EPiC Series in Computing Sl
omputing

Volume 50, 2017, Pages 6477
GCALI 2017. 3rd Global Con- m
ference on Artificial Intelligence (‘\

Properties of Constrained Generalization Algorithms

Thierry Boy de la Tour

Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
thierry.boy-de-la-tour@imag.fr

Abstract

Two non deterministic algorithms for generalizing a solution of a constraint expressed
in second order typed A-calculus are presented. One algorithm derives from the proof of
completeness of the higher order unification rules by D. C. Jensen and T. Pietrzykowski,
the other is abstracted from an algorithm by N. Peltier and the author for generalizing
proofs. A framework is developed in which such constrained generalization algorithms can
be designed, allowing a uniform presentation for the two algorithms. Their relative strength
at generalization is then analyzed through some properties of interest: their behaviour on
valid and first order constraints, or whether they may be iterated or composed.

1 Introduction

In [2] a method for generalizing proofs in LK with equality is presented. It consists of three steps:
by expressing inference rules, side conditions included, as second order equational constraints,
the first step extracts from a given LK-proof a constraint expressing its syntactic validity. The
second step lifts the proof by introducing as many variables as possible, yielding an abstract
proof P that may not correspond to a valid LK-proof, an abstract constraint X that may not be
valid, and a solution 6 of X', such that P8 is the original proof. In the third step a minimization
algorithm is applied to X, 0 in order to find a more general solution v of X, so that P~ is
guaranteed to be a valid LK-proof, of which P8 is therefore an instance.

As a very simple example consider the (trivial) proof of the sequent P(a) - P(a) by the LK
axiom ¢ - ¢. We express this axiom as a constrained sequent ¢ ¢ | ¢ = 1, where ¢ and 1) are
first order variables. In this constrained system the proof translates as P(a) - P(a)|P(a) =
P(a), with a valid constraint. Note that P(a) -+ P(b)|P(a) = P(b) is a valid proof in the
constrained system, but since the constraint is unsatisfiable it does not correspond (translates)
to a valid LK-proof. By introducing variables the proof is then lifted to the constrained proof
x b y|a = y (this is the proof P whith its constraint X', which is not valid) together with
the solution 6(z) = 6(y) = P(a). The minimization algorithm, applied to z = y, 0 yields a
solution v(z) = v(y) = « more general than 0, and the proof Py of z I x is an LK-proof more
general than the initial one. Since the quantifier and equality rules of LK introduce second order
variables, there is generally no most general proof such as this P, see [2] for more elaborate
examples.

This method is of course not restricted to LK-proofs in principle, it could be adapted to
other proof systems as long as inference rules can be represented by second order constraints.

C. Benzmiiller, C. Lisetti and M. Theobald (eds.), GCAI 2017 (EPiC Series in Computing, vol. 50), pp. 64-77

Properties of Constrained Generalization Algorithms Boy de la Tour

Yet the minimization algorithm presented in [2] depends in a non trivial way on peculiarities
of LK with equality, especially the fact that the types that are admissible for variables (they
stand not only for free and bound variables in first order formulse but also for elements of
signatures, i.e., function and predicate symbols) do not match the types of all logical symbols.
Only the equality has the type of a predicate, and this strangely requires a special rule in the
algorithm. Besides, this algorithm presents a complex behaviour and, being non deterministic,
may output very different generalizations of #, though in finite number. It is therefore liable
to improvements, both in control (to find specific solutions) and extension (among a greater
choice).

In order to design such algorithms it is therefore appropriate to adopt a simpler, more
abstract setting, and the obvious choice is the simply typed A-calculus (without constants)
where the types of variables have no other restrictions than being of order at most 2. We thus
assume a given pattern P and constraint X on the variables of P, that defines the kind of objects
we are interested in, namely the instances P~y of P where 7 is a solution of X'. Assuming we know
a special instance P among these objects, we would like to discover possible generalizations of
it, i.e., objects P~ of which P#@ is an instance. For this we need only search for generalizations
~ of 6 that satisfy X, i.e., this does not depend on P. A constrained generalization algorithm
(cga) R defines, for all X', a binary relation Ry such that, for all solutions 6 of X (input) there
is a v (output) with 8 Rx +, and for all v, 8 Ry 7 entails that v is a solution of X more general
than 6.

This approach to generalization is different from those commonly found in Al, where gen-
eralization is often considered as a way of inducing knowledge from “training” instances (see,
e.g., [11]). But induction has long been criticized as a logically unsafe inference, notably by
David Hume. One common way to circumvent this problem is to search for least general gen-
eralizations (lgg), as in anti-unification which has been studied in many languages, see [7, 1].
In particular in [12] anti-unification in the Calculus of Constructions is a way of generalizing
proofs. However, the lgg of two objects that have nothing in common necessarily exceeds the
limits of sense. We believe that the only way generalization can be logically safe is to constrain
it with what Mitchell calls prior knowledge® in [11]. The constraint X together with the pattern
P can thus be seen as this prior knowledge that defines the reasonable limits that generalization
is not allowed to cross.

As our constraints are equational this problem is closely related to second order unification,
a well studied problem [4]. However, the fact that we are given a solution 6 of X means that
X is satisfiable. This is an important restriction since satisfiability of second order unification
problems is undecidable [6]. Second order unification problems usually do not have a most
general unifier (mgu), which leaves room for many different generalization of a given unifier.
This naturally leads to the unification algorithm in [9] which, unlike the one in [8], produces a
complete set of unifiers of a higher order unification problem. Completeness here means that
any unifier is an instance of one that can provably be produced by finite applications of their
unification rules. This proof of completeness is constructive, and its algorithmic content is
therefore a cga.

After more or less standard notations and definitions are fixed in Section 2, the rules for the
two algorithms are presented in Section 3, together with a general framework in which their
properties are obtained. The two algorithms are then compared, on the most simple forms
of constraints in Section 4, and on general constraints in Section 5, where a difficult result of
projectivity is obtained, though only for one algorithm.

1“Developing general methods for combining prior knowledge effectively with training data to constrain
learning is a significant open problem”.

65

Properties of Constrained Generalization Algorithms Boy de la Tour

2 Notations and Basic Definitions

Sequences of objects (variables, terms...) will be denoted as vectors: Z, is the sequence
1+ Zp. We may omit the length n, which may still be 0. We then write Z,, for the
set {x1,...,2,}, and consistently @ for {1,...,n}. If i € @ then Z\; denotes the sequence
X1 Xim1Xiq1 - Tp. If necessary, elements of a sequence are (implicitly) separated by com-
mas, e.g., f(53) stands for f(s1,s2).

We use the usual notion of simple types, and we inductively define 7, — p as p if n =0
and 7,-1 — (1, — p) if n > 0. Every type of order 1 or 2 can be written 7,, — p where p and
the 7, are basic types; n is then the arity of this type. We assume a set V of variables such
that each comes with a type of order 1 or 2, and there is an infinite supply of variables of each
type. Well-typed terms are built as usual on variables with application s(t) and abstraction
Az.t., and FV(¢) is the set of free variables occurring in ¢t. The arity a(t) and order of a term ¢
is that of its type; we consider terms of order at most 2. Assuming s has arity at least n and

t, have correct types, we write s(t1,...,t,) or simply s(f,) for s if n = 0 and for s(£,_1)(t,)
if n > 0. We write AZ,,.t. for t if n = 0 and for AZ,,_1.\z,.t.. if n > 0. Every term can be

written A@.s(7)., where s is not an application; then 7 is the prefir, s(7) the matriz and s
the head of this term; if the head is some ; then (7 is empty) the term is a projection. We
assume silent a-conversion, i.e., the prefix is not determined by the term but suitably chosen?
depending on the context, and the matrix is determined by this choice.

Substitutions ¢ and their domains Dom(o) and free variables FV (o) are as usual. We
write [t1/f1,...,tn /fn] for the substitution o such that Vi € m,0(f;) = ¢; and Dom(c) <
{f1,.--, fn} (hence [] is the identity of V). By permutation we will always mean a type-
preserving permutation of V, which is of course a substitution.

It is well known [5, 13] that S-reduction Az.s.(t) —g s[t/x] (resp. with n-reduction
Ax.t(z). —, tif @ ¢ FV(t), resp. with n-expansion, i.e., reversed n-reduction) are normal-
izing, yielding the 8 (resp. short, resp. long) normal form, or Onf (resp. snf, resp. Inf).
We write s ~ t when s and ¢ have the same snf (or Inf, equivalently), and similarly o ~ 6 if
o(f) ~ 0(f) for all f € V. The head of a fnf must be a variable. to is defined as the fnf
of the term obtained by replacing every f € FV(t) by o(f), and similarly for 8. Note that
Az.t.o = Ax.to. always holds since by silent a-conversion z is chosen such that « ¢ FV (o), mak-
ing captures impossible. We assume that substitutions o verify® Dom(c) = {f € V | fo % f}.
For any V € V we write o ~ §[V] if fo ~ f6 for all f € V. We write s < t (resp. o < 0)
if there is a substitution 0 such that s >~ td (resp. o ~ 69), and say that s (resp. o) is more
general than ¢ (resp. 0) and that ¢ is an instance of s. o is a variant of 6 if Dom(c) = Dom(0)
and there is a permutation 7 such that o ~ 7[Dom(c)].

An equation £ is a directed pair s = t of terms of the same type, and &€ = T iff s ~ ¢.
Equations are implicitly converted to Inf. £ is so = to, a constraint X is a conjunction of
equations (possibly the empty conjunction T), and o is a solution of X if Xo=T.

Two terms 7,7 have a common image if there exist terms 8, ¢ such that 7(3) ~ /(7).
For any term s and 7 € IN, let @ be a prefix of its Inf and r the corresponding matrix, then
|s]; is the number of occurrences of u; in r (0 if ¢ > a(s)). Then s is i-constant if i € a(s) and
|s|; = 0, s is free if |s|; = 1 for all j € a(s), and s is affine if Vj € a(s), |s|; < 1. Note that if s
is i-constant than so is so.

2We may use de Bruijn indices [3] as a formal way of representing such terms, and then see bound variables
as a convenient metanotation. We use distinct names for bound variables, e.g., u,v to mean that the chosen
variables must be distinct, i.e., u # v. In contrast, free variables f, g may be equal.

3We may need to compute the snf of fo for all f € Dom(c) to ensure this, which we do implicitly. In fact,
throughout the paper anytime we need a snf or a Inf we implicitly assume that it is computed as required.

66

Properties of Constrained Generalization Algorithms Boy de la Tour

3 Constrained Generalization Algorithms

The algorithms for generalizing 6 w.r.t. a constraint X work by successive transformations
of triples, starting with (X, [1,6) and refining the first two components until some {T,c,8")
is reached, where 6’ is an extension of the initial 6 to new variables, and o is a new solution
of X that is maintained more general than 6. A refinement step on a triple (X, c,0) selects
an equation £ in X, and depending on £ and 6 applies a rule that yields a new constraint)
replacing € in X (by abuse of notation we denote X[Y /€] the result of this replacement), a
substitution § for refining both the constraint and o, and a substitution ¢ that provides correct
values for the new variables introduced by d; the next triple is therefore (X' [Y /€16, 00, O¢).
The relation between a triple and the next one is usually non deterministic, if only for the
choice of £ and of new variables. More formally:

Definition 1. For all [€ IN, an [-run of the algorithm R on X, 0 consists of a sequence of
1+ 1 configurations ((Xy, oy, 0))Lt}, and a sequence R, of rules of R, verifying: (X1,01,6;) =
(X, [1,0) and for all k € [, Ry, is applied to some equation & in X} and to 6, which yields new
equations)y and substitutions §; and ey, and (X411, 0%+1,0k+1) = (X [Vi /EL1 Ok, 010k, Ol -
If X411 = T the run is complete and its result is the restriction « of o;11 to FV(X); then (and
only if such a run exists) we say that the relation § Ry v holds.

Before we start defining the formal properties that these rules should obey for the relation
R to be a cga, we first illustrate the previous notions by providing the rules of our two cgas and
examples of runs. Each rule below is specified by a pattern for £, a condition on the symbols
extracted from £ and on 6, and the resulting), § and . For sake of conciseness we only provide
Y if it is different from &, ¢ and ¢ if they are different from [] (note that 6 = [] entails ¢ = [],
hence if only one substitution is provided it must be §). When the pattern together with the
condition is not symmetric w.r.t. the left and right hand sides, i.e., if there exist s,t,6 such
that the rule applies to s = ¢, 6 but not to ¢ = s, 8, then we also assume (implicitly) a reversed
version of the rule, and the rule is the union of the two asymmetric subcases, e.g., the imitation
rule below applies if € matches AZ.f(F). = AZ.g(tn). or AT .g(tn). = AT.f(F)..

All the variables in FV(§)\FV(E) are considered as new variables. We do not simply mean
new w.r.t. the current triple (X, o,0) (i.e. disjoint from FV(X), FV (o) and FV(0)) but also
w.r.t. the previous triples in the run so far and to previous runs. This profligacy is necessary
for avoiding interactions when we consider successive runs (Section 5). The types of these new
variables is obvious from those in £ and 6.

The identification rule below requires notions that correspond to agreement cap and oppo-
nent pairs in [9], that we restrict to second order and to simple comparison forms, i.e., to affine
terms. It is obvious that if two terms s,t have a common image and none is a projection then s
and ¢ have at least a common head. The following function separates the part that is common
to s and ¢ from their differences.

Definition 2. Let s,t be two affine terms in Inf with a common image, given fixed sequences
of free variables 7), 7 of respective length a(t), a(s), we define Z(s,t) inductively as follows:

o« DT F(&)NT(E2).) = (). Ty pi) i Vi €1, G pi) = PN 50, AT 1),

o V(AT .., t) =u;, [t/g:]) if u; e,

o P(s,AT.vj.) =v;, [s/f;1)if v; € ¥ and s is not a projection.

When computing {r, p) = Z(s,t) it is clear that each variable f; or g; enters p at most once

per occurence of v; or u;, hence indeed at most once, which makes p a substitution.

67

Properties of Constrained Generalization Algorithms Boy de la Tour

Example 3. Let s = Aujuz.f(g(ug),u1). and t = Avy. f(v1, g(x)). where a(z) = 0, a(g) = 1 and
a(f) = 2, hence s and ¢ are in Inf and a(s) = 2, a(t) = 1, hence we are given new variables f1, g1
and g>. They have a common image since s(g(z),z) ~ f(g(z),g(x)) ~ t(g(z)). Computing
P(s,t) decomposes into computing Z(Aujus.g(us)., Avy.v1.) = {v1, [Aujus.g(usz)./f11) and
D(Aujug.ug., Ay.g(x).) = {ug, [Av1.g(x). /g11), hence the result is {f(v1,u1),p)y where p =
[Mujug.g(us). /f1, Avi.g(x). /g1]. Now, if we let ¢ = [Aujugvy.f(v1,u1). /h] p then we see that
Augug.h(ug, ug, f1(ur,us)).c >~ s and Avi.h(g1(v1),g2(v1),v1).€ = t.

The first algorithm JP is defined by the six following rules. The five last rules correspond
to the five unification rules in [9] and their conditions from the proof of completeness of these
unification rules. Contrary to [9] we only apply these rules to the head symbols in the equations,
hence we need a decomposition rule.

o Free decomposition rule: if f@ is free* then

Fdcp

AT f(30). = AT f(Tn). — NI, AT 5. = ATt

Elimination rule: if f0 ~ A% .r. is i-constant then

AT f(57). = AT f(5). 222 [AT.h(@)). /f1, [Na.r. /h]

Projection rule: if f6 is a projection then A\@.f(3). =t — [£0/f]

Imitation rule: if f # g ~ gf and f0 ~ AW .g(7,,). then

NTf(R). = AT g(ln). —=5 INTg(f1(T), -, fon(@))- /1, TTIy [NT 1y /5]

Repetition rule: if f6 ~ A\u,,.r., u; occurs at least twice in 7 and r’ is obtained from r by
replacing one occurence of u; by u,1 then

AT f(R). = t =25 DATLA(@, wi). /f1, (NGt /h]

e Identification rule: if f0 % f # g # g0, f6 and g0 are affine and non projective, and
(r,p) = 2(£0, 96) then

AT f(5) = AT g(ln). 5 DNTR(T, (D), fn(T)). /1,
AT (g (T),...,90(T), 7). /9], [ATT.r./h]p

Example 4. We start with 0 = [Au.d(u,a)./f, Au.d(u,a)./g, a/z, a/yl on the following
constraint:

k X)C Rk 5k €k
1 f(z) = g(y) Et—f» [Au.hi(u, fi(w))./f, A.hi(g1(v),v). /9] [Auwv.d(u,a)./h1, Av.v. /g1]
2 hi(z, f1(2) = ha(g1(y), v) 222 [Auiug.ha(ur). /Al [Auw.d(u, a). /hal
3 ha(2) = ha(g1(y)) —2»
4 z = g1(y) 2o, [Av.v. /g1l
5 T =1y BLEN [z/z, z /y] [a/z]
. Fdcp
6 z=2z il N
7 T

4Note that f may be bound, i.e., f be some x; and then f0 = z; is free, and n = 0.

68

Properties of Constrained Generalization Algorithms Boy de la Tour

Hence o7 = 01020405 and we obtain v by computing fo7, go7, xo; and yoy, which yields
71 = [Au.ho(u). /f, Mu.ha(u). /g, z/z, z/y]l. It is easy to see that there is no other complete

run than this one, hence that the result is unique up to variants, i.e., up to the chosen new

variables. This is not always the case: both Fdp, and 22, apply to f(z) = f(z) when

f0 = Az.x., leading to non variant results (the rules above are not confluent w.r.t. variance).

Note that in a complete run of this algorithm the last rule R; that produces T can only

F . .
e 4(193, hence ¢, = ¢; = [] and therefore 0,11 = 0;. We also see that, in all these rules if

f € Dom(d) then f0 % f, i.e., if we start with f ¢ Dom(f) then we terminate with f ¢ Dom(o),
which means that f behaves like a constant.

The second generalization algorithm BP is defined by the next four rules. It corresponds to
the rules given in [2] though simplified mostly by the absence of constants and of restrictions
on the types of new variables. The idea is to avoid using 6 if possible, or to use either the
equalities present in 6 (though they may not be entailed by X') or the values provided by 6 (but
only through shallow copies).

e Dependent decomposition rule’: if f ~ g6 and Vi € 7, AT .5;.0 ~ A 7@ .t;.0 then
AT F(5). = AT g(En). 22 A" AT s = AT L., [f /9]

e Projection rule: as above.

e Replacement rule: if f ¢ FV(AT.t.) then \7.f(T). = AT .t. Zple, T, [A7Tt./f]

e Copy rule: if f0 ~ A@W.g(7,). is not a projection and 7,, # W then

AT f(F). =t S (AR A(A(R), ... fo(@))./f1, Tg/BI 10y (AT 7. /f]

Example 5. We start with the same 6 and constraint as in Example 4.

k X Ry 5k ek

1 F(@) = g(y) SOPY, [hwhy (f1(w), f2(w). /1 [d/h1, Adwaw. [f1, Au.a. /fa]
2 hi(fi(2), f2(2)) = g(y) ﬁi‘%uu.m(gl(u),gz(u))./gl [d/h2, M. /g1, Au.a. /ga]
3 hi(fi(2), f2(2)) = ha(g1(y), 92(y))—=> [hi /h2]

4 fi(z) = g1(y) A f2(x) = g2(y) RACIN [Au.u./g1]

5 H@) =y A fal@) = g2(y) 2% [f1() /4]

6 f2(@) = g2(f1(2)) Sopy, [Au.z. /f2] La/z]

7 z= 92T<f1 (2)) Ze, Lo2(f1(2)) /2]

Hence 7o = [Awhi(f1(w), g2 (f1(2))). /f, Awha(u, g2(w)). /g, f1(x) /y]. Tt is possible to apply

Lro), differently on X (with the projection f164), or to apply the rule 4P cither on fi(x) =

g91(y) (since f104 = g104 and 204 = yby) or to fo(x) = g2(y) (since foby = g264) or at the start.
The reader may check that these choices and others lead to many different generalizations.

We see that the two algorithms behave very differently, but before we start comparing their
performances w.r.t. generalization, we need to make sure that they are indeed cgas. We first
develop a general result in this direction.

5Again f or g may be bound, then n = 0 and f = g, hence [f/g] = [1.

69

Properties of Constrained Generalization Algorithms Boy de la Tour

Definition 6. Y, §,¢ are well-formed w.r.t. £ if FV(Y) < FV(€), §%2 = 6, Dom(d) < FV(€)

and Dom(e) € FV(§)\FV(E). A rule R is correct if, whenever £, 0 £, y.5,¢ holds, then Y, 6, ¢
are well-formed w.r.t. £, €0 = T entails both Y8 = T and 00 ~ 6[Dom(6)], and for all v = §,
Yv =T entails Ev = T. A set of rules is complete if every incomplete run can be extended.

Note that the conditions of correctness are only required if the rule applies, i.e., if the
condition for applying the rule holds. However, the conditions of wellformedness are usually
purely syntactic and, for all the rules above, do not depend on the condition for applying each
rule. Remember that when a rule is applied the elements of FV(§)\FV(E) are always new.

Lemma 7. If the rules of algorithm R are correct then for all X,0 and k € IN such that
X0 =T, every k-run of R on X, 0 verifies op410p+1 ~ O[FV(X)], Xk110k+1 = T and for all
VR Og1, Xpp1y =T entails Xy=T.

Proof. By induction on k. For k = 0 this is trivial since 01 = [1,0; = fand X} = X. Let k > 1
and assume as induction hypothesis (i.h.) that the property holds for k — 1, hence X0, = T,
and in particular £ = T, which entails Y0, = T and §0xer ~ 0 [Dom(dy)].

We first prove that e = ej. Let f € Dom(ey), then f is a new variable and f € FV(dy) but
f ¢ Dom(dg), hence there is a g € Dom(dy) such that f € FV(gdy). But gorbrer ~ g6 and
fOrer, = fex, hence FV(fe) € FV(gor0rer) = FV(g0;). Thus for all f € Dom(ey), we have
FV(fex) € FV(0y), which is disjoint from Dom(ey), hence €2 = ey.

This brings §x0ke = Ox0kes ~ Ore[Dom(dg)], hence obviously 8x0xey ~ Oxey, and therefore
Ok+10k+1 = OpOKOker ~ orOker. But again Dom(eg) is disjoint from FV(oy), FV(0;) and
FV(X), hence O’kakfik = O’kak[FV(X)] By i.h. O'kak =~ Q[FV(X)], hence Uk+10k+1 ~ Q[FV(X)]

Then we also have Xk+19k+1 = X;g [yk /5k:| 6k9k5k ot Xk [yk /Ek]ek&‘;@ =T.

To complete the last step, we need two preliminary results. We first prove that for all
j € k, FV(X;) n Dom(c;) = &, by induction on j. It is obvious for j = 1 as o7 = [1. We
now assume that FV(X;) n Dom(o;) = . For all f € V, if f € Dom(dy), since 5?» = 0
then FV(fd;) n Dom(d;) = &, which is also true if f ¢ Dom(d;). Let X' = X;[); /&1,
as Xj;1 = X’0; then FV(X;41) n Dom(d;) = . Since FV(Y;) < FV(&;) then FV(X') <
FV(X]‘), hence FV(Xj+1) < FV(Xjéj) - FV(XJ) U FV(éj) = FV(XJ) U (FV(5])\FV(5J)) since
FV(&;) < FV(&;). This last set contains only new variables, hence none in common with
Dom(c;), hence FV(X;;1) n Dom(o;) = . But Dom(o;+1) < Dom(s;) u Dom(d;), hence
FV(.)C'j+1) (@) DOHI(O'j+1) = @

We next prove that 0010 = 00;. By the previous result we have Dom(o;) nFV (X&) = .
But FV(0;) n FV (&) € FV(XL) and FV(6;)\FV (&) is also disjoint from Dom(oy), hence so
is FV(dx). Now, for all f € V, if f € Dom(dy) then f ¢ Dom(oy) hence fordr = fdr, and
FV(fér) < FV(dx) hence foroi0, = f62 = fOk. Of course if f ¢ Dom(8) then forord) =
fordr, and we have proved that §rop0r = op0k.

Finally, for all ¥ 2 ox11 = 040 such that T = X117 = X [Vi /Ex]1 0k, then in particular
Vidpy = T hence &0y = T, and therefore Xidry = T. But there exists a p such that
v = o0k, hence Xy = XporoKkp = Xpordrp = Xyy. Since obviously v 2 o then by i.h.
we obtain X+ = T, which completes the induction. O

The following general result will be useful to prove Lemma 17, a property specific to JP.
Corollary 8. For any l-tun of R, kel and f € FV(&y), fox -6 < fO.

Proof. We have established above that 0x0ker ~ Orer, thus opbkeg---ep ~ Opey -, le,
5k9l+1 ~ 91+1 for all k € l, hence 6k cee 519[+1 >~ 91+1 o~ Hk[FV(Xk)] O

70

Properties of Constrained Generalization Algorithms Boy de la Tour

Theorem 9. If the rules of R are correct, complete and terminating then R is a cga.

Proof. Let 6 such that X0 = T. By completeness and termination every run of Ry on 6 can
be extended to a complete [-run for some [€ IN, hence there is a v such that 6 Ry . Besides,
for all such ~, by Definition 1 there is a complete I-run of R on X, 8 for some [€ IN, that ends
in {(Xj41,0141,0141) where Xj11 = T and v = 0;41[FV(X)]. Tt is obvious that o;41 < 0741
and Xjy10;41 = T, which by Lemma 7 entails Xo;11 = T and hence Xy = T. We also have
o1+10141 ~ O[FV(X)], hence v < 6. O

Note that this result is not restricted to second order languages. We can now apply it.
Theorem 10. JP and BP are cgas.

Proof. We leave it to the reader to check that all the rules presented above are correct, which

is straightforward (for ﬂ, see Example 3).
We now prove that the rules of JP are complete. Assume X # T, hence there is an equation

£ in X of the form AZ.f(5). = AZ.g(tm).. If f = g then n = m and either f is free and

Fdep, applies, or there is a ¢ such that f9 is i-constant and —2 applies. Otherwise f # g, and

if one of f#, g0 is a projection then Lrol, applies. If one of f,g, say g, is invariant by 6 then
since £0 = T (by Lemma 7) the head of f6 must be g hence Lmit, applies. If one of f6, g6, say
f0, is not affine then there is a ¢ such that |f6|; > 2 and Rept, applies. Otherwise f, g are not
invariant by 6, f6, g6 are affine and non projective hence rule 1ddf, applies.

Similarly we prove that the rules of BP are complete. Assume an equation £ in X of the
form \7.f(s5). = A?g(ﬁ:) If one of f6, g0 is a projection then Lrol, applies. Otherwise if
one on f6, gf’s snf is not a variable then Sopy, applies. Otherwise f6 and gf’s snf are variables,
and since £0 = T they must be the same variable, hence ff ~ gf and n = m. But variables

are free terms, hence £0 = T entails Vi € I, AT .s;.0 ~ AT .t;.0, hence Ddep, applies®.
To prove termination we define suitable well-orderings on the set of configurations (X, o, 6.
We write [|t| for the (standard) length of the matrix of ¢, ||s = ¢| for ||s|| + [¢t]| and |X| for

Deex €] For JP we need the lexicographic extension of < on IN, with three components. The

first is 3. repy () [f0)l; which strictly decreases by rules Proj, Imit, = Idif (

head of f0, g6 is counted only once in he) and does not increase by the other rules. The second
is 2 rerva) Z (\f@b ~ 1) (where k — 1 = max(0, k — 1)), which strictly decreases by ——> Rept,

(because a counted occurrence of u; is replaced by an uncounted occurrence of un+1) and does
Fdcp
ki N

because the common

not increase by o and —°®,. The last is | X|| which strictly decreases by B, and
Hence the set of rules of JP termlnateb.

For BP we need two components. The first is [V| + 23 tcpyayy [/6] where V' is the set
of f € FV(X) such that the snf of f6 is a variable; it strictly decreases by rules m, m’
Cory, (because the twice counted head g of f0 ¢ V is counted only once in he = g € V) and
does not increase by Ddep, (because € = [1). The second is ||X'| which strictly decreases by

Ddcp . .
— hence this set of rules terminates. O

6Note that Bele, has not been used. It is therefore easy to see that, by removing the conditions (on 6) and ¢

Ddc P Co
from P R roj and —2 , we get three rules that are complete for second order unification. This somehow

reverses the process by which we obtained the algorithm JP from the proof of completeness of the second order
unification rules in [9].

71

Properties of Constrained Generalization Algorithms Boy de la Tour

4 Loose and First Order Generalizations

Definition 11. An algorithm R has the loose generalization property if for any constraint X
such that X = T and any substitution 6, we have § Ry [1.

Note that [] is the most general solution of any valid constraint.
Theorem 12. The algorithm BP has the loose generalization property.

Proof. We start with o7 = []. If there is an equation £ in X = T, then £ = T and as both sides

are in Inf then €& must be of the form A7 .f(5;). = AZ.f(5,)., and for any 6 the rule Ddep,
applies and yields 6 = [] and a new constraint X[A]_, AT.s;. = AT.s;. /E] = T. Hence by a
trivial induction the algorithm terminates with ;.1 = 61 ---9; = [1, and we get § BPy [1. O

In contrast, JP does not have the loose generalization property, as is easily proven by taking
AT3.f(T3). = \T3.f(T3). for X and 0 = [A\Z3.21. /f]. As f0 is not free then we can only apply

rule 5, or rule 2%, to X, and both yield a ¢ # [].

It is not reasonable to expect that a generalization algorithm could reach a most general
solution whenever there is one. However, we may think that it should be able to emulate the
generalizing power of first order unification by finding a mgu in this case, which we first need
to characterize.

Definition 13. A first order constraint is a constraint in which no abstraction occurs. A
substitution @ is first order if a(Dom(#)) < {0}.

Theorem 14. For any Re {JP,BP}, first order constraint X and first order solution 6 of X,
there is a mgu v of X such that 0 Ry .

Proof. Obvious for BP y; under our hypotheses the rule DAP, ibsumes the standard decompo-
sition rule of first order unification f(5;) = f(55) — /i, s = t; (it also applies to equations

x =y, yielding 6 = [z /y], hence removes the equations z =) and the rule Bple 5 the stan-
dard replacement rule x =t — T, [t /2] if ¢ FV(t), and these rules are known to produce a
mgu.

The rule ~2P, corresponds to standard decomposition and to the elimination of equations

z = 2. The rule 2% reduces to z = y — [z/z,yl, [20 /2] if ¢ # y, and the rule 1mit, o
z = g(tm) — [g(Zm) /2], [t;0 /217, (together with the symmetric version on g(f,) =).
The standard replacement rule clearly derives from these rules (albeit with a harmless renaming
of variables, see [10, Theorem 3.13]), hence JPx also produces a mgu. O

5 Weak Projectivity

Comparing the generalizing power of two cgas is a difficult task. Even if we were able to prove
that a cga R always yields a more general solution than R’ this would not rule out R’ as
useless since, the composition of two cgas (on the same constraint X') being a cga, it may still
be the case that R'% (or some other combination of the two cgas, e.g., R/x o R yields better
solutions than Ry or even R%. On a first approach we may try to compare R3 with Ry,
independently of R’. Of course this is made more complex by the non deterministic nature of
cgas.

72

Properties of Constrained Generalization Algorithms Boy de la Tour

Definition 15. A relation R is weakly projective if for any 6,0 such that § R o there is a
variant ¢’ of o such that o R o’.

In general this will mean that if we apply a strategy to get a unique generalization, hence
turning the non deterministic relation into a function, then this function is a projection (w.r.t.
variants): one run of the algorithm exhausts its generalizing power. We now prove that this
is indeed the case of JPy for any constraint X. We therefore assume a complete I-run of the
algorithm JP on X, as in Definition 1. We first prove a lemma concerning the shape of the
obtained generalization . We will use the equation:

INT.f(5m).0l; = Y | foli [NT.si.0]; (1)
i=1

which is obvious since for each i € 7 the bound variable u; has |[A@.s;.0|; occurrences in the
Inf of s;0, which has |fo|; occurrences in the Inf of f(5,7)0 = fo(sio,...,5m0).

Lemma 16. For allkel+1, ee FV(Xy) and j € a(e), |edy - - - 01]; < |ebl;

Proof. We proceed by descending induction on k. The base case k = [+ 1 is trivial since
FV(X4+1) = . We now assume that the property holds on &k + 1 for some k € [, we let

e € FV(X), § = dk11---01, j € a(e) and examine the different possibilities for Ry. First, we

see that el 1 = efrer, = efy since Dom(er) N FV(X,) = . For every rule but Fdp, e

have Xj41 = Aydk, hence if e ¢ Dom(dy) then e € FV(Xj;11) hence by i.h. |edpd]; = |ed]; <
|efk+1]; = |ebk|;. For these rules there only remains to examine the case e € Dom(dy).

o If Ry, is 2, then & is some AZ.f(F). = \Z.f(F). where 0y, is free, hence | f0x|; > 1.
If e = fand f ¢ FV(Xit1) then e ¢ Dom(d,0) hence |edid]; = |e; = 1 < |ebgl;.
Otherwise, either e = f and e € FV(X;41), or e # f and since the terms 5, ¢ occur in
Yk, it is clear that e € FV(Xj11) again, and since Dom(dy) = J then e ¢ Dom(dy) and
we can proceed by i.h. as above.

o If Ry is 222 we assume e € Dom(J;) hence & is some A7.e(5). = AT .e(%,). where

el ~ A\ .r. is i-constant, o, = [AW.h(w;). /e], e = [Aw;.r. /h] and Xy = Xpdy. If
i = j then ey = AW .h(w;). is j-constant hence |edyd[; = 0. If j < i (vesp. i < j) u; is the
j (vesp. (j—1)™) prefix variable of Aw;.7. hence |h0j11|; = [Aw.r.|; = AT .1.]; = |efy];
(resp. |hOk41]j—1 = |ebk|;) and since f € FV(Xy) then h € FV(Xy41), so by i.h. |hd]; <
|hOk+1|; (vesp. |hd|;—1 < |hB41|j—1). But uj occurs only as the j™ (resp. (j — 1))
argument of i in h(W;) hence |edxd|; = |[ANT.h(w;).0]; = |hd|; < [hOy1|; = |edr|; (vesp.
|edk|; = [hdlj—1 < |hbrsrlj—1 = |ebrl;)-

o If Ry is Imit i hen & is some AT .e(5,). =)\T’.g(tT,:). where e # g ~ g0 and ef ~
AT .g(Tm)., b = ATW.g(f1(T),..., fm(TW)). and for all i € m, fiOkr1 = fier = A\W.r;..
Furthermore e € FV(X};) entails f; € FV(Xjy41), hence by i.h. |f;id|; <|fifk+1];. Now by
(1) we get |edrd]; = 257, |9d]:| AT fi().8];, but [gd]; = [g; = 1 and again by (1)

N fi(@).81; =), 1fi8la|NT g 85 = D 1 filg| AT g |y = |£id);,

qg=1 g=1
hence |ed,0]; = Y00 [fid]; < vy | fifk41];. And yet again by (1)
leOkl; = INTg(Fm)-l; = D [ghINT iy = Y [fibkarl; > ledid];.
i=1 i=1

73

Properties of Constrained Generalization Algorithms Boy de la Tour

Proj Rept Idtf
and

The cases , are similar. O

Hence for all f € FV(X) we have |fvy|; < |f6|;, which reveals a limit to the generalizing
power of JP. Example 5 shows that this property is not true of BP, as |gy2]1 = 2 > |g0)]1.

Next we prove that the first run can be mimicked by a second, parallel one. The difficulty
is to prove that the condition for applying a rule on an equation is still valid, although we have
changed 6 to v. Another difficulty is that this second run also introduces new variables, and
we have to shift (by means of a permutation) from the new variables of the first run to those of
the second run. In particular, new variables that behave like constants, i.e., that are fixpoints
of 0;, should correspond in both runs since this has an influence on the conditions of rules Lmit,

Idf
and —.

Lemma 17. Let v be the result of the first run of JPx on 0, then for all k € 1 + 1 there is
a (k—1)-run of JPx on vy that ends on {(Xymy, 0}, 0, where my, is a permutation between the
new variables of both runs so far, such that mpo), = opmE, TR0}, ~ O - - §[FV (X)) n Dom(6y)]
and FV(Xy) n Dom(6;,)m, " < Dom(6y).

Proof. By induction on k. For k = 1 we take m; = [1, hence (Xy71,07,0]) = (X, [1,7) is the
end of a 0-run of JPy on 7, and the required properties are met by definition of v and 6.

We now assume the property for k € I. We refer to the objects defined by this (k — 1)-
run by priming the metavariables of the first run, in particular we have o}, = 07 ---0;_; and
0, = vel---e,_y. Epmp is an equation in Xjpmg; we first prove that the rule Ry applies to
Exmy, 0, which yields new equations V7 and substitutions dj, ¢}, from which we define a
suitable permutation 7 that commutes with 7, and such that together with 741 = w7 verify
the following three properties: my410), = dxTr41, TE}, = Opt1 - - - §;[Dom(ex)] and Dom(ey)m =
Dom(e},). We let 6 = dx11---; and we examine the different possibilities for Ry.

o If Ry, is —L5 then & is some AZ.f(F). = AZ.f(T). where f6), is free, hence for all
i € a(f), [0 is not i-constant and since it is an instance of fd;0 then f§;0 is not i-constant.
If f ¢ Dom(6;) then by ih. f ¢ Dom(6,)7} ', hence fmy8) = fmy is free; otherwise by

ih. fmp, ~ ford is also free. FAP - can therefore be applied to Exmy,), yielding

0, = [1 =6 and €}, = [1 = ey; we then let 7 = []. Since Dom(ey) = Dom(e},) = &, the
three properties are trivial.

o If Ry is 222, then & is some AT .f(5,). = \T.f(%,). where f6) ~ AT .r. is i-constant,
S = [NW.A(E). /f] and e = [A@gr/h]. By ih. fmf ~ fd = AT .hi(w).

which is obviously i-constant hence Elim, - can be applied on &ymy, 0), yielding 6, =
LA R (W), /fmi], and g), = [Aw;.hé(w;). /h'] ~ [hé /AT, where h' is new also w.r.t.
the first run, hence m = (h ') commutes with 7. We then easily check that dpmgy1 =
T AT N (w;). /fI1m, = 7m LT (0G). /fre] = 7rga1dy, that mey, ~ [hd /h,h /W] =
0[Dom(ey)] and that Dom(eg)m = {h}m = {h'} = Dom(e},).

o If R, is o), then & is some AT.f(S). = t where f0; is a projection AW .u;. hence
0 = [AW.u;./f] and e, = [1. By ih. fmpf), ~ ford = A% .u;. is a projection hence

Prol, can be applied to &y, 0}, and yields 0;, = [A T .u,. /fm,] and €}, = [1. We see that

O,y = w0}, hence that the three properties hold with = = [J.
o If Ry is “™% then & is some AT.f(5;). = A@.g(L,). where f # g ~ gf), and &), =
(AT .g(fi(@),..., fm(®@))./f1, Dom(er) = {fi1,..., fm}. Then fmy # gm and gm0, =

74

Properties of Constrained Generalization Algorithms Boy de la Tour

gy, since g ¢ Dom(6) hence gmy, ¢ Dom(6;,). Thus it applies to Epm, 0}, and yields
op = AT .g(f1(2),.... [1,(0))./fm] and g = [AW.fi6(). /filiZy = [fid /fi1iZ,
since by i.h. fmp0 ~ ford = AW.g(f10(W),..., fmd(W)).. The f’s are new so that
m = (f; f1), commutes with 7y, hence dymp1 = 7 (AT .g(f1(T),..., fl.(@))./flm, =
The10;, mey, = [fid /fi, fi /{121 = 6[Dom(ey)] and Dom(ex)m ={f1, ..., f;,} = Dom(e).

o If Ry is Rept then Er is some AT . f(5,). = t where fO; ~ A\w,.r. with | f0;|; = 2, and then
0 = [Muy.h(uy,u;). /f1, Dom(eg) = {h} and hfy1 = Aa,11.77. as in the definition of
the rule, so that |hOyi1|; = |fOk]: —1 = 1 and |hbg41|n+1 = 1. Since hfj41 is an instance
of hd (by Corollary 8 and Theorem 9) then |hd|; = 1 and |hd|,,+1 = 1, but by i.h. and (1)
|f71'k0;€‘,’ = ‘f5k5|z = Z?:l |h5\]\)\ﬂ’u]|z + |h5|n+1\)\7uz|1 = |h5|z + ‘h5|n+1 > 2 hence

B, can be applied to Emy, 0. We write hd = Aingi.d'. and d = d’[u; /tni1], then

[l =~ ford = Auy.hé(T,u;). = Mup.d. and d' can be obtained from d by replacing

. . Rept .
one occurence of u; by un41, hence an application of —— on &y, 8, does yield 6,

CAu, A (Wn, u). /fre] and €f, = [Aap1.d./R'] ~ [hé/W]. Let 1 = (h k'), as
and h' are new variables then 7 and 7 commute, dxmrpr1 = [Aun.h(Tn,w;). /flrmg
TG, W (T, w;). /f1me = mme [LA@, B (T, ;). /frg] = mpady, mey, =~ [hd /h,h /B]
d[Dom(ex)] and Dom(eg)m = {h'} = Dom(e},).

=

o If Ry, is 2% then &, is some AT.f(57). = AT .g(t). where f0, 2 f # g % g0k, fOr
and g6 are affine and non projective; let s = AW.h(W, f1(W),..., fm(W)). and t =
AT (g1 (T),...,gn(7), 7). so that d; = [s/f,t/g], and we also have h € Dom(e;) <
{hyfi,.. .. fm,91,--.,gn}. By ih. fmb), ~ fér0 which cannot be projective since its
instance f6) is not projective. By definition hey = hfri1 and the f;jfr11’s are non
projective hence similarly hd and the f;6’s are non projective. The head e of hd must
therefore be introduced by some 0y for & > k. If Ry is the imitation rule then ey = e,
otherwise e is a new symbol, hence in all cases we have ¢ # f. As h is the head of foy
then e is the head of fd;0 hence fd,0 % f. Since f0y, is affine then for all i € a(f) we have
|fOk|: < 1, hence by Lemma 16 |fdxd|; < 1, i.e., fod is affine. Similarly we prove that

gm0;, is non projective, different from g and affine, hence the rule 144 can be applied
on &m0y, yielding 8, = [§'/fmg,t' /gmi] where s = AW.A (W, fi(@),..., fl,(T)).
and £ = NTH(G(P)s- ., gh (), T Let 7 = (b KYITy (5) T (9 91) and
g, = [AXTT . /W]1p where (', p) = D(fmib),, gmib),) = PD(s6,t6). As above m and
7 commute and Opmr1 = [s/f,t/glamy = wls' /f,t' Jglmp = mmp 8" [frp,t' Jgme] =
7Tk+15;§-

We now write hd = AW 7T.d. and prove that v’ = d. It is clear that the matrices of
s6 and td (the left and right arguments of &) are both instances of d, and that they
differ exactly at the positions of the bound variables in d since these are instantiated
by different terms on each side, i.e., u; # ¢;0(7) and f;06(@) # v; (we always assume
T =). If during the computation a variable u; is encountered on the left, as the
f;0’s are non projective then it must be at the position of u; in d, and then w; enters
" and [AT.g;0(7)./g;] ~ [g:0/g;] enters p. Otherwise v; is encountered on the right
while the left is not u;; hence it must be at the position of v; in d and then v; enters r’
(since f;0 is non projective) and [f;6/f;1 enters p. Hence r’ = d, but this also shows
that u; (vesp. v;) occurs in d iff g € Dom(p) (resp. f; € Dom(p)).

For all g; € Dom(eg), we also know that hfi,; cannot be i-constant, but this is an
instance of hd hence u; occurs in d and therefore g; = g;m € Dom(e},). Conversely, if

(6]

Properties of Constrained Generalization Algorithms Boy de la Tour

gi ¢ Dom(eg) then |hf;11]; = 0 and by Lemma 16 u; does not occur in d and therefore
gi = gim ¢ Dom(e},). Similarly we prove that f; € Dom(ey) iff f;m € Dom(e}), and we
have both h € Dom(ey) and h’ € Dom(e},), hence Dom(e;)m = Dom(e},).

We have hre), = h'el, = AWT.r’". = hd. For all g; € Dom(ey), g;m = g; € Dom(e},) hence
gimel, = gip ~ g;0 (as shown above), and similarly for the f;’s in Dom(ey), which proves
that me}, ~ §[Dom(eg)].

In all cases we easily see that Dom(w) n FV (X)) = &, and hence that Xpmy, [Vemy /Exmi] 6}, =
X Lk [ERI TR0}, = X0 [V ERI 0}, = X LYk /ERTOkT1 = Xpy1Thq1. Welet o = 0,6;,
and 0, = 0}, hence we have proved that there is a k-run of JPx from ~ that ends on
(X141, 0} 415041)- We also see that FV(o;) = FV(d] - --d),_;) only contain variables from
FV(X) and the new variables of the second run before step k, which are kept separate from those
of the first run, in particular from FV(Xj.1), hence it is disjoint from Dom(7) and therefore
oj, and m commute. Then by i.h. mpi10),, = mmold), = mpowd), = opmETo), = O)TR410), =
OkOkTht1 = Ok 1Th41-

For all f in FV(Xy41) n Dom(6y+1) we have f ¢ Dom(d,) and either f € Dom(6y) or
f € Dom(eg). If f € FV(A%) then f € Dom(6x) and therefore fmypi10) ., = fmp), ~ for0
by i.h., but féx ~ f hence fmpy160;,,, ~ fd. Otherwise f ¢ FV (&) and f € Dom(ey), hence
Jmr410), 0 = frej, ~ f6. We have proved that 7110, ~ 6[FV(Xyy1) n Dom(0p41)].

For all f in FV(X;CH)mDom(@;Hl)W,;}l we have fm11 € Dom(6), ;) = Dom(6},) wDom(e},).
If f e FV(Xy) then frpi1 = fmp € Dom(6),) hence by ih. f € Dom(6r) < Dom(6p41).
Otherwise frmiy1 = fm € Dom(e},) hence f € Dom(e) € Dom(611). We have proved that
FV(Xj11) n Dom(0},,)7}, € Dom(y1), which completes the induction. O

Theorem 18. JPy is weakly projective for any constraint X .

Proof. By Lemma 17 there is a l-run of JPx on «y that ends on (X} 17m41,07,,,6;,,) where m 41
is a permutation such that 7rl+1af+1 = 0741m+1. This run is complete since X;.1 = T, hence we
let 4’ be the restriction of 07, , to FV(X), so that v JPx +'. We have 7' = m 1107 [FV(X)] =
o141mM+1[FV(X)] = ym41[FV(X)], hence v/ is a variant of . O

It is easy to see that the run of BPy on 6 in Example 5 cannot be reproduced on -3, hence
the technique used in the previous proof does not extend to BP. Yet a longer run on ~» does
yield a variant of 7o, which leaves open the question whether BP y is weakly projective.

If we apply BPy after JPy with the X and 6 of Example 4 we only get a variant of ;. If
we rather apply BPx o JPx we get a v3 = [Au.hz(ha(u), ha(x))./f, Mu.hs(u,). /g, ha(z) /Y1,
which is not a variant of 5, hence this option seems preferable.

6 Conclusion

We believe that the results of Section 3 provide a framework in which cgas can be better
designed and understood. We could for instance mix the rules from the two algorithms, provided
completeness and termination are preserved (the former is perserved by adding rules, the latter
by removing them). The rules can also be modified, for instance the repetition rule is interesting
for increasing the arity of the variables but needs to be restricted in some way to ensure
termination: here the number of occurrences of bound variables is the limiting factor, but
others are possible. A prolog implementation is under way.

The questions asked and partially answered in Sections 4 and 5 are natural and could be
addressed for any cga. However, it would be more interesting to compare the two algorithms

76

Properties of Constrained Generalization Algorithms Boy de la Tour

w.r.t. the generalizing order < rather than variance, if possible. Another problem is the control
on the rules: it seems hardly possible to consider that some generalization is necessarily better
than another one (if they are not comparable with <), their interest can only be compared
with some purpose in mind. This raises the question of guiding the search for a generalization
toward some specific goal, a task that could easily prove undecidable.

References

(1]
2l

(5]

(6]

[10]

(1]
[12]

[13]

Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret. Higher-order pattern
anti-unification in linear time. J. Autom. Reasoning, 58(2):293-310, 2017.

Thierry Boy de la Tour and Nicolas Peltier. Proof generalization in LK by second order unifier
minimization. Journal of Automated Reasoning, 57(3):245-280, October 2016.

N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. Indag Math., 34(5):381-392, 1972.

Gilles Dowek. Higher-order unification and matching. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, volume II, chapter 16, pages 1009-1062. Elsevier Science, New
York, 2001.

R. O. Gandy. An early proof of normalization by A.M. Turing. In To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 453-455. Academic Press, 1980.

W. Goldfarb. The undecidability of the second-order unification problem. Theoretical Computer
Science 13, pages 225-230, 1981.

Kouichi Hirata, Takeshi Ogawa, and Masateru Harao. Generalization algorithms for second-
order terms. In Rui Camacho, Ross D. King, and Ashwin Srinivasan, editors, Inductive Logic
Programming, 14th International Conference, volume 3194 of Lecture Notes in Computer Science,
pages 147-163. Springer, 2004.

Gérard Huet. A unification algorithm for typed A-calculus. Theoretical Computer Science, 1:27-57,
1975.

D. C. Jensen and T. Pietrzykowski. Mechanizing w-order type theory through unification. Theo-
retical Computer Science, 3(2):123-171, November 1976.

J.-L. Lassez, M. Maher, and K. Marriot. Unification revisited. In J. Minker, editor, Foundations
of Deductive Databases and Logic Programming, pages 67-113. Morgan-Kaufman, 1988.

T. M. Mitchell. Generalization as Search. Artificial Intelligence, 18:203-226, 1982.

Frank Pfenning. Unification and anti-unification in the Calculus of Constructions. In Sizth Annual
IEEE Symposium on Logic in Computer Science, pages 74-85, Amsterdam, The Netherlands, July
1991.

Tomasz Pietrzykowski. A complete mechanization of second-order type theory. J. ACM, 20(2):333-
364, 1973.

7

	Introduction
	Notations and Basic Definitions
	Constrained Generalization Algorithms
	Loose and First Order Generalizations
	Weak Projectivity
	Conclusion

