know
a special instance Pθ among these objects, we would like to discover possible generalizations of
it, i.e., objects Pγ of which Pθ is an instance. For this we need only search for generalizations
γ of θ that satisfy X , i.e., this does not depend on P. A constrained generalization algorithm
(cga) R defines, for all X , a binary relation RX such that, for all solutions θ of X (input) there
is a γ (output) with θ RX γ, and for all γ, θ RX γ entails that γ is a solution of X more general
than θ.

This approach to generalization is different from those commonly found in AI, where gen-
eralization is often considered as a way of inducing knowledge from “training” instances (see,
e.g., [11]). But induction has long been criticized as a logically unsafe inference, notably by
David Hume. One common way to circumvent this problem is to search for least general gen-
eralizations (lgg), as in anti-unification which has been studied in many languages, see [7, 1].
In particular in [12] anti-unification in the Calculus of Constructions is a way of generalizing
proofs. However, the lgg of two objects that have nothing in common necessarily exceeds the
limits of sense. We believe that the only way generalization can be logically safe is to constrain
it with what Mitchell calls prior knowledge1 in [11]. The constraint X together with the pattern
P can thus be seen as this prior knowledge that defines the reasonable limits that generalization
is not allowed to cross.

As our constraints are equational this problem is closely related to second order unification,
a well studied problem [4]. However, the fact that we are given a solution θ of X means that
X is satisfiable. This is an important restriction since satisfiability of second order unification
problems is undecidable [6]. Second order unification problems usually do not have a most
general unifier (mgu), which leaves room for many different generalization of a given unifier.
This naturally leads to the unification algorithm in [9] which, unlike the one in [8], produces a
complete set of unifiers of a higher order unification problem. Completeness here means that
any unifier is an instance of one that can provably be produced by finite applications of their
unification rules. This proof of completeness is constructive, and its algorithmic content is
therefore a cga.

After more or less standard notations and definitions are fixed in Section 2, the rules for the
two algorithms are presented in Section 3, together with a general framework in which their
properties are obtained. The two algorithms are then compared, on the most simple forms
of constraints in Section 4, and on general constraints in Section 5, where a difficult result of
projectivity is obtained, though only for one algorithm.

1“Developing general methods for combining prior knowledge effectively with training data to constrain
learning is a significant open problem”.

65

Properties of Constrained Generalization Algorithms Boy de la Tour

2 Notations and Basic Definitions

Sequences of objects (variables, terms. . .) will be denoted as vectors: ÝÑxn is the sequence
x1 ¨ ¨ ¨xn. We may omit the length n, which may still be 0. We then write xn for the
set tx1, . . . , xnu, and consistently n for t1, . . . , nu. If i P n then ÝÑxzi denotes the sequence
x1 ¨ ¨ ¨xi´1xi`1 ¨ ¨ ¨xn. If necessary, elements of a sequence are (implicitly) separated by com-
mas, e.g., fpÝÑs2q stands for fps1, s2q.

We use the usual notion of simple types, and we inductively define ÝÑτn Ñ ρ as ρ if n “ 0
and ÝÝÑτn´1 Ñ pτn Ñ ρq if n ą 0. Every type of order 1 or 2 can be written ÝÑτn Ñ ρ where ρ and
the τn are basic types; n is then the arity of this type. We assume a set V of variables such
that each comes with a type of order 1 or 2, and there is an infinite supply of variables of each
type. Well-typed terms are built as usual on variables with application sptq and abstraction
λx.t., and FVptq is the set of free variables occurring in t. The arity aptq and order of a term t
is that of its type; we consider terms of order at most 2. Assuming s has arity at least n and
ÝÑ
tn have correct types, we write spt1, . . . , tnq or simply sp

ÝÑ
tnq for s if n “ 0 and for sp

ÝÝÑ
tn´1qptnq

if n ą 0. We write λÝÑxn.t. for t if n “ 0 and for λÝÝÝÑxn´1.λxn.t.. if n ą 0. Every term can be
written λÝÑx .sp

ÝÑ
t q., where s is not an application; then ÝÑx is the prefix, sp

ÝÑ
t q the matrix and s

the head of this term; if the head is some xi then (
ÝÑ
t is empty) the term is a projection. We

assume silent α-conversion, i.e., the prefix is not determined by the term but suitably chosen2

depending on the context, and the matrix is determined by this choice.
Substitutions σ and their domains Dompσq and free variables FVpσq are as usual. We

write [t1 {f1, . . . , tn {fn] for the substitution σ such that @i P n, σpfiq “ ti and Dompσq Ď
tf1, . . . , fnu (hence [] is the identity of V). By permutation we will always mean a type-
preserving permutation of V, which is of course a substitution.

It is well known [5, 13] that β-reduction λx.s.ptq Ñβ s[t {x] (resp. with η-reduction
λx.tpxq. Ñη t if x R FVptq, resp. with η-expansion, i.e., reversed η-reduction) are normal-
izing, yielding the β (resp. short, resp. long) normal form, or βnf (resp. snf, resp. lnf).
We write s » t when s and t have the same snf (or lnf, equivalently), and similarly σ » θ if
σpfq » θpfq for all f P V. The head of a βnf must be a variable. tσ is defined as the βnf
of the term obtained by replacing every f P FVptq by σpfq, and similarly for θσ. Note that
λx.t.σ “ λx.tσ. always holds since by silent α-conversion x is chosen such that x R FVpσq, mak-
ing captures impossible. We assume that substitutions σ verify3 Dompσq “ tf P V | fσ fi fu.
For any V Ď V we write σ » θrV s if fσ » fθ for all f P V . We write s À t (resp. σ À θ)
if there is a substitution δ such that s » tδ (resp. σ » θδ), and say that s (resp. σ) is more
general than t (resp. θ) and that t is an instance of s. σ is a variant of θ if Dompσq “ Dompθq
and there is a permutation π such that σ » θπrDompσqs.

An equation E is a directed pair s
.
“ t of terms of the same type, and E ” J iff s » t.

Equations are implicitly converted to lnf. Eσ is sσ
.
“ tσ, a constraint X is a conjunction of

equations (possibly the empty conjunction J), and σ is a solution of X if Xσ ” J.
Two terms r, r1 have a common image if there exist terms ÝÑs ,

ÝÑ
t such that rpÝÑs q » r1p

ÝÑ
t q.

For any term s and i P IN, let ÝÑu be a prefix of its lnf and r the corresponding matrix, then
|s|i is the number of occurrences of ui in r (0 if i ą apsq). Then s is i-constant if i P āpsq and
|s|i “ 0, s is free if |s|j ě 1 for all j P āpsq, and s is affine if @j P āpsq, |s|j ď 1. Note that if s
is i-constant than so is sσ.

2We may use de Bruijn indices [3] as a formal way of representing such terms, and then see bound variables
as a convenient metanotation. We use distinct names for bound variables, e.g., u, v to mean that the chosen
variables must be distinct, i.e., u ‰ v. In contrast, free variables f, g may be equal.

3We may need to compute the snf of fσ for all f P Dompσq to ensure this, which we do implicitly. In fact,
throughout the paper anytime we need a snf or a lnf we implicitly assume that it is computed as required.

66

Properties of Constrained Generalization Algorithms Boy de la Tour

3 Constrained Generalization Algorithms

The algorithms for generalizing θ w.r.t. a constraint X work by successive transformations
of triples, starting with xX , [], θy and refining the first two components until some xJ, σ, θ1y
is reached, where θ1 is an extension of the initial θ to new variables, and σ is a new solution
of X that is maintained more general than θ. A refinement step on a triple xX , σ, θy selects
an equation E in X , and depending on E and θ applies a rule that yields a new constraint Y
replacing E in X (by abuse of notation we denote X[Y {E] the result of this replacement), a
substitution δ for refining both the constraint and σ, and a substitution ε that provides correct
values for the new variables introduced by δ; the next triple is therefore xX[Y {E]δ, σδ, θεy.
The relation between a triple and the next one is usually non deterministic, if only for the
choice of E and of new variables. More formally:

Definition 1. For all l P IN, an l-run of the algorithm R on X , θ consists of a sequence of
l ` 1 configurations pxXk, σk, θkyql`1

k“1 and a sequence
ÝÑ
Rl of rules of R, verifying: xX1, σ1, θ1y “

xX , [], θy and for all k P l, Rk is applied to some equation Ek in Xk and to θk, which yields new
equations Yk and substitutions δk and εk, and xXk`1, σk`1, θk`1y “ xXk[Yk {Ek]δk, σkδk, θkεky.
If Xl`1 “ J the run is complete and its result is the restriction γ of σl`1 to FVpX q; then (and
only if such a run exists) we say that the relation θ RX γ holds.

Before we start defining the formal properties that these rules should obey for the relation
R to be a cga, we first illustrate the previous notions by providing the rules of our two cgas and
examples of runs. Each rule below is specified by a pattern for E , a condition on the symbols
extracted from E and on θ, and the resulting Y, δ and ε. For sake of conciseness we only provide
Y if it is different from E , δ and ε if they are different from [] (note that δ “ [] entails ε “ [],
hence if only one substitution is provided it must be δ). When the pattern together with the
condition is not symmetric w.r.t. the left and right hand sides, i.e., if there exist s, t, θ such
that the rule applies to s

.
“ t, θ but not to t

.
“ s, θ, then we also assume (implicitly) a reversed

version of the rule, and the rule is the union of the two asymmetric subcases, e.g., the imitation
rule below applies if E matches λÝÑx .fpÝÑs q.

.
“ λÝÑx .gp

ÝÑ
tmq. or λÝÑx .gp

ÝÑ
tmq.

.
“ λÝÑx .fpÝÑs q..

All the variables in FVpδqzFVpEq are considered as new variables. We do not simply mean
new w.r.t. the current triple xX , σ, θy (i.e. disjoint from FVpX q, FVpσq and FVpθq) but also
w.r.t. the previous triples in the run so far and to previous runs. This profligacy is necessary
for avoiding interactions when we consider successive runs (Section 5). The types of these new
variables is obvious from those in E and θ.

The identification rule below requires notions that correspond to agreement cap and oppo-
nent pairs in [9], that we restrict to second order and to simple comparison forms, i.e., to affine
terms. It is obvious that if two terms s, t have a common image and none is a projection then s
and t have at least a common head. The following function separates the part that is common
to s and t from their differences.

Definition 2. Let s, t be two affine terms in lnf with a common image, given fixed sequences
of free variables

ÝÑ
f , ÝÑg of respective length aptq, apsq, we define Dps, tq inductively as follows:

• DpλÝÑu .fpÝÑsnq., λÝÑv .fp
ÝÑ
tnq.q “ xfpÝÑrnq,

śn
i“1 ρiy if @i P n, xri, ρiy “ DpλÝÑu .si., λÝÑv .ti.q,

• DpλÝÑu .ui., tq “ xui, [t {gi]y if ui P u,

• Dps, λÝÑv .vj .q “ xvj , [s {fj]y if vj P v and s is not a projection.

When computing xr, ρy “ Dps, tq it is clear that each variable fj or gi enters ρ at most once
per occurence of vj or ui, hence indeed at most once, which makes ρ a substitution.

67

Properties of Constrained Generalization Algorithms Boy de la Tour

Example 3. Let s “ λu1u2.fpgpu2q, u1q. and t “ λv1.fpv1, gpxqq. where apxq “ 0, apgq “ 1 and
apfq “ 2, hence s and t are in lnf and apsq “ 2, aptq “ 1, hence we are given new variables f1, g1
and g2. They have a common image since spgpxq, xq » fpgpxq, gpxqq » tpgpxqq. Computing
Dps, tq decomposes into computing Dpλu1u2.gpu2q., λv1.v1.q “ xv1, [λu1u2.gpu2q. {f1]y and
Dpλu1u2.u1., λv1.gpxq.q “ xu1, [λv1.gpxq. {g1]y, hence the result is xfpv1, u1q, ρy where ρ “
[λu1u2.gpu2q. {f1, λv1.gpxq. {g1]. Now, if we let ε “ [λu1u2v1.fpv1, u1q. {h]ρ then we see that
λu1u2.hpu1, u2, f1pu1, u2qq.ε » s and λv1.hpg1pv1q, g2pv1q, v1q.ε » t.

The first algorithm JP is defined by the six following rules. The five last rules correspond
to the five unification rules in [9] and their conditions from the proof of completeness of these
unification rules. Contrary to [9] we only apply these rules to the head symbols in the equations,
hence we need a decomposition rule.

• Free decomposition rule: if fθ is free4 then

λÝÑx .fpÝÑsnq.
.
“ λÝÑx .fp

ÝÑ
tnq.

Fdcp
ÝÝÝÑ

Źn
i“1 λ

ÝÑx .si.
.
“ λÝÑx .ti.

• Elimination rule: if fθ » λÝÑu .r. is i-constant then

λÝÑx .fpÝÑsnq.
.
“ λÝÑx .fp

ÝÑ
tnq.

Elim
ÝÝÝÑ [λÝÑu .hpÝÑuziq. {f], [λ

ÝÑuzi.r. {h]

• Projection rule: if fθ is a projection then λÝÑx .fpÝÑs q.
.
“ t

Proj
ÝÝÝÑ [fθ {f]

• Imitation rule: if f ‰ g » gθ and fθ » λÝÑu .gpÝÑrmq. then

λÝÑx .fpÝÑs q.
.
“ λÝÑx .gp

ÝÑ
tmq.

Imit
ÝÝÝÑ [λÝÑu .gpf1pÝÑu q, . . . , fmpÝÑu qq. {f],

śm
j“1 [λ

ÝÑu .rj . {fj]

• Repetition rule: if fθ » λÝÑun.r., ui occurs at least twice in r and r1 is obtained from r by
replacing one occurence of ui by un`1 then

λÝÑx .fpÝÑs q.
.
“ t

Rept
ÝÝÝÑ [λÝÑun.hpÝÑun, uiq. {f], [λÝÝÝÑun`1.r

1. {h]

• Identification rule: if fθ fi f ‰ g fi gθ, fθ and gθ are affine and non projective, and
xr, ρy “ Dpfθ, gθq then

λÝÑx .fpÝÑsnq.
.
“ λÝÑx .gp

ÝÑ
tmq.

Idtf
ÝÝÑ [λÝÑu .hpÝÑu , f1pÝÑu q, . . . , fmpÝÑu qq. {f,

λÝÑv .hpg1pÝÑv q, . . . , gnpÝÑv q,ÝÑv q. {g], [λÝÑuÝÑv .r. {h]ρ

Example 4. We start with θ “ [λu.dpu, aq. {f, λu.dpu, aq. {g, a {x, a {y] on the following
constraint:

k Xk Rk δk εk

1 fpxq
.
“ gpyq

Idtf
ÝÝÝÑ [λu.h1pu, f1puqq. {f, λv.h1pg1pvq, vq. {g] [λuv.dpu, aq. {h1, λv.v. {g1]

2 h1px, f1pxqq
.
“ h1pg1pyq, yq

Elim
ÝÝÝÑ [λu1u2.h2pu1q. {h1] [λu.dpu, aq. {h2]

3 h2pxq
.
“ h2pg1pyqq

Fdcp
ÝÝÝÝÑ

4 x
.
“ g1pyq

Proj
ÝÝÝÑ [λv.v. {g1]

5 x
.
“ y

Idtf
ÝÝÝÑ [z {x, z {y] [a {z]

6 z
.
“ z

Fdcp
ÝÝÝÝÑ

7 J

4Note that f may be bound, i.e., f be some xi and then fθ “ xi is free, and n “ 0.

68

Properties of Constrained Generalization Algorithms Boy de la Tour

Hence σ7 “ δ1δ2δ4δ5 and we obtain γ by computing fσ7, gσ7, xσ7 and yσ7, which yields
γ1 “ [λu.h2puq. {f, λu.h2puq. {g, z {x, z {y]. It is easy to see that there is no other complete
run than this one, hence that the result is unique up to variants, i.e., up to the chosen new

variables. This is not always the case: both
Fdcp
ÝÝÝÑ and

Proj
ÝÝÝÑ apply to fpxq

.
“ fpxq when

fθ “ λx.x., leading to non variant results (the rules above are not confluent w.r.t. variance).

Note that in a complete run of this algorithm the last rule Rl that produces J can only

be
Fdcp
ÝÝÝÑ, hence δl “ εl “ [] and therefore σl`1 “ σl. We also see that, in all these rules if

f P Dompδq then fθ fi f , i.e., if we start with f R Dompθq then we terminate with f R Dompσq,
which means that f behaves like a constant.

The second generalization algorithm BP is defined by the next four rules. It corresponds to
the rules given in [2] though simplified mostly by the absence of constants and of restrictions
on the types of new variables. The idea is to avoid using θ if possible, or to use either the
equalities present in θ (though they may not be entailed by X) or the values provided by θ (but
only through shallow copies).

• Dependent decomposition rule5: if fθ » gθ and @i P n, λÝÑx .si.θ » λÝÑx .ti.θ then

λÝÑx .fpÝÑsnq.
.
“ λÝÑx .gp

ÝÑ
tnq.

Ddcp
ÝÝÝÑ

Źn
i“1 λ

ÝÑx .si.
.
“ λÝÑx .ti., [f {g]

• Projection rule: as above.

• Replacement rule: if f R FVpλÝÑx .t.q then λÝÑx .fpÝÑx q.
.
“ λÝÑx .t.

Rplc
ÝÝÝÑ J, [λÝÑx .t. {f]

• Copy rule: if fθ » λÝÑu .gpÝÑrnq. is not a projection and ÝÑrn ‰ ÝÑu then

λÝÑx .fpÝÑs q.
.
“ t

Copy
ÝÝÝÑ [λÝÑu .hpf1pÝÑu q, . . . , fnpÝÑu qq. {f], [g {h]

śn
i“1 [λ

ÝÑu .ri. {fi]

Example 5. We start with the same θ and constraint as in Example 4.

k Xk Rk δk εk

1 fpxq
.
“ gpyq

Copy
ÝÝÝÝÑ[λu.h1pf1puq, f2puqq. {f] [d {h1, λu.u. {f1, λu.a. {f2]

2 h1pf1pxq, f2pxqq
.
“ gpyq

Copy
ÝÝÝÝÑ[λu.h2pg1puq, g2puqq. {g] [d {h2, λu.u. {g1, λu.a. {g2]

3 h1pf1pxq, f2pxqq
.
“ h2pg1pyq, g2pyqq

Ddcp
ÝÝÝÝÑ [h1 {h2]

4 f1pxq
.
“ g1pyq ^ f2pxq

.
“ g2pyq

Proj
ÝÝÝÑ [λu.u. {g1]

5 f1pxq
.
“ y ^ f2pxq

.
“ g2pyq

Rplc
ÝÝÝÑ [f1pxq {y]

6 f2pxq
.
“ g2pf1pxqq

Copy
ÝÝÝÝÑ [λu.z. {f2] [a {z]

7 z
.
“ g2pf1pxqq

Rplc
ÝÝÝÑ [g2pf1pxqq {z]

8 J

Hence γ2 “ [λu.h1pf1puq, g2pf1pxqqq. {f, λu.h1pu, g2puqq. {g, f1pxq {y]. It is possible to apply
Proj
ÝÝÝÑ differently on X4 (with the projection f1θ4), or to apply the rule

Fdcp
ÝÝÝÑ either on f1pxq

.
“

g1pyq (since f1θ4 “ g1θ4 and xθ4 “ yθ4) or to f2pxq
.
“ g2pyq (since f2θ4 “ g2θ4) or at the start.

The reader may check that these choices and others lead to many different generalizations.

We see that the two algorithms behave very differently, but before we start comparing their
performances w.r.t. generalization, we need to make sure that they are indeed cgas. We first
develop a general result in this direction.

5Again f or g may be bound, then n “ 0 and f “ g, hence [f {g] “ [].

69

Properties of Constrained Generalization Algorithms Boy de la Tour

Definition 6. Y, δ, ε are well-formed w.r.t. E if FVpYq Ď FVpEq, δ2 “ δ, Dompδq Ď FVpEq
and Dompεq Ď FVpδqzFVpEq. A rule R is correct if, whenever E , θ R

ÝÑ Y, δ, ε holds, then Y, δ, ε
are well-formed w.r.t. E , Eθ ” J entails both Yθ ” J and δθε » θrDompδqs, and for all ν Á δ,
Yν ” J entails Eν ” J. A set of rules is complete if every incomplete run can be extended.

Note that the conditions of correctness are only required if the rule applies, i.e., if the
condition for applying the rule holds. However, the conditions of wellformedness are usually
purely syntactic and, for all the rules above, do not depend on the condition for applying each
rule. Remember that when a rule is applied the elements of FVpδqzFVpEq are always new.

Lemma 7. If the rules of algorithm R are correct then for all X , θ and k P IN such that
X θ ” J, every k-run of R on X , θ verifies σk`1θk`1 » θrFVpX qs, Xk`1θk`1 ” J and for all
γ Á σk`1, Xk`1γ ” J entails Xγ ” J.

Proof. By induction on k. For k “ 0 this is trivial since σ1 “ [], θ1 “ θ and X1 “ X . Let k ě 1
and assume as induction hypothesis (i.h.) that the property holds for k ´ 1, hence Xkθk ” J,
and in particular Ekθk ” J, which entails Ykθk ” J and δkθkεk » θkrDompδkqs.

We first prove that ε2k “ εk. Let f P Dompεkq, then f is a new variable and f P FVpδkq but
f R Dompδkq, hence there is a g P Dompδkq such that f P FVpgδkq. But gδkθkεk » gθk and
fθkεk “ fεk, hence FVpfεkq Ď FVpgδkθkεkq “ FVpgθkq. Thus for all f P Dompεkq, we have
FVpfεkq Ď FVpθkq, which is disjoint from Dompεkq, hence ε2k “ εk.

This brings δkθkεk “ δkθkε
2
k » θkεkrDompδkqs, hence obviously δkθkεk » θkεk, and therefore

σk`1θk`1 “ σkδkθkεk » σkθkεk. But again Dompεkq is disjoint from FVpσkq, FVpθkq and
FVpX q, hence σkθkεk “ σkθkrFVpX qs. By i.h. σkθk » θrFVpX qs, hence σk`1θk`1 » θrFVpX qs.

Then we also have Xk`1θk`1 “ Xk[Yk {Ek]δkθkεk » Xk[Yk {Ek]θkεk ” J.
To complete the last step, we need two preliminary results. We first prove that for all

j P k, FVpXjq X Dompσjq “ H, by induction on j. It is obvious for j “ 1 as σ1 “ []. We
now assume that FVpXjq X Dompσjq “ H. For all f P V, if f P Dompδkq, since δ2j “ δj
then FVpfδjq X Dompδjq “ H, which is also true if f R Dompδjq. Let X 1 “ Xj[Yj {Ej],
as Xj`1 “ X 1δj then FVpXj`1q X Dompδjq “ H. Since FVpYjq Ď FVpEjq then FVpX 1q Ď
FVpXjq, hence FVpXj`1q Ď FVpXjδjq Ď FVpXjq Y FVpδjq “ FVpXjq Y pFVpδjqzFVpEjqq since
FVpEjq Ď FVpXjq. This last set contains only new variables, hence none in common with
Dompσjq, hence FVpXj`1q X Dompσjq “ H. But Dompσj`1q Ď Dompσjq Y Dompδjq, hence
FVpXj`1q XDompσj`1q “ H.

We next prove that δkσkδk “ σkδk. By the previous result we have DompσkqXFVpXkq “ H.
But FVpδkq X FVpEkq Ď FVpXkq and FVpδkqzFVpEkq is also disjoint from Dompσkq, hence so
is FVpδkq. Now, for all f P V, if f P Dompδkq then f R Dompσkq hence fσkδk “ fδk, and
FVpfδkq Ď FVpδkq hence fδkσkδk “ fδ2k “ fδk. Of course if f R Dompδkq then fδkσkδk “
fσkδk, and we have proved that δkσkδk “ σkδk.

Finally, for all γ Á σk`1 “ σkδk such that J ” Xk`1γ “ Xk[Yk {Ek]δkγ, then in particular
Ykδkγ ” J hence Ekδkγ ” J, and therefore Xkδkγ ” J. But there exists a ρ such that
γ “ σkδkρ, hence Xkδkγ “ Xkδkσkδkρ “ Xkσkδkρ “ Xkγ. Since obviously γ Á σk then by i.h.
we obtain Xγ ” J, which completes the induction.

The following general result will be useful to prove Lemma 17, a property specific to JP.

Corollary 8. For any l-run of R, k P l and f P FVpXkq, fδk ¨ ¨ ¨ δl À fθk.

Proof. We have established above that δkθkεk » θkεk, thus δkθkεk ¨ ¨ ¨ εl » θkεk ¨ ¨ ¨ εl, i.e.,
δkθl`1 » θl`1 for all k P l, hence δk ¨ ¨ ¨ δlθl`1 » θl`1 » θkrFVpXkqs.

70

Properties of Constrained Generalization Algorithms Boy de la Tour

Theorem 9. If the rules of R are correct, complete and terminating then R is a cga.

Proof. Let θ such that X θ ” J. By completeness and termination every run of RX on θ can
be extended to a complete l-run for some l P IN, hence there is a γ such that θ RX γ. Besides,
for all such γ, by Definition 1 there is a complete l-run of R on X , θ for some l P IN, that ends
in xXl`1, σl`1, θl`1y where Xl`1 “ J and γ “ σl`1rFVpX qs. It is obvious that σl`1 À σl`1

and Xl`1σl`1 ” J, which by Lemma 7 entails Xσl`1 ” J and hence Xγ ” J. We also have
σl`1θl`1 » θrFVpX qs, hence γ À θ.

Note that this result is not restricted to second order languages. We can now apply it.

Theorem 10. JP and BP are cgas.

Proof. We leave it to the reader to check that all the rules presented above are correct, which

is straightforward (for
Idtf
ÝÝÑ, see Example 3).

We now prove that the rules of JP are complete. Assume X ‰ J, hence there is an equation
E in X of the form λÝÑx .fpÝÑsnq.

.
“ λÝÑx .gp

ÝÑ
tmq.. If f “ g then n “ m and either fθ is free and

Fdcp
ÝÝÝÑ applies, or there is a i such that fθ is i-constant and

Elim
ÝÝÝÑ applies. Otherwise f ‰ g, and

if one of fθ, gθ is a projection then
Proj
ÝÝÝÑ applies. If one of f, g, say g, is invariant by θ then

since Eθ ” J (by Lemma 7) the head of fθ must be g hence
Imit
ÝÝÝÑ applies. If one of fθ, gθ, say

fθ, is not affine then there is a i such that |fθ|i ě 2 and
Rept
ÝÝÝÑ applies. Otherwise f, g are not

invariant by θ, fθ, gθ are affine and non projective hence rule
Idtf
ÝÝÑ applies.

Similarly we prove that the rules of BP are complete. Assume an equation E in X of the

form λÝÑx .fpÝÑsnq.
.
“ λÝÑx .gp

ÝÑ
tmq.. If one of fθ, gθ is a projection then

Proj
ÝÝÝÑ applies. Otherwise if

one on fθ, gθ’s snf is not a variable then
Copy
ÝÝÝÑ applies. Otherwise fθ and gθ’s snf are variables,

and since Eθ ” J they must be the same variable, hence fθ » gθ and n “ m. But variables

are free terms, hence Eθ ” J entails @i P n, λÝÑx .si.θ » λÝÑx .ti.θ, hence
Ddcp
ÝÝÝÑ applies6.

To prove termination we define suitable well-orderings on the set of configurations xX , σ, θy.
We write }t} for the (standard) length of the matrix of t, }s

.
“ t} for }s} ` }t} and }X } for

ř

EPX }E}. For JP we need the lexicographic extension of ă on IN, with three components. The

first is
ř

fPFVpX q }fθ}, which strictly decreases by rules
Proj
ÝÝÝÑ,

Imit
ÝÝÝÑ,

Idtf
ÝÝÑ (because the common

head of fθ, gθ is counted only once in hε) and does not increase by the other rules. The second

is
ř

fPFVpX q
řapfq
j“1 p|fθ|j ´ 1q (where k ´ 1 “ maxp0, k ´ 1q), which strictly decreases by

Rept
ÝÝÝÑ

(because a counted occurrence of ui is replaced by an uncounted occurrence of un`1) and does

not increase by
Elim
ÝÝÝÑ and

Fdcp
ÝÝÝÑ. The last is }X } which strictly decreases by

Elim
ÝÝÝÑ and

Fdcp
ÝÝÝÑ.

Hence the set of rules of JP terminates.
For BP we need two components. The first is |V | ` 2

ř

fPFVpX qzV }fθ} where V is the set

of f P FVpX q such that the snf of fθ is a variable; it strictly decreases by rules
Proj
ÝÝÝÑ,

Rplc
ÝÝÝÑ,

Copy
ÝÝÝÑ (because the twice counted head g of fθ R V is counted only once in hε “ g P V) and

does not increase by
Ddcp
ÝÝÝÑ (because ε “ []). The second is }X } which strictly decreases by

Ddcp
ÝÝÝÑ, hence this set of rules terminates.

6Note that
Rplc
ÝÝÝÑ has not been used. It is therefore easy to see that, by removing the conditions (on θ) and ε

from
Ddcp
ÝÝÝÝÑ,

Proj
ÝÝÝÑ and

Copy
ÝÝÝÝÑ, we get three rules that are complete for second order unification. This somehow

reverses the process by which we obtained the algorithm JP from the proof of completeness of the second order
unification rules in [9].

71

Properties of Constrained Generalization Algorithms Boy de la Tour

4 Loose and First Order Generalizations

Definition 11. An algorithm R has the loose generalization property if for any constraint X
such that X ” J and any substitution θ, we have θ RX [].

Note that [] is the most general solution of any valid constraint.

Theorem 12. The algorithm BP has the loose generalization property.

Proof. We start with σ1 “ []. If there is an equation E in X ” J, then E ” J and as both sides

are in lnf then E must be of the form λÝÑx .fpÝÑsnq.
.
“ λÝÑx .fpÝÑsnq., and for any θ the rule

Ddcp
ÝÝÝÑ

applies and yields δ “ [] and a new constraint X[
Źn
i“1 λ

ÝÑx .si.
.
“ λÝÑx .si. {E] ” J. Hence by a

trivial induction the algorithm terminates with σl`1 “ δ1 ¨ ¨ ¨ δl “ [], and we get θ BPX [].

In contrast, JP does not have the loose generalization property, as is easily proven by taking
λÝÑx2.fpÝÑx2q.

.
“ λÝÑx2.fpÝÑx2q. for X and θ “ [λÝÑx2.x1. {f]. As fθ is not free then we can only apply

rule
Elim
ÝÝÝÑ or rule

Proj
ÝÝÝÑ to X , and both yield a δ ‰ [].

It is not reasonable to expect that a generalization algorithm could reach a most general
solution whenever there is one. However, we may think that it should be able to emulate the
generalizing power of first order unification by finding a mgu in this case, which we first need
to characterize.

Definition 13. A first order constraint is a constraint in which no abstraction occurs. A
substitution θ is first order if apDompθqq Ď t0u.

Theorem 14. For any RP tJP,BPu, first order constraint X and first order solution θ of X ,
there is a mgu γ of X such that θ RX γ.

Proof. Obvious for BPX ; under our hypotheses the rule
Ddcp
ÝÝÝÑ subsumes the standard decompo-

sition rule of first order unification fpÝÑsnq
.
“ fpÝÑsnq Ñ

Źn
i“1 si

.
“ ti (it also applies to equations

x
.
“ y, yielding δ “ [x {y], hence removes the equations x

.
“ x) and the rule

Rplc
ÝÝÝÑ is the stan-

dard replacement rule x
.
“ tÑ J, [t {x] if x R FVptq, and these rules are known to produce a

mgu.

The rule
Fdcp
ÝÝÝÑ corresponds to standard decomposition and to the elimination of equations

x
.
“ x. The rule

Idtf
ÝÝÑ reduces to x

.
“ y Ñ [z {x, y], [xθ {z] if x ‰ y, and the rule

Imit
ÝÝÝÑ to

x
.
“ gp

ÝÑ
tmq Ñ [gpÝÑzmq {x], [tjθ {zj]

m
j“1 (together with the symmetric version on gp

ÝÑ
tmq

.
“ x).

The standard replacement rule clearly derives from these rules (albeit with a harmless renaming
of variables, see [10, Theorem 3.13]), hence JPX also produces a mgu.

5 Weak Projectivity

Comparing the generalizing power of two cgas is a difficult task. Even if we were able to prove
that a cga R always yields a more general solution than R1 , this would not rule out R1 as
useless since, the composition of two cgas (on the same constraint X) being a cga, it may still

be the case that R12X (or some other combination of the two cgas, e.g., R1X ˝ RX) yields better
solutions than RX or even R2

X . On a first approach we may try to compare R2
X with RX ,

independently of R1 . Of course this is made more complex by the non deterministic nature of
cgas.

72

Properties of Constrained Generalization Algorithms Boy de la Tour

Definition 15. A relation R is weakly projective if for any θ, σ such that θ R σ there is a
variant σ1 of σ such that σ R σ1.

In general this will mean that if we apply a strategy to get a unique generalization, hence
turning the non deterministic relation into a function, then this function is a projection (w.r.t.
variants): one run of the algorithm exhausts its generalizing power. We now prove that this
is indeed the case of JPX for any constraint X . We therefore assume a complete l-run of the
algorithm JP on X , θ as in Definition 1. We first prove a lemma concerning the shape of the
obtained generalization γ. We will use the equation:

|λÝÑu .fpÝÑsmq.σ|j “
m
ÿ

i“1

|fσ|i |λÝÑu .si.σ|j (1)

which is obvious since for each i P m the bound variable uj has |λÝÑu .si.σ|j occurrences in the
lnf of siσ, which has |fσ|i occurrences in the lnf of fpÝÑsmqσ “ fσps1σ, . . . , smσq.

Lemma 16. For all k P l ` 1, e P FVpXkq and j P āpeq, |eδk ¨ ¨ ¨ δl|j ď |eθk|j

Proof. We proceed by descending induction on k. The base case k “ l ` 1 is trivial since
FVpXl`1q “ H. We now assume that the property holds on k ` 1 for some k P l, we let
e P FVpXkq, δ “ δk`1 ¨ ¨ ¨ δl, j P āpeq and examine the different possibilities for Rk. First, we

see that eθk`1 “ eθkεk “ eθk since Dompεkq X FVpXkq “ H. For every rule but
Fdcp
ÝÝÝÑ we

have Xk`1 “ Xkδk, hence if e R Dompδkq then e P FVpXk`1q hence by i.h. |eδkδ|j “ |eδ|j ď
|eθk`1|j “ |eθk|j . For these rules there only remains to examine the case e P Dompδkq.

• If Rk is
Fdcp
ÝÝÝÑ then Ek is some λÝÑx .fpÝÑs q.

.
“ λÝÑx .fp

ÝÑ
t q. where fθk is free, hence |fθk|j ě 1.

If e “ f and f R FVpXk`1q then e R Dompδkδq hence |eδkδ|j “ |e|j “ 1 ď |eθk|j .
Otherwise, either e “ f and e P FVpXk`1q, or e ‰ f and since the terms ÝÑs ,

ÝÑ
t occur in

Yk, it is clear that e P FVpXk`1q again, and since Dompδkq “ H then e R Dompδkq and
we can proceed by i.h. as above.

• If Rk is
Elim
ÝÝÝÑ, we assume e P Dompδkq hence Ek is some λÝÑx .epÝÑsnq.

.
“ λÝÑx .ep

ÝÑ
tnq. where

eθk » λÝÑu .r. is i-constant, δk “ [λÝÑu .hpÝÑuziq. {e], εk “ [λÝÑuzi.r. {h] and Xk`1 “ Xkδk. If
i “ j then eδk “ λÝÑu .hpÝÑuzjq. is j-constant hence |eδkδ|j “ 0. If j ă i (resp. i ă j) uj is the

jth (resp. pj´1qth) prefix variable of λÝÑuzi.r. hence |hθk`1|j “ |λÝÑuzi.r.|j “ |λ
ÝÑu .r.|j “ |eθk|j

(resp. |hθk`1|j´1 “ |eθk|j) and since f P FVpXkq then h P FVpXk`1q, so by i.h. |hδ|j ď
|hθk`1|j (resp. |hδ|j´1 ď |hθk`1|j´1). But uj occurs only as the jth (resp. pj ´ 1qth)
argument of h in hpÝÑuziq hence |eδkδ|j “ |λÝÑu .hpÝÑuziq.δ|j “ |hδ|j ď |hθk`1|j “ |eθk|j (resp.
|eδkδ|j “ |hδ|j´1 ď |hθk`1|j´1 “ |eθk|j).

• If Rk is
Imit
ÝÝÝÑ then Ek is some λÝÑx .epÝÑsnq.

.
“ λÝÑx .gp

ÝÑ
tmq. where e ‰ g » gθk and eθk »

λÝÑu .gpÝÑrmq., eδk “ λÝÑu .gpf1pÝÑu q, . . . , fmpÝÑu qq. and for all i P m, fiθk`1 “ fiεk “ λÝÑu .ri..
Furthermore e P FVpXkq entails fi P FVpXk`1q, hence by i.h. |fiδ|j ď |fiθk`1|j . Now by
(1) we get |eδkδ|j “

řm
i“1 |gδ|i|λ

ÝÑu .fipÝÑu q.δ|j , but |gδ|i “ |g|i “ 1 and again by (1)

|λÝÑu .fipÝÑu q.δ|j “
n

ÿ

q“1

|fiδ|q|λÝÑu .uq.δ|j “
n

ÿ

q“1

|fiδ|q|λÝÑu .uq.|j “ |fiδ|j ,

hence |eδkδ|j “
řm
i“1 |fiδ|j ď

řm
i“1 |fiθk`1|j . And yet again by (1)

|eθk|j “ |λÝÑu .gpÝÑrmq.|j “
m
ÿ

i“1

|g|i|λÝÑu .ri.|j “
m
ÿ

i“1

|fiθk`1|j ě |eδkδ|j .

73

Properties of Constrained Generalization Algorithms Boy de la Tour

The cases
Proj
ÝÝÝÑ,

Rept
ÝÝÝÑ and

Idtf
ÝÝÑ are similar.

Hence for all f P FVpX q we have |fγ|j ď |fθ|j , which reveals a limit to the generalizing
power of JP. Example 5 shows that this property is not true of BP, as |gγ2|1 “ 2 ą |gθ|1.

Next we prove that the first run can be mimicked by a second, parallel one. The difficulty
is to prove that the condition for applying a rule on an equation is still valid, although we have
changed θ to γ. Another difficulty is that this second run also introduces new variables, and
we have to shift (by means of a permutation) from the new variables of the first run to those of
the second run. In particular, new variables that behave like constants, i.e., that are fixpoints

of θl, should correspond in both runs since this has an influence on the conditions of rules
Imit
ÝÝÝÑ

and
Idtf
ÝÝÑ.

Lemma 17. Let γ be the result of the first run of JPX on θ, then for all k P l ` 1 there is
a pk ´ 1q-run of JPX on γ that ends on xXkπk, σ1k, θ1ky where πk is a permutation between the
new variables of both runs so far, such that πkσ

1
k “ σkπk, πkθ

1
k » δk ¨ ¨ ¨ δlrFVpXkq XDompθkqs

and FVpXkq XDompθ1kqπ
´1
k Ď Dompθkq.

Proof. By induction on k. For k “ 1 we take π1 “ [], hence xX1π1, σ
1
1, θ

1
1y “ xX , [], γy is the

end of a 0-run of JPX on γ, and the required properties are met by definition of γ and θ1.
We now assume the property for k P l. We refer to the objects defined by this pk ´ 1q-

run by priming the metavariables of the first run, in particular we have σ1k “ δ11 ¨ ¨ ¨ δ
1
k´1 and

θ1k “ γε11 ¨ ¨ ¨ ε
1
k´1. Ekπk is an equation in Xkπk; we first prove that the rule Rk applies to

Ekπk, θ1k which yields new equations Ykπk and substitutions δ1k, ε
1
k, from which we define a

suitable permutation π that commutes with πk and such that together with πk`1 “ πkπ verify
the following three properties: πk`1δ

1
k “ δkπk`1, πε1k » δk`1 ¨ ¨ ¨ δlrDompεkqs and Dompεkqπ “

Dompε1kq. We let δ “ δk`1 ¨ ¨ ¨ δl and we examine the different possibilities for Rk.

• If Rk is
Fdcp
ÝÝÝÑ then Ek is some λÝÑx .fpÝÑs q.

.
“ λÝÑx .fp

ÝÑ
t q. where fθk is free, hence for all

i P āpfq, fθk is not i-constant and since it is an instance of fδkδ then fδkδ is not i-constant.
If f R Dompθkq then by i.h. f R Dompθ1kqπ

´1
k , hence fπkθ

1
k “ fπk is free; otherwise by

i.h. fπkθ
1
k » fδkδ is also free.

Fdcp
ÝÝÝÑ can therefore be applied to Ekπk, θ1k, yielding

δ1k “ [] “ δk and ε1k “ [] “ εk; we then let π “ []. Since Dompεkq “ Dompε1kq “ H, the
three properties are trivial.

• If Rk is
Elim
ÝÝÝÑ, then Ek is some λÝÑx .fpÝÑsnq.

.
“ λÝÑx .fp

ÝÑ
tnq. where fθk » λÝÑu .r. is i-constant,

δk “ [λÝÑu .hpÝÑuziq. {f] and εk “ [λÝÑuzi.r. {h]. By i.h. fπkθ
1
k » fδkδ “ λÝÑu .hδpÝÑuziq.

which is obviously i-constant hence
Elim
ÝÝÝÑ can be applied on Ekπk, θ1k yielding δ1k “

[λÝÑu .h1pÝÑuziq. {fπk], and ε1k “ [λÝÑuzi.hδp
ÝÑuziq. {h

1] » [hδ {h1], where h1 is new also w.r.t.
the first run, hence π “ ph h1q commutes with πk. We then easily check that δkπk`1 “

π[λÝÑu .h1pÝÑuziq. {f]πk “ ππk[λÝÑu .h
1pÝÑuziq. {fπk] “ πk`1δ

1
k, that πε1k » [hδ {h, h {h1] “

δrDompεkqs and that Dompεkqπ “ thuπ “ th
1u “ Dompε1kq.

• If Rk is
Proj
ÝÝÝÑ then Ek is some λÝÑx .fpÝÑs q.

.
“ t where fθk is a projection λÝÑu .ui. hence

δk “ [λÝÑu .ui. {f] and εk “ []. By i.h. fπkθ
1
k » fδkδ “ λÝÑu .ui. is a projection hence

Proj
ÝÝÝÑ can be applied to Ekπk, θ1k and yields δ1k “ [λÝÑu .ui. {fπk] and ε1k “ []. We see that
δkπk “ πkδ

1
k hence that the three properties hold with π “ [].

• If Rk is
Imit
ÝÝÝÑ then Ek is some λÝÑx .fpÝÑsnq.

.
“ λÝÑx .gp

ÝÑ
tmq. where f ‰ g » gθk and δk “

[λÝÑu .gpf1pÝÑu q, . . . , fmpÝÑu qq. {f], Dompεkq “ tf1, . . . , fmu. Then fπk ‰ gπk and gπkθ
1
k “

74

Properties of Constrained Generalization Algorithms Boy de la Tour

gπk since g R Dompθkq hence gπk R Dompθ1kq. Thus
Imit
ÝÝÝÑ applies to Ekπk, θ1k and yields

δ1k “ [λÝÑu .gpf 11p
ÝÑu q, . . . , f 1mp

ÝÑu qq. {fπk] and ε1k “ [λÝÑu .fiδpÝÑu q. {f
1
i]
m
i“1 » [fiδ {f

1
i]
m
i“1

since by i.h. fπkθ
1 » fδkδ “ λÝÑu .gpf1δpÝÑu q, . . . , fmδpÝÑu qq.. The f 1i ’s are new so that

π “ pfi f
1
iq
m
i“1 commutes with πk, hence δkπk`1 “ π[λÝÑu .gpf 11p

ÝÑu q, . . . , f 1mp
ÝÑu qq. {f]πk “

πk`1δ
1
k, πε1k »[fiδ {fi, fi {f

1
i]
m
i“1“ δrDompεkqs and Dompεkqπ “tf

1
1, . . . , f

1
mu“ Dompεkq.

• If Rk is
Rept
ÝÝÝÑ then Ek is some λÝÑx .fpÝÑsnq.

.
“ t where fθk » λÝÑun.r. with |fθk|i ě 2, and then

δk “ [λÝÑun.hpÝÑun, uiq. {f], Dompεkq “ thu and hθk`1 “ λÝÝÝÑun`1.r
1. as in the definition of

the rule, so that |hθk`1|i “ |fθk|i´ 1 ě 1 and |hθk`1|n`1 “ 1. Since hθk`1 is an instance
of hδ (by Corollary 8 and Theorem 9) then |hδ|i ě 1 and |hδ|n`1 ě 1, but by i.h. and (1)
|fπkθ

1
k|i “ |fδkδ|i “

řn
j“1 |hδ|j |λ

ÝÑu .uj .|i ` |hδ|n`1|λÝÑu .ui.|i “ |hδ|i ` |hδ|n`1 ě 2 hence
Rept
ÝÝÝÑ can be applied to Ekπk, θ1k. We write hδ “ λÝÝÝÑun`1.d

1. and d “ d1[ui {un`1], then
fπkθ

1
k » fδkδ “ λÝÑun.hδpÝÑun, uiq. “ λÝÑun.d. and d1 can be obtained from d by replacing

one occurence of ui by un`1, hence an application of
Rept
ÝÝÝÑ on Ekπk, θ1k does yield δ1k “

[λÝÑun.h
1pÝÑun, uiq. {fπk] and ε1k “ [λÝÝÝÑun`1.d

1. {h1] » [hδ {h1]. Let π “ ph h1q, as h
and h1 are new variables then π and πk commute, δkπk`1 “ [λÝÑun.hpÝÑun, uiq. {f]ππk “
π[λÝÑun.h

1pÝÑun, uiq. {f]πk “ ππk[λÝÑun.h
1pÝÑun, uiq. {fπk] “ πk`1δ

1
k, πε1k » [hδ {h, h {h1] “

δrDompεkqs and Dompεkqπ “ th
1u “ Dompε1kq.

• If Rk is
Idtf
ÝÝÑ then Ek is some λÝÑx .fpÝÑsnq.

.
“ λÝÑx .gp

ÝÑ
tmq. where fθk fi f ‰ g fi gθk, fθk

and gθk are affine and non projective; let s “ λÝÑu .hpÝÑu , f1pÝÑu q, . . . , fmpÝÑu qq. and t “
λÝÑv .hpg1pÝÑv q, . . . , gnpÝÑv q,ÝÑv q. so that δk “ [s {f, t {g], and we also have h P Dompεkq Ď
th, f1, . . . , fm, g1, . . . , gnu. By i.h. fπkθ

1
k » fδkδ which cannot be projective since its

instance fθk is not projective. By definition hεk “ hθk`1 and the fjθk`1’s are non
projective hence similarly hδ and the fjδ’s are non projective. The head e of hδ must
therefore be introduced by some δk1 for k1 ą k. If Rk1 is the imitation rule then eθk1 “ e,
otherwise e is a new symbol, hence in all cases we have e ‰ f . As h is the head of fδk
then e is the head of fδkδ hence fδkδ fi f . Since fθk is affine then for all i P āpfq we have
|fθk|i ď 1, hence by Lemma 16 |fδkδ|i ď 1, i.e., fδkδ is affine. Similarly we prove that

gπkθ
1
k is non projective, different from g and affine, hence the rule

Idtf
ÝÝÑ can be applied

on Ekπk, θ1k, yielding δ1k “ [s1 {fπk, t
1 {gπk] where s1 “ λÝÑu .h1pÝÑu , f 11p

ÝÑu q, . . . , f 1mp
ÝÑu qq.

and t1 “ λÝÑv .h1pg11p
ÝÑv q, . . . , g1np

ÝÑv q,ÝÑv q.. Let π “ ph h1q
śm
j“1pfj f

1
jq

śn
i“1pgi g

1
iq and

ε1k “ [λÝÑuÝÑv .r1. {h1]ρ where xr1, ρy “ Dpfπkθ1k, gπkθ
1
kq “ Dpsδ, tδq. As above π and

πk commute and δkπk`1 “ [s {f, t {g]ππk “ π[s1 {f, t1 {g]πk “ ππk[s
1 {fπk, t

1 {gπk] “
πk`1δ

1
k.

We now write hδ “ λÝÑuÝÑv .d. and prove that r1 “ d. It is clear that the matrices of
sδ and tδ (the left and right arguments of D) are both instances of d, and that they
differ exactly at the positions of the bound variables in d since these are instantiated
by different terms on each side, i.e., ui ‰ giδpÝÑv q and fjδpÝÑu q ‰ vj (we always assume
u X v “ H). If during the computation a variable ui is encountered on the left, as the
fjδ’s are non projective then it must be at the position of ui in d, and then ui enters
r1 and [λÝÑv .giδpÝÑv q. {g

1
i] » [giδ {g

1
i] enters ρ. Otherwise vj is encountered on the right

while the left is not ui; hence it must be at the position of vj in d and then vj enters r1

(since fjδ is non projective) and [fjδ {f
1
j] enters ρ. Hence r1 “ d, but this also shows

that ui (resp. vj) occurs in d iff g1i P Dompρq (resp. f 1j P Dompρq).

For all gi P Dompεkq, we also know that hθk`1 cannot be i-constant, but this is an
instance of hδ hence ui occurs in d and therefore g1i “ giπ P Dompε1kq. Conversely, if

75

Properties of Constrained Generalization Algorithms Boy de la Tour

gi R Dompεkq then |hθk`1|i “ 0 and by Lemma 16 ui does not occur in d and therefore
g1i “ giπ R Dompε1kq. Similarly we prove that fj P Dompεkq iff fjπ P Dompε1kq, and we
have both h P Dompεkq and h1 P Dompε1kq, hence Dompεkqπ “ Dompε1kq.

We have hπε1k “ h1ε1k “ λÝÑuÝÑv .r1. “ hδ. For all gi P Dompεkq, giπ “ g1i P Dompε1kq hence
giπε

1
k “ g1iρ » giδ (as shown above), and similarly for the fj ’s in Dompεkq, which proves

that πε1k » δrDompεkqs.

In all cases we easily see that Dompπq X FVpXkq “ H, and hence that Xkπk[Ykπk {Ekπk]δ1k “
Xk[Yk {Ek]πkδ1k “ Xk[Yk {Ek]ππkδ1k “ Xk[Yk {Ek]δkπk`1 “ Xk`1πk`1. We let σ1k`1 “ σ1kδ

1
k

and θ1k`1 “ θ1kε
1
k, hence we have proved that there is a k-run of JPX from γ that ends on

xXk`1πk`1, σ
1
k`1, θ

1
k`1y. We also see that FVpσ1kq “ FVpδ11 ¨ ¨ ¨ δ

1
k´1q only contain variables from

FVpX q and the new variables of the second run before step k, which are kept separate from those
of the first run, in particular from FVpXk`1q, hence it is disjoint from Dompπq and therefore
σ1k and π commute. Then by i.h. πk`1σ

1
k`1 “ πkπσ

1
kδ
1
k “ πkσ

1
kπδ

1
k “ σkπkπδ

1
k “ σkπk`1δ

1
k “

σkδkπk`1 “ σk`1πk`1.
For all f in FVpXk`1q X Dompθk`1q we have f R Dompδkq and either f P Dompθkq or

f P Dompεkq. If f P FVpXkq then f P Dompθkq and therefore fπk`1θ
1
k`1 “ fπkθ

1
k » fδkδ

by i.h., but fδk » f hence fπk`1θ
1
k`1 » fδ. Otherwise f R FVpXkq and f P Dompεkq, hence

fπk`1θ
1
k`1 “ fπε1k » fδ. We have proved that πk`1θ

1
k`1 » δrFVpXk`1q XDompθk`1qs.

For all f in FVpXk`1qXDompθ1k`1qπ
´1
k`1 we have fπk`1 P Dompθ1k`1q “ Dompθ1kqZDompε1kq.

If f P FVpXkq then fπk`1 “ fπk P Dompθ1kq hence by i.h. f P Dompθkq Ď Dompθk`1q.
Otherwise fπk`1 “ fπ P Dompε1kq hence f P Dompεkq Ď Dompθk`1q. We have proved that
FVpXk`1q XDompθ1k`1qπ

´1
k`1 Ď Dompθk`1q, which completes the induction.

Theorem 18. JPX is weakly projective for any constraint X .

Proof. By Lemma 17 there is a l-run of JPX on γ that ends on xXl`1πl`1, σ
1
l`1, θ

1
l`1y where πl`1

is a permutation such that πl`1σ
1
l`1 “ σl`1πl`1. This run is complete since Xl`1 “ J, hence we

let γ1 be the restriction of σ1l`1 to FVpX q, so that γ JPX γ1. We have γ1 “ πl`1σ
1
l`1rFVpX qs “

σl`1πl`1rFVpX qs “ γπl`1rFVpX qs, hence γ1 is a variant of γ.

It is easy to see that the run of BPX on θ in Example 5 cannot be reproduced on γ2, hence
the technique used in the previous proof does not extend to BP. Yet a longer run on γ2 does
yield a variant of γ2, which leaves open the question whether BPX is weakly projective.

If we apply BPX after JPX with the X and θ of Example 4 we only get a variant of γ1. If
we rather apply BPX ˝ JPX we get a γ3 “ [λu.h3ph4puq, h4pxqq. {f, λu.h3pu, uq. {g, h4pxq {y],
which is not a variant of γ2, hence this option seems preferable.

6 Conclusion

We believe that the results of Section 3 provide a framework in which cgas can be better
designed and understood. We could for instance mix the rules from the two algorithms, provided
completeness and termination are preserved (the former is perserved by adding rules, the latter
by removing them). The rules can also be modified, for instance the repetition rule is interesting
for increasing the arity of the variables but needs to be restricted in some way to ensure
termination: here the number of occurrences of bound variables is the limiting factor, but
others are possible. A prolog implementation is under way.

The questions asked and partially answered in Sections 4 and 5 are natural and could be
addressed for any cga. However, it would be more interesting to compare the two algorithms

76

Properties of Constrained Generalization Algorithms Boy de la Tour

w.r.t. the generalizing order À rather than variance, if possible. Another problem is the control
on the rules: it seems hardly possible to consider that some generalization is necessarily better
than another one (if they are not comparable with À), their interest can only be compared
with some purpose in mind. This raises the question of guiding the search for a generalization
toward some specific goal, a task that could easily prove undecidable.

References

[1] Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret. Higher-order pattern
anti-unification in linear time. J. Autom. Reasoning, 58(2):293–310, 2017.

[2] Thierry Boy de la Tour and Nicolas Peltier. Proof generalization in LK by second order unifier
minimization. Journal of Automated Reasoning, 57(3):245–280, October 2016.

[3] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. Indag Math., 34(5):381–392, 1972.

[4] Gilles Dowek. Higher-order unification and matching. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, volume II, chapter 16, pages 1009–1062. Elsevier Science, New
York, 2001.

[5] R. O. Gandy. An early proof of normalization by A.M. Turing. In To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 453–455. Academic Press, 1980.

[6] W. Goldfarb. The undecidability of the second-order unification problem. Theoretical Computer
Science 13, pages 225–230, 1981.

[7] Kouichi Hirata, Takeshi Ogawa, and Masateru Harao. Generalization algorithms for second-
order terms. In Rui Camacho, Ross D. King, and Ashwin Srinivasan, editors, Inductive Logic
Programming, 14th International Conference, volume 3194 of Lecture Notes in Computer Science,
pages 147–163. Springer, 2004.

[8] Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical Computer Science, 1:27–57,
1975.

[9] D. C. Jensen and T. Pietrzykowski. Mechanizing ω-order type theory through unification. Theo-
retical Computer Science, 3(2):123–171, November 1976.

[10] J.-L. Lassez, M. Maher, and K. Marriot. Unification revisited. In J. Minker, editor, Foundations
of Deductive Databases and Logic Programming, pages 67–113. Morgan-Kaufman, 1988.

[11] T. M. Mitchell. Generalization as Search. Artificial Intelligence, 18:203–226, 1982.

[12] Frank Pfenning. Unification and anti-unification in the Calculus of Constructions. In Sixth Annual
IEEE Symposium on Logic in Computer Science, pages 74–85, Amsterdam, The Netherlands, July
1991.

[13] Tomasz Pietrzykowski. A complete mechanization of second-order type theory. J. ACM, 20(2):333–
364, 1973.

77

	Introduction
	Notations and Basic Definitions
	Constrained Generalization Algorithms
	Loose and First Order Generalizations
	Weak Projectivity
	Conclusion

