18

A Survey of Decidability Results
for Elementary Object Systems

Michael Kohler-Bufimeier
. koehler@informatik.uni-hamburg.de .
University of Hamburg, Department for Informatics
Vogt-Kolln-Strafie 30, D-22527 Hamburg

Abstract

This contribution presents the formalism of Elementary Object Systems
(Eos). Object nets are Petri nets which have Petri nets as tokens — an ap-
proach known as the nets-within-nets paradigm.

Since object nets in general are immediately Turing complete, we introduce
the restricted class of elementary object nets which restrict the nesting of nets
to the depth of two.

One central aim of this contribution is present several (un)decidability
properties of E0S. It turns out that EOS are more powerful than classical
p/t nets which is demonstrated by the fact that e.g. reachability and liveness
become undecidable problems for E0s. Despite these undecidability results
other properties can be extended to EOS using a monotonicity argument sim-
ilar to that for p/t nets.

Keywords: mobility, nets-within-nets, object nets, reachability, liveness

1 Introduction

Object Systems are Petri nets which have Petri nets as tokens — an approach which
is called the nets-within-nets paradigm, proposed by Valk [Il 2] for a two levelled
structure and generalised in [3, [4] for arbitrary nesting structures. The Petri nets
that are used as tokens are called net-tokens. Net-tokens are tokens with internal
structure and inner activity. This is different from place refinement, since tokens are
transported while a place refinement is static. Net-tokens are some kind of dynamic
refinement of states.

position 1 position 2 position n
move to move to

the right

move to
the right

handoverl
- <N1:ext,
N2:fill>
. o fireplace
ave to move to move to 2ave to
. the left the left -
" half-full
full empty empt bucket
bucket <:ext> full empt
u m} bucket . - i
fill Q(ETEy e - -
il bucket fill (®) empty
: <fill> <:fill> bucket
N1 (fireman 1) N7 (fireman 7)

Figure 1: The Bucket Chain as a Nested System

It is quite natural to use object nets to model mobility and mobile agents (cf.
[B] and [6]). Each place of the system net describes a location that hosts agents,
which are net-tokens. Mobility can be modelled by moving the net-token from one
place to another. This hierarchy forms a useful abstraction of the system: on a high
level the agent system and on a lower level of the hierarchy the agent itself.

Berndt Farwer (ed.); LAM’10; Volume 1, issue: 1, pp. 18

koehler@informatik.uni-hamburg.de

Decidability Results for Elementary Object Systems M. Kohler-Bufimeier

Without the viewpoint of nets as tokens, the modeller would have to encode
the agent differently, e.g. as a data-type. This has the disadvantage, that the
inner actions cannot be modelled directly, so, they have to be lifted to the system
net, which seems quite unnatural. By using nets-within-nets we can investigate
the concurrency of the system and the agent in one model without loosing the
abstraction needed.

Example: Figure [I| shows an object systems which models Carl Adam Petri’s
bucket chain scenario [7] where the fireman are mobile. In the bucket chain-example
n firemen are standing in a row, each equipped with a bucket. A well is available for
the leftmost fireman and the fire is at the rightmost place. So the leftmost fireman
fills his bucket, while the rightmost extinguishes the fire. Neighboured firemen
can handover buckets, so full buckets are handed over to right (to extinguish the
fire) and empty ones to the left for refilling.! The topology (i.e. each fireman
can only interact with his intermediate neighbour) introduces an interesting causal
dependency structure?: The effect of exchanging buckets at a location being k steps
away can be observed only when the whole system has moved k steps ahead.
Figure [I] shows the Petri net modelling the bucket chain with n = 7 firemen.
Each fireman initially carries one empty bucket. The fireman man are mobile: They
are net-tokens that move around in the system net which models the chain itself.
The agents have different capabilities. For example the object net N7 has a bucket
with double capacity. At the well the object net N; fires the transition fill bucket
which synchronises over the communication channel (fill) with the transition fill of
the object net. Then the object net N7 moves to the position 1 firing the transition
move to the right. At the position 1 N; synchronises with N; firing the transition
handover which has two invocations of communication channels: The object net Ny
is synchronised over the channel (:ext) which changes its state to empty bucket. Syn-
chronously, the object net Ns is synchronised over the channel (fill) which changes
its state to full bucket. Thereafter the object net N1 moves back to the well via the
transition move to the left and the object net Ny moves in the direction of the fire
via the transition move to the right. Similarly for the other positions. So, the firemen
transport full buckets to the right and the fire will be finally extinguished.

Among the wealth of research on defining mobile systems, in recent years a
variety of formalisms have been introduced or adopted to cover mobility: The ap-
proaches can be roughly separated into process calculi and Petri net based ap-
proaches. The m-calculus [9], the Ambient calculus [10] and the Seal calculus [I1]
are just three of the more popular calculi. Approaches dealing with mobility and
Petri nets are elementary object net systems [12] 2], mobile nets [I3], recursive nets
[14], minimal object nets [15] [16], nested nets [I7], mobile predicate/transition nets
[18], Reference nets [19], PN? [20], hypernets [21], object net systems [4, 22} 23| 24,
Mobile Systems [25], AHO systems [26], mobile object nets [23], adaptive workflow
nets [27], v-Abstract Petri nets [28], and Hornets [29].

One central aim of this contribution is to compile existing results on special
aspects of E0OS together with some unpublished properties within one self-contained
presentation. As a byproduct most proofs have been rewritten and shortened in a
way apropriate for the newer results.

The paper has the following structure: Section [2] recalls basic notations of Petri
nets. Section [3| defines elementary object systems (E0s) and Section |4 compares

1This scenario has been introduced to study the causal dependencies of distributed cooperation.
The scenario serves a similar purpose as the well known Bankers-Problem for deadlock-prevention
in resource allocation systems (i.e. operating systems) or the Dining Philosophers for the study of
fairness in distributed systems [§].

2In the general research of Petri this causal dependency structure is closely related to Einstein’s
physical theory of relativity. This topic is studied in Petri’s research of general net theory.

19

Decidability Results for Elementary Object Systems M. Kohler-Bufimeier

20

Eos with a reference semantics based on p/t nets and introduces a sub class, called
Generalised State Machines, which is of practical interest, because models of this
class corresponds to scenarios related to physical entities. Section [5| provides a
short overview of related nets-within-nets formalisms. Section [f]studies decidability
problems for E0S, namely: reachability, liveness and boundedness.?

2 Preliminaries

The definition of Petri nets relies on the notion of multisets. A multiset m on
the set D is a mapping m : D — N. Multisets are generalisations of sets in the
sense that every subset of D corresponds to a multiset m with m(d) < 1 for all
d € D. The notation is used for sets as well as for multisets. The meaning will be
apparent from its use. Multiset addition m;, ms : D — N is defined component-
wise: (m1 + ms)(d) := my(d) + my(d). The empty multiset 0 is defined as 0(d) =
0 for all d € D. Multiset-difference m; — my is defined by (m; — ms)(d) :=
max(m; (d) — ms(d),0). We use common notations for the cardinality of a multiset
lm| := >, pm(d) and multiset ordering m; < my where the partial order < is
defined by my < my; <= Vd € D : my(d) < my(d). A multiset m is finite
if |m| < oo. The set of all finite multisets over the set D is denoted MS(D).
The set MS(D) naturally forms a monoid with multiset addition + and the empty
multiset 0. Multisets can be identified with the commutative monoid structure
(MS(D),+,0). Multisets are the free commutative monoid over D since every
multiset has the unique representation in the form m =3, , m(d) - d where m(d)
denotes the multiplicity of d. Multisets can be represented as a formal sum in the
form m = le’:{ x; where x; € D.

Any mapping f : D — D’ can be extended to a homomorphism f*: MS(D) —
MS(D') on multisets: f* (Y"1, ;) = >.i_, f(z;). This includes the special case
f#(0) = 0. We simply write f to denote the mapping ff. The notation is in
accordance with the set-theoretic notation f(A) = {f(a) | a € A}.

Definition 1. A p/t net N is a tuple N = (P, T, pre, post), such that P is a set
of places, T is a set of transitions, with PNT = 0, and pre,post : T — MS(P)
are the pre- and post-condition functions. A marking of N is a multiset of places:
m € MS(P). A p/t net with initial marking m is denoted N = (P, T, pre, post, m).

We use the usual notations for nets like *x for the set of predecessors and x* for
the set of successors for a node z € (PUT).

A transition t € T of a p/t net N is enabled in marking m iff Vp € P : m(p) >
pre(t)(p) holds. The successor marking when firing ¢ is m’(p) = m(p) — pre(t)(p) +
post(t)(p) for all p € P. Using multiset notation enabling is expressed by m >
pre(t) and the successor marking is m’ = m — pre(t) + post(¢). We denote the
enabling of ¢ in marking m by m %) Firing of ¢ is denoted by m % m’. The net

N is omitted if it is clear from the context.
Firing is extended to sequences w € T in the obvious way:

(i) m = m;

(i) If m 2% m’ and m’ 5 m” hold, then we have m % m".
We write m = m’ whenever there is some w € T* such that m — m’ holds.
The set of reachable markings is RS(mg) : {m | Jw € T* : my = m}.

3Due to space restrictions, we omit proofs. An extended version of this paper can be obtained
via the author’s web page at http://www.informatik.uni-hamburg.de/TGI

http://www.informatik.uni-hamburg.de/TGI

Decidability Results for Elementary Object Systems M. Kohler-Bufimeier

3 Elementary Object Systems

An elementary object system (E0S) is composed of a system net, which is a p/t net
N= (ﬁ,f, pre, post) and a set of object nets N = {Ny,..., N,}, which are p/t
nets given as N = (Pn,Tn,prey,posty). In extensionwe assume that all sets of
nodes (places and transitions) are pairwise disjoint. Moreover we have N ZN. We
assume the existence of the object net @ € N which has no places and no transitions
and is used to model anonymous, so called black tokens.

The system net places are typed by the mapping d : P — A with the meaning,
that the place p of the system net contains net-tokens of the object net type N if
d(p) = N.* No place of the system net is mapped to the system net itself since
NgN.

Since the tokens of an EOS are instances of object nets a marking p € M of an
Eos 0S is a nested multiset.

A marking of an Eos OS is denoted pu = L’ Il(ﬁk, M) where Py is a place in

the system net and Mj, is the marking of the net-token of type d(px). To emphasise

the nesting, markings are also denoted as pu = ZL”ll Dr[My]. Tokens of the form

p[0] and d(p) = e are abbreviated as pi].
The set of all markings which are syntactically consistent with the typing d is
denoted M (Here d—1(N) C P is the set of system net places of the type N):

M = MS (U (@ (@v) x MS(PN))) (1)

NeN

The transitions in an E0OS are labelled with synchronisation channels. We assume
a fixed set of channels C, including the channel ¢ which is used to describe the
absence of any “real” channel. Each transition of the system net has one label for
cach object, defined by the labelling function function 7 : — (N — C). Each
transition of an object net N has one single label, defined by the labelling function
function [y : Ty — C. In the graphical representation the synchronlsatlon labelling
is defined by transition inscriptions in the form (N : [{£)(Ny), ..., Ny : [{f)(Ng)) in
the system net and in the form (: Iy (t)) in the object nets (Where € is omitted).

A system event 6 is generated by transitions with matching labels. The labelling
introduces three cases of events:

1. System-autonomous firing: The transition t of the system net fires autonomously,
whenever [(t)(N) = € for all N € NV.

2. Synchronised firing: There is at least one object net that has to be synchro-
nised, i.e. there is a N such that l(1)(N) # e.

3. Object-autonomous firing: An object net transition ¢ fires autonomously
whenever [(t) = e.

These three kinds of events can be reduced to the case of a synchronisation where
a system net transition has exactly one synchronisation partner in each object net.
This normal form is obtained by adding some idle transitions: For each object net
N € N we add the idle-transitions ey with prey(ey) = posty(en) = 0 to its
transition set. For object-atonomous events we also add the set of idle transitions
€p := {5 | D € P} with pre(es) = post(e5) = p to the set of system net transitions.
We extend the labelling to idle transitions by lA(eﬁ)(N) =Iny(ey)=cforal pe P
and N € NV.
4In the following the terms (marked) object net and net-token are used almost interchangeable.

We use the term net-token whenever we like to emphasise the aspect that the marked object net
is a token of the system net.

21

Decidability Results for Elementary Object Systems M. Kohler-Bufimeier

22

With these idle transitions the channel e (which means “no synchronisation”) is
modelled as a synchronisation with an idle transition that has no effect.

The synchronisation labelling generates the set of system events ©. An event
is a pair — denoted 7[] in the following. Here, 7 is either a real transition ¢ or
¢5 for some p; 6 maps each object net to one of its transitions. An event has the
meaning that the system net transition 7 fires synchronously with all the object net
transitions O(N), N € N.

A special case for the mapping 6 is the idle map exr which is defined exr(N) = ey
for all N € NV. R

All events are generated from the labels: I(7)(N) = Iy (0(N)) must hold for all
N € N. Whenever 7 is an idle transition €5 € €5 we also demand that §(N) is the
idle event ex except for exactly one object net N (which is the object-autonomous
event), i.e. {N € N :0(N) # ex}| =1 holds.

A~ o~

o, = {?[eu YN € N : 10 (N) = In(8(N)) A

~ (2)
Feep = |{N €N :0(N)#en} :1}

Definition 2 (EOS). An elementary object system (E0S) is a tuple OS = (N,N, d, ;)

such that:
1. Nisa p/t net, called the system net.
2. N is a finite set of disjoint p/t nets, called object nets.
3. d: P — N is the typing of the system net places.
4. Oy is the set of events generated from the labelling | = (T, IN)Nen-

An Eos with initial marking is a tuple OS = (]\AT,N, d, Oy, o) where pg € M is
the initial marking.

Example: Figure [2| shows an Eos with the system net N and the object nets
N = {Ny, N2}. The system has four net-tokens: two on place p; and one on py
and p3 each. The net-tokens on p; and p, share the same net structure, but have
independent markings.

p DA b1 4

<cl>

<icl>

p <N1:cl, N2:c2 5

O e ®) t
<ic1> bl

G

Figure 2: An Object Net

~

e The system net is given as N = (ﬁ,f, pre, post) with P= {p1,...,p6} and

T = {t}.
e The first object net is Ny = (P, 71, pre,,post,) with P, = {a1,b1} and
T ={t1}.

Decidability Results for Elementary Object Systems M. Kohler-Bufimeier

e The second object net is Ny = (Ps, To, pre,, post,) with Py = {as, ba, co} and
Ty = {ta}.

e The typing is d(p1) = d(p2) = d(ps) = N1 and d(p3) = d(ps) = d(ps) = Na.
e The labelling function of the system net ! is defined by lA(t)(Nl) = ¢; and
l(t)(Ng) = C3.

The labelling Iy, of the first object net is defined by setting In,(t1) = c1.
Similarily, [y, is defined by Iy, (t2) = ca.

There is only one synchronous event: ©; = {t[N1 — t1, No > t2]}.

e The initial marking has two net-tokens on p;, one on p,, and one on ps:
= pilar + b1] + p1[0] + pafai] + psfas + bo]

Note, that for Figure [2| the structure is the same for the three net-tokens on p; and
p2 but the net-tokens’ markings are different.

We name special properties of EOS:

e An Eos is minimal iff it has exactly one “real” object net: [N\ {o}| = 1.
e An Eos is pure iff it has no places for black tokens: d—!(e) = (.

e An Eos is p/t-like iff it has only places for black tokens: d(ﬁ) = {o}.

e An Eo0S is unary iff it is pure and minimal.

e An Eos OS is a generalised state machine (GSM) iff for all ¢ there is either
exactly one place in the preset and one in the postset typed with the object
net N or there are no such places. (This class will be discussed in Section
in detail.)

e An Eos is simple iff so is its typing d. A typing is called simple iff for each
place in the preset of a system net transition ¢ there is place in the postset
being of equal type: (d(*t) N"A) C (d(t*) NN).

3.1 Projections and Firing Rule

Let p = L’il(ﬁk,Mk) be a marking of an E0s. The projection II' on the first

component abstracts away the substructure of all net-tokens:

i (Z':_ P [Mk]> — ZL’L B (3)

The projection H?V on the second component is the abstract marking of all
net-tokens of the type N € A ignoring their local distribution within the system

net.
0 (S G

where the indicator function 1 : P — {0,1} is 15(p) = 1 iff d(p) = N. Note, that
1% (11) results in a marking of the object net N.

A system event T[f] removes net-tokens together with their individual internal
markings. Firing the event replaces a nested multiset A € M that is part of the
current marking pu, i.e. A < p, by the nested multiset p. The enabling condition is
expressed by the enabling predicate ¢pos (or just ¢ whenever OS is clear from the
context):

23

Decidability Results for Elementary Object Systems M. Kohler-Bufimeier

24

¢(7l0), A, p) <= II'()) = pre(7) AII'(p) = post(7) A
VN € N : T1%,()\) > prey (6(N)) A (5)
YN €< T (p) = T3 (3) ~ prey (6(N)) + post y (6(N))

With M = IT'(\) and M’ = IT'(p) as well as My = I13,(\) and M}, = I1%,(p)
for all N € N the predicate ¢ has the following meaning;:

1. The first conjunct expresses that the system net multiset M corresponds to
the pre-condition of the system net transition ¢, i.e. M = pre(t).

2. In turn, a multiset M is produced, that corresponds with the post-set of t.

3. An object net transition 7 is enabled if the combination My of the markings
net-tokens of type N enable it, i.e. My > prey(0(N)).

4. The firing of 7[f] must also obey the object marking distribution condition
which is essential for the formulation of linear invariants: My = My —
prey (0(N)) + posty ((N)) where post y (6(N)) — prey (6(N)) is the effect
of the object net’s transition on the net-tokens.

Note, that (1) and (2) assures that only net-tokens relevant for the firing are
included in A and p. Conditions (3) and (4) allows for additonal tokens in the
net-tokens.

For system-autonomous events ﬂe] the enabling predicate ¢ can be simplified
further. We have prey (ex) = posty(en) = 0. This ensures I13,(A\) = I1%(p), i.e.
the sum of markings in the copies of a net-token is preserved w.r.t. each type N.
This condition ensures the existence of linear invariance properties.

Analogously, for an object-autonomous event we have an idle-transition 7 =
for the system net and the first and the second conjunct is: II'(\) = pre(t) = p
post(t) = II'(p). So, there is an addend A = p[M] in p with d(p) = N and M
enables ty := O(N).

€

Definition 3 (Firing Rule). Let OS be an Eos and p, ' € M markings. The
event T[0] is enabled in u for the mode (X, p) € M2 iff X < u A ¢(7[0], N, p) holds.

An event T[0] that is enabled in u for the mode (X, p) can fire: p % w.

The resulting successor marking is defined as p' = u— X+ p.

[0 #l0](x
We write u %) i’ whenever p % u' for some mode (A, p).

Note, that the firing rule has no a-priori decision how to distribute the marking
on the generated net-tokens. Therefore we need the mode (A, p) to formulate the
firing of 7[f] in a functional way.?

50f course there are a lot different possible candidates for the firing rule. In fact there infinitely
many, since there is a lot of freedom how to distribute the net-tokens’ markings when there are
several outgoing arcs in the system net. Valk [2] discusses three basic variants, called reference
semantics, value semantics, and copy semantics. Reference semantics interprets net-tokens as
pointers to object nets. This semantics can be equally expressed as a p/t net (cf. definition .
Value semantics is the semantics presented in this paper. Copy semantics is a variant of value
semantics where the net-tokens’ markings are not distributed over the outgoing net-tokens but
copied. From the modelling point of view each of the semantics has its own pro and cons. From a
more theoretical point of value semantics is a special one since it allows to reinterpret every firing
sequence also with respect to reference semantics — as formulated in Theorem E One can even
show that value semantics is the only one with this propertiy (cf. [30] for details).

Decidability Results for Elementary Object Systems M. Kohler-Bufimeier

Example: Consider the Eos of Figure [2] again. The current marking p of the
Eos enables t[N] — t1, Ny — t5] in the mode (A, p) where

A pilar + bi] + palai] + pslas + bo]
p = pafar + b1 + b1] + ps[0] + pe|cz)

v (A (P)

@
M3, (\) 1%, (p)

Figure 3: The EOS of Figure [2|illustrating the projections I1%,()\) and 1% (p)
We have the current marking:

i = p1[0] + pilar + b1] + p2la1] + p3laz + bo] = p1[0] + A
X

The net-tokens’ markings are added by the projections I1% resulting in the markings
I1%,(A). The sub-synchronisation generate I1%(p). (The results are shown above and
below the transition ¢.) After the synchronisation we obtain the successor marking
on p4, ps, and pg as shown in the Figure [3}

po= (=N +p=m[0]+p
= p1[0] + pafai + by + b1] + ps[0] + pe|c2]

Eo0s are a canonical extension of p/t nets in two ways: The behaviour of the sys-
tem net in the E0s when ignoring the net-tokens structure cannot be distinguished
from the system net as a p/t net (Lemma [4)) and each p/t-like EOS is isomorphic
to the system net as a p/t net (Lemma [5]) .

Eos are a canonical extension of p/t nets, since the behaviour of an Eos when
considering only the system net’s perspective is in accordance with the behaviour
of the system net considered as a p/t net, i.e. if an event ¢ is disabled in the p/t
net then for all § the event ﬂf)] is disabled in the Eos.

Lemma 4. For OS = (N,N,d,©, o) define II*(0S) = N. For each Eos 0S we

have:
w2 T () — s ()
0s ' (0S)

For a p/t like EOos we have no object nets: N = (), synchronisation given as
0= {A[(D] |t €T}, and the typing is the constant function d = e with e(p) = e for
all p € P. The initial marking contains no submarking: ug € P x {0} C M. So,
p/t-like Eos have the form:

0S = (N,0,e,{t0] | t € T}, o)

25

Decidability Results for Elementary Object Systems M. Kohler-Bufimeier

26

Lemma 5. A p/t-like Eos OS = (ﬁ,@,-,@l,uo) is isomorphic to the p/t net
(N, 1 (o)) in the following sense:
T101(A.p) 7
H Tp> po= () 1 (')

N

3.2 Projection Invariance of the Firing Rule

~

We define the relation = C M?2 on nested multisets, that relates nested markings

~

which coincide in their projections. The projection equivalence = is a relation on
M defined by:

a2pB = TI'(a)=T'(B)AYN € N : TI%(a) = TIZ(B) (6)

The relation o & § abstracts from the location, i.e. the concrete net-token, in

which a object net’s place p is marked as long as it is present in « and 3. For
4

example, for d(p) = d(p’) we have

plp1 + p2] + D'[ps] = plps + pa] + 7' [p1]

which means that 2 allows the tokens p; and p3 to change their locations (i.e.
between p and p’).

Lemma 6. The enabling predicate is invariant with respect to the relation =:
P(TIO], A\ p) = (YN, p N = AN = p= ¢(7T0], N, p))

For the definition of firing we use the projection equivalence to express that on
firing the system net collects all relevant object nets of the firing mode and combines
them to one “virtual object net” that is only present at the moment of firing. Due
to this collection the location of the object nets’ tokens is irrelevant and can be
ignored using the projection equivalence.

Proposition 7 (Invariance). Let OS be an EOS and p a marking. The event T[0)
is enabled in the mode (X, p) iff

ASp AN p N ZXNp = p A G(T[O], N,)

3.3 Reversibility

A basic property of Petri nets is that their firing rule is symmetric in time, i.e.
whenever all arcs are reversed then we can fire backwards: This is expressed by the
reversed net N™¥ = (P, T, pre"’, post™®’) where pre"’ := post and post™ :=
pre which is obtained from N = (P, T, pre, post) by dualising the effect. Symmetry
in time is expressed as:

mi i+m2 < Mo —>t mi
N N’!‘E!’U
This property holds also for Eos. Given OS = (N,N, d, 1) we define the reverse
Eos as 08" = (N"®, N7 d, 1) where N"®¥ = {N"®" | N € N'}.
Lemma 8. Let OS be an E0S. The enabling predicate is reversible:
Pos(Tl0], A, p) <= dosre (T[0], p, A)
This implies reversibility for EOsS.

Proposition 9. Let OS be an E0S. Firing is reversible:

TO](A T[0](p,A
& 7101 (Np) o o T10](p:\)
0S OSrev

Decidability Results for Elementary Object Systems M. Kohler-Bufimeier

4 Reference Semantics and Generalised State Ma-
chines
For each E0s there is an obvious construction of a p/t net, called the reference net,

which is constructed by taking as the set of places the disjoint union of all places
and as the set of transitions the synchronisations.

Definition 10. Let OS = (N, N, d, 1, o) be an Eos. The reference net RN(0S)
is defined as the p/t net:

RN(OS) = ((ﬁ U UNeN PN) .0, pre™, post?Y, RN(,uO))
where pre®™ (and analogously post™) is defined by:
pre® (7[6]) = pre(7) + 3 prey(6(N))
and for markings we define:
RN(p) =T (1) + > T3 (n)

NeN

The net is called reference net because it behaves as if each object net would
have been accessed via pointers and not like a value: A black token on a system
net place p is interpreted as a pointer to the object N = d(p) where each object net
has exactly one instance but several pointers referring to it.

Theorem 11. Let OS be an E0S. FEvery event T[0] that is activated in OS for
(A, p) is so in RN(OS):

FOJAp). #16] ,
_— — RN —— RN
B T H (1) T (05) (1)

s6

net token (4] O
s11 O—B—0
ent : system net

Figure 4: A sample E0S

The converse is not true in general, which can be demonstrated using the Eo0S
in Fig. 4| known as the a-centauri example, cf. [12]. Initially we have pg = $1[s11].
In the reference net we have the initial marking RN(ug) = 1 + s11 which activates
the firing sequence:

N) SN talt PN T3t SN
(31 + 511) ﬁ) (52 + S3 + 811) M (34 + 53 + 812) M) (84 + S5 + 813)

It is easy to see that in the EOS we can fire only a prefix, depending on the choice
of the modes. The first mode assigns the token on s1; to the net-token on s3:

~ tile] —~
81[511] ’1[—]—) 82[0] —+ 53[811]

The second mode assigns the token on s1; to the net-token on Ss:

—~ tile —~ —~ Tt —~ —~
51[511] ’1—[—]—> 32[511] —+ 53[0] 42[—1—1]% 54[812] + 83[0]

27

Decidability Results for Elementary Object Systems M. Kohler-Bufimeier

Since the effect in the object net is only local, Z3[t12] is not activated. So w =
t €] -tAg[tu] -tAg[tlg] is a possible firing sequence for the reference net, but not for
the object net system.

From Theorem [11] and the above the following property follows.

Corollary 12. Let OS be an Eos. If u is reachable from pg, then RN(u) is
reachable from RN(uo). The reverse does not hold in general.

So, we obtain only a sufficient condition for non-reachability: The marking p is
not reachable from py whenever RN(u) is not reachable from RN(p).

Fortunately, many practical models are Generalised State Machines and this
sufficient condition can be strengthened to a necessary one for these. An Eos OS
is a generalised state machine (GSM) iff for all t there is either exactly one place in
the preset and one in the postset typed with the object net N or there are no such
places:

YNeN:VieT:|{pet|dp) =N} =[{petdp) =N} <1 (7
and the inital marking has at most one net-token of each type:

YNeN: Y M@ <1 ®)

pEP,d(p)=N

Obviously every p/t-like EOs is a generalised state machine since d(p) = e for all
p. In addition generalised state machines are simple Eos.
For generalised state machines we can strengthen Theorem

Theorem 13. Let OS be an E0S with the generalised state machine property.
A transition T[0)] is activated in OS for (X, p) iff it is in RN(OS):
7O1(Ap) 716]

—— <= RN —_
’ oS " (1) RN(OS)

RN(u')

A generalised state machine OS is therefor isomorphic with its reference net
RN(0S).

From a modelling point of view this result is interesting since in many scenarios
net-tokens model physical entities which are neither cloned, combined, created nor
destroyed. These models therefore have the generalised state machine property.
From a more theoretical point of view the correspondence of each generalised state
machine OS with its reference net RN(0S) allows to simplify notations considerably
— at the price of limiting the expressiveness. For these reasons some formalism, like
e.g. [12], [21], or [27], are initially restricted to generalised state machines. For our
analysis we have chosen to study the general case to obtain more insights in the
models properties and their expressiveness.

5 A short Overview of Nets-within-Nets Formalisms

The idea to use Petri nets as tokens — also called the “nets-within-nets” approach
— can be traced back to the early nineties: [I] studies systems where the net-tokens
model the partial order of working plans that are executed within some external
environment modelled as a Petri net again.

These nets are extended to elementary object net systems (EONS) in [12]. EONS
are studied with respect to reference semantics, value semantics, and copy semantics
(cf. [2] for a more recent overview). Reference semantics is equivalent to our
construction of the reference net RN(0OS). The value semantics of EONS defined in

28

Decidability Results for Elementary Object Systems M. Kohler-Bufimeier

[12] is defined for the special cases of unary EOs and the class of generalised state
machines.

There is also some connection to recursive Petri nets (RPN) [14] where the fir-
ing of transitions can generate sub-net activity recursively. This nested threads of
activity look somehow similar with a nesting of markings. The most obvious differ-
ence between RPN and E0s is the fact that the reachability problem is decidable
for RPN (cf. Theorem 17 in [I4]) but undecidable for Eos (cf. Theorem [19).

Another variant of nets-within-nets is the the formalism of PN? [20] which allows
to have several object nets within one system net and is mainly the same as Eos
with a copy semantics.

Mobile Systems [25] introduce another extension to object nets: modules that
can interact via place and transition fusion. Modules describe locations and loca-
tions may be nested. Sub modules may shift from one module to another.

There are several formalism that extend the elementary case to systems with
unbounded nesting. A first extension — called object nets — is defined in [4]. It
can be shown that for an appropriate extension of the GSM property value and
reference semantics are equivalent, too [22]. It is shown in [4] that object nets have
the power to simulate Turing machines.

A very intersting restriction comes from the area of workflow nets: Adaptive
workflow nets (AWFN) [27] restrict themselves to GSM and the net-tokens to work-
flow nets. The formalism is extended by the possibility to combine net-tokens at
firing time with the usual workflow operations, like sequential composition, and-
forks and or-decisions. Due to its restricted structure this formalism has some nice
decidability properties.

Object nets are restricted in the sense that different levels of the system may
synchronise, but cannot exchange markings directly. In [24] we defined the gen-
eral case, i.e. object nets extended with communication channels, are defined. Of
course, this extension cannot extend the expressibility any further, i.e. beyond Tur-
ing machines.

Similarly to object nets with communication channels, [21] defines object nets
that allow to exchange object nets over communication channels, but they are re-
stricted to the GSM case.

Reference nets [I9] are the generalisation of E0S for the case of arbitrary pointer
structures. The semantics is based on graph rewriting while EOS use term rewriting.
Reference nets are supported by a very popular tool, called RENEW [31].

Another extension considers coloured tokens: Nested nets [I7] can be seen as
the extension of object nets in the direction of Coloured Petri Nets, i.e. we have
tokens that are nets and tokens that are integers etc. Another example are mobile
predicate/transition nets [I8] which are object nets under reference semantics and
predicates as tokens. AHO systems [26] allow very complex data types as tokens
which can be used to encode net-tokens as data types. This encoding works nicely
for two levels but it seems that this cannot extended without further some clever,
indirect coding.

An interesting extension of objects nets — discussed in [29] — allows algebraic
operations on the net-tokens. This formalism therefore subsumes Adaptive workflow
nets [27] as well as object nets with communication channels [24].

The formalism of minimal object-based nets (MOB nets) of [I5] [16] is related
to Eos but with quite different basic assumptions: MOB nets do not make any
assumptions about the structure of the tokens; tokens just have a unique identity
which can be compared with other identities and MOB nets can generate new
tokens having fresh identifiers. It is shown in [I5] that these minimal assumptions
are sufficient to show that reachability is undecidable for MOB nets — and therefore
for every formalism dealing with name creation. Nevertheless it can be shown

29

Decidability Results for Elementary Object Systems M. Kohler-Bufimeier

30

that boundedness remains decidable [16]. These results are the same for Eos (cf.
Thm. .

The formalism of v-abstract Petri nets [28] has the same ability to create fresh
names and has therefore also an undecidable reachability problem.

6 Decidability Problems for EOS

The interesting part in the firing rule of EOS is the fact that moving an object net-
token in the system net has the power to modify the state of an unbounded number
of tokens, i.e. all the tokens of the object net-tokens (including the case of zero
tokens). It is therefore a natural question whether this increases the expressiveness
of Eos compared to p/t nets. Here we consider the most well known decidability
problems for Petri nets: The reachability, the liveness and the boundedness problem.

For the reachability problem one has to decide whether m; = msy for a given
p/t net N and two markings m; and ms. Reachability has been studied for p/t
nets and for variants of object nets: The reachability problem for p/t nets is studied
in [32].

For the liveness problem one has to decide whether all transitions of a given p/t
net N and its initial marking my are live. A transition ¢ is live if for all markings
m reachable from mg there exists one marking m’ reachable from m that enables
t:

Vm € RS(myg) : 3m’ € RS(m) : m’ 5

Since it is known for a long time that reachability and liveness are equivalent prob-
lems (cf. Theorem 5.5 and 5.6 in [33]) the question whether both are decidable or
not was open for several years. Decidability of reachability for p/t nets is shown in
[34], a different proof is given in [35].

In [I5] it is shown that reachability is undecidable for Petri nets that can arbi-
trarily create fresh object identities. Note, that E0S do not have identities. [36]
studies the relationship of elementary object nets with decidability of deduction in
Linear Logic fragments. Decidability questions concerning object nets with coloured
tokens, called nested nets, are studied in [37].

Boundedness is the problem to decide whether there are only finitely many
reachable markings. The boundedness problem is decidable for p/t nets [38] which
is due to the fact that p/t nets enjoy monotonicity: If transition ¢ is enabled in
marking m4 then it is also enabled for each greater marking ms. Formally:

t t
Vmi, mj, my: (m; - m) Am; < my) = (Im) : my — m) A mj < m))

Here < denotes the strict order on multisets. This fact leads to the construct of a
coverability graph which is always finite and which is expressive enough to identify
the unbounded places. The boundedness is decidable for some extensions of Petri
nets — like Post-SM Nets and Transfer Nets — and undecidable for Reset Nets,
Inhibitor Nets, and Self-Modifying Nets (cf. [39] for details).

It is well-known that it is undecidable whether a counter program with at least
two counters will terminate. EOS can simulate counter programs, i.e. for each
configuration C' of the counter program there is a nested marking of the Eos u(C)
and program execution is equivalent to firing.

Lemma 14. Fach computation of a counter program CP is bisimulated by a firing
sequence of OS(CP). Each command cmdy, is bisimulated by a sequence o(cmdy):

o(cmdy)

cmdy
Co — C <= u(C
0 CP M(0) oS (CP)

(©)

Decidability Results for Elementary Object Systems M. Kohler-Bufimeier

Due to this strong simulation we obtain the following undecidabilty results.

Theorem 15. Reachability, boundedness, and coverability are undecidable for EOS.

6.1 Simple EOS and Boundedness

The expressiveness of E0S was due to non-simple typing. The typing d is called
simple if for all ¢ we have that each place p in its preset there is a place P’ in its
postset typed with the same net, i.e. d(p) = d(p’).

If this condition is violated, i.e. we have a system net transition t such that
N € d(*t) and N ¢ d(#*) for some object net N, then firing of this transition
enforces net-tokens of type N to be unmarked (emptiness constraint): The event
710] is enabled in mode (A, p) only if all object nets in A of this type N carry the
empty marking: I1%,(\) = 0 (cf. the definition of the enabling predicate ¢ in)
In other words: The system net cannot destroy the tokens within a net-token.®

The symmetric case is unproblematic: A transition t € T with an object net N
that is present in the postset, but not in the preset, i.e. N & d('tA) and N € d(tA')
generates net-tokens of type N. The firing rule ensures that these net-tokens carry
the empty marking since in this case 7[f] is enabled in mode (A, p) only if all object
nets in p of this type N carry the empty marking.

We like to restrict EOs to simple ones since the emptiness constraint destroys
monotonicity properties of the firing rule. We define the order < on nested markings
by: R

azp = a=3" a4 Aﬁ:Z?:lbi[Bi]/\
Vi<i<m:a; =b;NA; <B;

9)

It is clear that for a transition # such that N € d(*t) and N ¢ d(t*) for some
object net N, the enabling of 7[] in the mode (A, p) does not imply the enabling of
710] in all (X, p') with A < X, i.e. the firing rule for general EOS is not monotous.

Therefore we have to forbid typings where N € d(*t) and N ¢ d(t*) for some
transition tA, i.e. we restrict EOS to simple ones.

Given the representation above for o < 3, then Y. @;[B;] is called a a-
restriction of . In general there are many restrictions since the sum representation
of was Y ;v @;, [A;] and 8 as Y ., b;[B;] are not unique. Let (8 | «) denote the
set of all a-restrictions of 3. Let a and 8 be arbitrary nested multisets with o < 3.
Then we have:

Vo,BeEM:a=<B=Vyec(Bla):a=xy=pAlla)=TI"(y) <II'(B) (10)
Lemma 16. For E0S with simple typing d the firing rule is monotonous, w.r.t. the

order <. If the event T[0] is enabled then it is enabled for each greater marking:

7[6] 7[6]
(Ves s po s i o i A gy < o) == (3t prz = i A iy < i)

From this monotonicity one can generalise the result of [38].
Theorem 17. Boundedness and Coverability are decidable for simple EOS.

The markings of an E0S have a bounded nesting depth. For general object nets
there is no bound for the nesting depth and we know that the argument as given
in Theorem [17] cannot be applied since we know that even simple object nets with

6Remark: If the system net would be able to destroy the net-token’s tokens then is quite obvious
that we can simulate reset nets i.e. Petri nets with reset arcs. It is known that reachability and
boundedness is undecidable for reset nets while e.g. coverability of markings remains decidable
showing that reset nets are weaker than inhibitor nets (cf. [39]). Since Nested Nets have the
possibility to destroy tokens it is clear that Nested Nets can simulate reset nets (cf. [37]).

31

Decidability Results for Elementary Object Systems M. Kohler-Bufimeier

32

unbounded nesting depth are able to simulate counter programs [24]. The reasons
for this lies in the fact that< fails to be a wqo for unbounded nesting since we may
have infinitly many incomparable markings.

Surprisingly, one can show that reachability remains undecidable even if we
restrict EOS to simple typings.

Lemma 18. Fach computation of CP is simulated weakly by a firing sequence of
the simple EOS OS year,(CP) in the following sense:

Co - € = (o) oSO 1(C)

The simulation is called weak since there are several firing sequences due to
non-deterministic choices and only some of them correspond to counter program
execution. The main difference of this simulation compared to that of LemmdT4] is
that 11(Cp) also enables firing sequences that do not correspond to an execution of
the counter program, i.e. the simulation can make wrong “guesses”. Fortunately,
it is guarantued that no such “wrong” sequence will ever generate a marking of the
form u(C) for some C' again. Since we can encode the test, whether for some given
marking p there is some configuration C such that u = p(C) holds, directly as a
property of the marking p, this weak simulation suffices to establish the undecid-
ability of the reachability problem.

Theorem 19. Reachability is undecidable for simple EOs. It is even undecidable
for pure E0S with simple typing and undecidable for minimal EOS with simple

typing.

It is an open question whether the reachability problem is decidable for simple,
minimal and pure (i.e. unary) Eos.

Due to the weak form of simulation not everything becomes undecidable for Eos
with simple typing. In fact, as shown in Theorem [17] boundedness is decidable for
simple Eo0s.

6.2 The Liveness Problem for EOS

We define the liveness problem for Eos analogously to that of p/t nets: For the
liveness problem one has to decide whether all events 8 € © of a given Eos OS
are live. An event 0 is live if for all markings u reachable from pg there exists a
marking p’ reachable from p that enables 6.

Theorem 20. Liveness is undecidable for EOS — even when restricted to simple
Eos. It is undecidable even for pure EOS as well as for minimal EOS.

The proof uses a modification of the EOS OSyeqx(CP) of Lemma It is
shown that if we can decide liveness for of a special event, then we can decide
proper termination with empty counters which is an undecidable problem.

7 Conclusion

This papers studies the Petri net formalism of elementary object nets (E0s). Object
nets are Petri nets which have Petri nets as tokens. The general formalism of objects
nets allows arbitrarily nested nets (cf. [4, 22| 23] 24] for details).

Eo0s are called elementary since the nesting is restricted to two levels only.
Interestingly enough, even for the restricted class of elementary object nets the
reachability and the boundedness problems are undecidable. Even for the class

Decidability Results for Elementary Object Systems M. Kohler-Bufimeier

of simple E0OS where boundedness is decidable the reachability and the liveness
problem remain undecidable.

Our view with respect to decidability questions is complemented to a comlex-
ity perspective in [40] where we studied bounded Eos and the complexity of its
reachability problem.

An interesting extension of objects nets — discussed in [29] — allows algebraic
operations on the net-tokens, like sequential or parallel composition. This is a
concise way to express the self-modification of net-tokens at run-time in an algebraic
setting.

References

[1] Valk, R.: Modelling concurrency by task/flow EN systems. In: 3rd Workshop on Con-
currency and Compositionality. Number 191 in GMD-Studien, St. Augustin, Bonn,
Gesellschaft fiir Mathematik und Datenverarbeitung (1991)

[2] Valk, R.: Object Petri nets: Using the nets-within-nets paradigm. In Desel, J.,
Reisig, W., Rozenberg, G., eds.: Advanced Course on Petri Nets 2003. Volume 3098
of Lecture Notes in Computer Science., Springer-Verlag (2003) 819-848

[3] Kohler, M., Rolke, H.: Concurrency for mobile object-net systems. Fundamenta
Informaticae 54 (2003)

[4] Kohler, M., Rolke, H.: Properties of Object Petri Nets. In Cortadella, J., Reisig, W.,
eds.: International Conference on Application and Theory of Petri Nets 2004. Volume
3099 of Lecture Notes in Computer Science., Springer-Verlag (2004) 278-297

[5] Kohler, M., Moldt, D., Rolke, H.: Modeling the behaviour of Petri net agents. In
Colom, J.M., Koutny, M., eds.: International Conference on Application and Theory
of Petri Nets. Volume 2075 of Lecture Notes in Computer Science., Springer-Verlag
(2001) 224-241

[6] Kohler, M., Moldt, D., Rolke, H.: Modelling mobility and mobile agents using nets
within nets. In v. d. Aalst, W., Best, E., eds.: International Conference on Application
and Theory of Petri Nets 2003. Volume 2679 of Lecture Notes in Computer Science.,
Springer-Verlag (2003) 121-140

[7] Petri, C.A.: Introduction to general net theory. In Brauer, W., ed.: Net Theory
and its applications. Proceedings of the Advanced course on general net theory of
processes and systems. Volume 84 of Lecture Notes in Computer Science., Springer-
Verlag (1979)

[8] Peterson, J.L., Silberschatz, A.: Operating System Concepts. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts (1985) Second edition.
[9] Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts 1-2. Infor-
mation and computation 100 (1992) 1-77
[10] Cardelli, L., Gordon, A.D., Ghelli, G.: Mobility types for mobile ambients. In: Pro-
ceedings of the Conference on Automata, Languages, and Programming (ICALP’99).
Volume 1644 of Lecture Notes in Computer Science., Springer-Verlag (1999) 230-239
[11] Vitek, J., Castagna, G.: Seal: A framework for secure mobile computations. In:
ICCL Workshop: Internet Programming Languages. (1998) 4777
[12] Valk, R.: Petri nets as token objects: An introduction to elementary object nets.
In Desel, J., Silva, M., eds.: Application and Theory of Petri Nets. Volume 1420 of
Lecture Notes in Computer Science. (1998) 1-25

[13] Busi, N.: Mobile nets. In Ciancarini, P., Fantechi, A., Gorrieri, R., eds.: Formal
Methods for Open Object-Based Distributed Systems. Volume 139., Kluwer (1999)
51-66

[14] Haddad, S., Poitrenaud, D.: Theoretical aspects of recursive Petri nets. In Donatelli,
S., Kleijn, J., eds.: Proceedings of the 20th International Conference on Application
and Theory of Petri Nets. Volume 1639 of Lecture Notes in Computer Science., Sprin-
ger-Verlag (1999) 228-247

33

Decidability Results for Elementary Object Systems M. Kohler-Bufimeier

34

(15]
(16]
(17]

(18]

23]
24]

[25]

[26]

27]

32]
(33]
(34]

(35]

Kummer, O.: Undecidability in object-oriented Petri nets. Petri Net Newsletter 59
(2000) 18-23

Kummer, O., Dietze, R., Kudlek, M.: Decidability problems of a basic class of object
nets. Fundamenta Informaticae 79 (2008) 295-302

Lomazova, I.A.: Nested Petri nets — a formalism for specification of multi-agent
distributed systems. Fundamenta Informaticae 43 (2000) 195-214

Xu, D., Deng, Y.: Modeling mobile agent systems with high level Petri nets. In:
IEEE International Conference on Systems, Man, and Cybernetics’2000. (2000)
Kummer, O.: Referenznetze. Logos Verlag (2002)

Hiraishi, K.: PN?: An elementary model for design and analysis of multi-agent
systems. In Arbab, F., Talcott, C.L., eds.: Coordination Models and Languages,
COORDINATION 2002. Volume 2315 of Lecture Notes in Computer Science., Sprin-
ger-Verlag (2002) 220-235

Bednarczyk, M.A., Bernardinello, L., Pawlowski, W., Pomello, L..: Modelling mobility
with Petri hypernets. In Fiadeiro, J.L., Mosses, P.D., Orejas, F., eds.: Recent Trends
in Algebraic Development Techniques (WADT 2004). Volume 3423 of Lecture Notes
in Computer Science., Springer-Verlag (2004) 28-44

Kohler, M., Rolke, H.: Reference and value semantics are equivalent for ordinary
Object Petri Nets. In Darondeau, P., Ciardo, G., eds.: International Conference
on Application and Theory of Petri Nets 2005. Volume 3536 of Lecture Notes in
Computer Science., Springer-Verlag (2005) 309-328

Kohler, M., Farwer, B.: Modelling global and local name spaces for mobile agents
using object nets. Fundamenta Informaticae 72 (2006) 109-122

Kohler-Bufimeier, M., Heitmann, F.: On the expressiveness of communication chan-
nels for object nets. Fundamenta Informaticae 93 (2009) 205-219

Lakos, C.: A Petri net view of mobility. In: Formal Techniques for Networked
and Distributed Systems (FORTE 2005). Volume 3731 of Lecture Notes in Computer
Science., Springer-Verlag (2005) 174-188

Hoffmann, K., Ehrig, H., Mossakowski, T.: High-level nets with nets and rules as
tokens. In: Application and Theory of Petri Nets and Other Models of Concurrency.
Volume 3536 of Lecture Notes in Computer Science., Springer-Verlag (2005) 268 —
288

Lomazova, I.A., van Hee, K.M., Oanea, O., Serebrenik, A., Sidorova, N., Voorhoeve,
M.: Nested nets for adaptive systems. In: Application and Theory of Petri Nets and
Other Models of Concurrency. Lecture Notes in Computer Science, Springer-Verlag
(2006) 241-260

Velardo, F.R., de Frutos-Escrig, D.: Name creation vs. replication in petri net sys-
tems. Fundam. Inform. 88 (2008) 329-356

Kohler-Bufimeier, M.: Hornets: Nets within nets combined with net algebra. In Wolf,
K., Franceschinis, G., eds.: International Conference on Application and Theory of
Petri Nets (ICATPN’2009). Volume 5606 of Lecture Notes in Computer Science.,
Springer-Verlag (2009) 243-262

Kohler, M.: Objektnetze: Definition und Eigenschaften. Logos Verlag, Berlin (2004)
Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Kohler, M., Moldt,
D., Rolke, H., Valk, R.: An extensible editor and simulation engine for Petri nets:
Renew. In Cortadella, J., Reisig, W., eds.: International Conference on Application
and Theory of Petri Nets 2004. Volume 3099 of Lecture Notes in Computer Science.,
Springer-Verlag (2004) 484 — 493

Araki, T., Kasami, T.: Some decision problems related to the reachability problem
for Petri nets. Theoretical Computer Science 3 (1977) 85-104

Peterson, J.: Petri Net Theory and the Modeling of Systems. Prentice Hall Inc.,
Englewood Cliffs NJ (1981)

Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM
Journal Computation 13 (1984) 441-460

Lambert, J.L.: A structure to decide the reachability in Petri nets. Theoretical

Decidability Results for Elementary Object Systems

Computer Science 99 (1992) 79-104

Farwer, B.: A linear logic view of object Petri nets. Fundamenta Informaticae 37
(1999) 225-246

Lomazova, I.A., Schnoebelen, P.: Some decidability results for nested Petri nets.
In: International Conference on Perspectives of System Informatics (PSI’99). Volume
1755 of Lecture Notes in Computer Science., Springer-Verlag (2000) 208-220

Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and
System Sciences 3 (1969) 147-195

Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and unde-
cidability. In Larsen, K., ed.: Automata, Languages, and Programming (ICALP’98).
Volume 1443 of Lecture Notes in Computer Science., Springer-Verlag (1998) 103-115
Kohler-Bufimeier, M., Heitmann, F.: Safeness for object nets. Fundamenta Informat-
icae (2010) To appear.

M. Kohler-Bufimeier

35

	Introduction
	Preliminaries
	Elementary Object Systems
	Projections and Firing Rule
	Projection Invariance of the Firing Rule
	Reversibility

	Reference Semantics and Generalised State Machines
	A short Overview of Nets-within-Nets Formalisms
	Decidability Problems for EOS
	Simple EOS and Boundedness
	The Liveness Problem for EOS

	Conclusion

