
EPiC Series in Computing
Volume 50, 2017, Pages 6–19

GCAI 2017. 3rd Global Con-
ference on Artificial Intelligence

Extending the Description Logic ALC with More
Expressive Cardinality Constraints on Concepts∗

Franz Baader and Andreas Ecke

Theoretical Computer Science, TU Dresden, Germany
franz.baader@tu-dresden.de

Abstract

We extend the terminological formalism of the well-known description logic ALC from
concept inclusions (CIs) to more general constraints expressed in the quantifier-free frag-
ment of Boolean Algebra with Presburger Arithmetic (QFBAPA). In QFBAPA one can
formulate Boolean combinations of inclusion constraints and numerical constraints on the
cardinalities of sets. Our new formalism extends, on the one hand, so-called cardinality re-
strictions on concepts, which have been introduced two decades ago, and on the other hand
the recently defined statistical knowledge bases. Though considerably more expressive, our
formalism has the same complexity (NExpTime) as cardinality restrictions on concepts.
We will also introduce a restricted version of our formalism for which the complexity is
ExpTime. This yields the until now unknown exact complexity of the consistency problem
for statistical knowledge bases.

1 Introduction
Description Logics (DLs) [3] are a well-investigated family of logic-based knowledge representa-
tion languages, which are frequently used to formalize ontologies for application domains such
as biology and medicine [6]. To define the important notions of such an application domain
as formal concepts, DLs state necessary and sufficient conditions for an individual to belong
to a concept. These conditions can be Boolean combinations of atomic properties required for
the individual (expressed by concept names) or properties that refer to relationships with other
individuals and their properties (expressed as role restrictions). For example, the concept of a
motor vehicle can be formalized by the concept description Vehicleu∃part.Motor, which uses the
concept names Vehicle and Motor and the role name part as well as the concept constructors
conjunction (u) and existential restriction (∃r.C). The concept inclusion (CI)

Motor-vehicle v Vehicle u ∃part.Motor

can then be used to state that every motor vehicle needs to belong to this concept description.
Numerical constraints on the number of role successors (so-called number restrictions) have been

∗Partially supported by DFG within the Research Unit 1513 Hybris.

C. Benzmüller, C. Lisetti and M. Theobald (eds.), GCAI 2017 (EPiC Series in Computing, vol. 50), pp. 6–19

ALC with Cardinality Constraints Baader and Ecke

used early on in DLs [5, 8, 7]. For example, using number restrictions, cars can be constrained
to being motor vehicles with 3 or 4 wheels:

Car v Motor-vehicle u (6 4 part.Wheel) u (> 3 part.Wheel).

Whereas number restrictions are local in the sense that they consider role successors of an indi-
vidual under consideration (e.g. a particular motor vehicle), cardinality restrictions on concepts
(CRs) [2, 17] are global, i.e., they consider all individuals in an interpretation. For example, the
cardinality restriction (6 45000000 (Car u ∃registered-in.German-district)) states that at most
45 million cars are registered all over Germany. Such cardinality restrictions can express CIs
(C v D is equivalent to (6 0 (C u ¬D))), but are considerably more expressive. In particular,
they increase the complexity of reasoning: for the prototypical DL ALC, consistency w.r.t. CIs
is ExpTime-complete [15], but consistency w.r.t. CRs is NExpTime-complete if the numbers
occurring in the CRs are assumed to be encoded in binary [17]. With unary coding of numbers,
consistency stays ExpTime-complete even w.r.t. CRs [17], but the above example considering
45 million cars clearly shows that unary coding is not appropriate if numbers with large values
are employed.

Whereas CRs can only relate the cardinality of a concept to a fixed number, the recently
introduced statistical KBs [11] consist of probabilistic conditional (PCs), which can relate the
cardinality of a concept with that of a subconcept. For example, the PC

(∃maker.German |Car u ∃registered-in.German-district)[.6, .7]

states that between 60% and 70% of the cars registered in Germany are German made. Since
PCs can also express CIs, the complexity of reasoning in ALC w.r.t. PCs is ExpTime-hard, but
the authors of [11] leave the exact complexity as an open problem.

In this paper, we introduce and investigate more general constraints on the cardinalities
of concepts, which encompass both CRs and PCs, but are more expressive than both. The
main idea is to use the quantifier-free fragment of Boolean Algebra with Presburger Arithmetic
(QFBAPA) [10] to formulate and combine constraints.1 An example of a constraint expressible
this way, but not expressible using CRs or PCs is 2 · |Car u ∃registered-in.German-district u
∃fuel.Diesel| < |Car u ∃registered-in.German-district u ∃fuel.Petrol|, which states that, in Ger-
many, cars running on petrol outnumber cars running on diesel by a factor of more than two.

We will first show that, though considerably more expressive than CRs, our new formalism
has the same complexity (NExpTime for binary coding of numbers) as CRs in the DL ALC.
We will then introduce a restricted version of this formalism, which can still express PCs, but
not CRs, and show that this way we can reduce the complexity to ExpTime. This also solves
the open problem of the exact complexity of reasoning w.r.t. PCs in ALC. The NExpTime
upper bound for the general case actually also follows from the NExpTime upper bound in [18]
for a more expressive logic with n-ary relations and function symbols. We give our own proof
for the case of cardinality constraints on concepts since it is simpler and sets the stage for our
ExpTime result in the restricted case.

2 Preliminaries
Before defining our new terminological formalism in Section 3, we briefly introduce ALC concept
inclusions, cardinality constraints on concepts, statistical knowledge bases, and QFBAPA.

1The idea of employing QFBAPA in DLs was already used in [1] to generalize number restrictions.

7

ALC with Cardinality Constraints Baader and Ecke

Given disjoint finite sets NC and NR of concept names and role names, respectively, the set
of ALC concept descriptions is defined inductively:

• all concept names are ALC concept descriptions;

• if C,D are ALC concept descriptions and r ∈ NR, then ¬C (negation), C tD (disjunc-
tion), CuD (conjunction), ∃r.C (existential restriction), ∀r.C (value restriction) are ALC
concept descriptions.

An ALC concept inclusion (CI) is of the form C v D where C,D are ALC concept descriptions.
An ALC TBox is a finite set of ALC CIs.

The semantics of ALC is defined using the notion of an interpretation. An interpretation is
a pair I = (∆I , ·I), where the domain ∆I is a non-empty set and ·I is a function that assigns to
every concept name A a set AI ⊆ ∆I and to every role name r a binary relation rI ⊆ ∆I×∆I .
This function is extended to ALC concept descriptions as follows:

• (C uD)I = CI ∩DI , (C tD)I = CI ∪DI , (¬C)I = ∆I \ CI ;

• (∃r.CI) = {x ∈ ∆I | there is a y ∈ ∆I with (x, y) ∈ rI and y ∈ CI};

• (∀r.C)I = {x ∈ ∆I | for all y ∈ ∆I , (x, y) ∈ rI implies y ∈ CI}.

The interpretation I is a model of a TBox T if it satisfies CI ⊆ DI for all CIs C v D ∈ T .
The TBox T is consistent if it has a model. The ALC concept C is satisfiable w.r.t. T if there
is a model I of T such that CI 6= ∅. Given two ALC concept descriptions C,D, we say that
C is subsumed by D w.r.t. T (written C vT D) if CI ⊆ DI holds for all models I of T . The
concept descriptions C,D are equivalent w.r.t. T (written C ≡T D) if C vT D and D vT C.
Equivalence w.r.t. the empty TBox (i.e., ≡∅) is written as ≡.

An ALC cardinality restriction (CR) is of the form (6nC) or (>nC) where C is an ALC
concept description and n a non-negative integer. An ALC CBox is a finite set of ALC CRs.
Given an interpretation I, we say that I satisfies the CR (6nC) if |CI | ≤ n, and the CR
(>nC) if |CI | ≥ n, where |S| denotes the cardinality of the set S. The interpretation I is
a model of a CBox C if it satisfies all CRs in C. The CBox C is consistent if it has a model.
Satisfiability and subsumption w.r.t. a CBox are defined in the obvious way.

CRs are more expressive than CIs. In fact, it is easy to see that the CR (6 0 (C u ¬D)) is
satisfied by the same interpretations as the CI C v D. In addition, the CR (6 1A) for a concept
name A cannot be expressed by any ALC TBox. Basically, this is due to the bisimulation
invariance of ALC, which implies that any satisfiable concept C can be satisfied in models
that make C arbitrarily large (see [4], Section 3). Consistency of ALC TBoxes is an ExpTime-
complete problem [15]. CBoxes raise this complexity to NExpTime-complete if the numbers in
the cardinality restrictions are coded in binary [17];2 for unary coding, it stays ExpTime [17].

A probabilistic ALC conditional (PC) is of the form (C |D)[`, u] where C,D are ALC concept
descriptions and `, u are rational numbers such that 0 ≤ ` ≤ u ≤ 1. A statistical ALC knowledge
base is a finite set of ALC PCs. To define the semantics of statistical KBs, the authors of [11]
restrict the attention to finite interpretations, i.e., interpretations I where ∆I is finite. The
finite interpretation I satisfies the PC (C |D)[`, u] if |DI | = 0 or

|(C uD)I |
|DI |

∈ [`, u],

2In [17], NExpTime-hardness is actually only stated for ALCQ, but it is easy to see that the argument used
there also works for ALC. The NExpTime-upper bound for the case of binary coding follows from the NExpTime
upper bound for the two-variable fragment of first order logic with (binary coded) counting quantifiers [13], a
result that was not yet known when [17] was published.

8

ALC with Cardinality Constraints Baader and Ecke

and it is a model of a statistical KB S if it satisfies all PCs in S. The statistical KB S is
consistent if it has a model. It implies the PC (C |D)[`, u] (denote as S |= (C |D)[`, u]) if this
PC is satisfied in all models of S. As shown in [11], the PC (D |C)[1, 1] is satisfied by the
same interpretations as the CI C v D, and thus consistency of statistical ALC KBs is at least
ExpTime-hard. In [11], finding a complexity upper bound for consistency is mentioned as an
open problem.

Following the presentation in [1], we now briefly introduce the logic QFBAPA (more details
can be found in [10]). In this logic one can build set terms by applying Boolean operations
(intersection ∩, union ∪, and complement ·c) to set variables as well as the constants ∅ and U .
Set terms s, t can then be used to state inclusion and equality constraints (s = t, s ⊆ t) between
sets. Presburger Arithmetic (PA) expressions are built from integer variables, integer constants,
and set cardinalities |s| using addition as well as multiplication with an integer constant. They
can be used to form numerical constraints of the form k = `, k < `,N dvd `, where k, ` are PA
expressions, N is an integer constant, and dvd stands for divisibility. A QFBAPA formula is a
Boolean combination of set and numerical constraints. A solution σ of a QFBAPA formula φ
assigns a finite set σ(U) to U , subsets of σ(U) to set variables, and integers to integer variables
such that φ is satisfied by this assignment. The evaluation of set terms, PA expressions, and set
and numerical constraints w.r.t. σ is defined in the obvious way. For example, σ satisfies the
numerical constraint |s∪ t| = |s|+ |t| for set variables s, t if |σ(s)∪ σ(t)| = |σ(s)|+ |σ(t)|. Note
that this is the case iff σ(s) and σ(t) are disjoint, which we could also have expressed using the
set constraint s ∩ t ⊆ ∅. A QFBAPA formula φ is satisfiable if it has a solution. In [10] it is
shown that the satisfiability problem for QFBAPA formulae is NP-complete.

3 Extended Cardinality Constraints on Concepts

Basically, the more expressive constraints considered in this paper are QFBAPA formulae where
ALC concept descriptions are used in place of set variables. However, since inclusion constraints
s ⊆ t can be expressed as cardinality constraints |s∩ tc| ≤ 0, we do not explicitly allow the use
of set constraints. In addition, since ALC has all Boolean operations on concepts, we do not
need Boolean operations on set terms. Consequently, we define extended cardinality constraints
on ALC concepts as follows:

• ALC cardinality terms are built from integer constants and concept cardinalities |C| for
ALC concept descriptions C using addition and multiplication with integer constants;

• extended ALC cardinality constraints are of the form k = `, k < `,N dvd `, where k, ` are
ALC cardinality terms and N is an integer constant;

• an extended ALC cardinality box (ECBox) is a Boolean combination of extended ALC
cardinality constraints.

When defining the semantics of ECBoxes, we restrict the attention to finite interpretations to
ensure that cardinalities of concept descriptions are always well-defined non-negative integers.
Given a finite interpretation I, concept cardinalities are interpreted in the obvious way, i.e.,
|C|I := |CI |. Addition and multiplication in cardinality terms are interpreted as the usual
addition and multiplication operations on integers, and the same is is the case for the comparison
operators =, <, and divisibility dvd. This yields the semantics of extended ALC cardinality
constraints and thus also of their Boolean combinations. The finite interpretation I is a model
of an ECBox E if it satisfies the Boolean formula E according to the above semantics. The

9

ALC with Cardinality Constraints Baader and Ecke

ECBox E is consistent if it has a model. Satisfiability and subsumption w.r.t. an ECBox are
defined in the obvious way. In the presence of ECBoxes, satisfiability and subsumption can
actually be expressed by adding constraints to the given ECBox. In fact, let E be an ECBox
and C,D be ALC concept descriptions. Then we have the following:

C is satisfiable w.r.t. E iff E ∧ |C| > 0 is consistent;
C vE D iff E ∧ |C u ¬D| > 0 is inconsistent.

For this reason, we will concentrate on the consistency problem in the following.
Obviously, cardinality restrictions can be expressed by extended cardinality constraints. The

restriction (>nC) has the same models as the constraint |C| ≥ n, which can be seen as an
abbreviation for |C| > n∨|C| = n. In the same way, (6nC) can be expressed as |C| ≤ n. This
shows that the complexity lower bound of NExpTime for the consistency problem of CBoxes
with binary coding of numbers transfers to ECBoxes.3 Regarding unary coding of numbers,
note that QFBAPA is powerful enough to express any number n using a formula of size log(n)
by repeated addition of 1 and multiplication with 2. Consequently, binary coding of numbers
can be simulated also in the unary case. This shows that the NExpTime lower bound in [17]
for CBoxes with binary coding of numbers also transfers for ALC ECBoxes with unary coding,
in spite of the fact that consistency of CBoxes is in ExpTime for unary coding of numbers.

Proposition 1. Consistency of ECBoxes is NExpTime-hard in ALC both for unary and binary
encoding of numbers.

We will prove in the next section that this problem is actually also in NExpTime. But first,
we show that statistical ALC KBs can be expressed using ECBoxes.

Lemma 2. Let ` = `1/`2 and u = u1/u2 for integers `1, `2, u1, u2. Then (C |D)[`, u] has the
same models as the ECBox

`2 · |C uD| ≥ `1 · |D| ∧ u2 · |C uD| ≤ u1 · |D|.

Note that the special case |DI | = 0 in the definition of the semantics of PCs is also covered
by this lemma since then both the PC (C |D)[`, u] and the cardinality constraints stated in the
lemma are satisfied. Lemma 2 shows that an upper bound for the complexity of consistency
of ECBoxes also yields an upper bound for the consistency of statistical KBs. Similarly, im-
plication of PCs by statistical KBs can be reduced to inconsistency of ECBoxes. We will see
later, however, that we can reduce these problems to (in)consistency w.r.t. restricted forms of
ECBoxes, which provides us with better complexity upper bounds.

4 Consistency of ALC ECBoxes
In the following we consider an ECBox E and show how to test E for consistency by reducing
this problem to the problem of testing satisfiability of QFBAPA formulae. Since the reduction
is exponential and satisfiability in QFBAPA is in NP, this yields an NExpTime upper bound for
consistency of ALC ECBoxes. To simplify the presentation of our algorithm, we assume that all
the concept descriptions occurring in E are built using the constructors conjunction, negation,

3Actually, NExpTime-hardness of consistency was shown for ALC CBoxes without a restriction to finite
interpretations. However, the reduction used in [17] actually produces a CBox that has only finite models, and
thus this reduction also works for the case of finite models.

10

ALC with Cardinality Constraints Baader and Ecke

and existential restriction only. This is without loss of generality due to the equivalences
∀r.C ≡ ¬∃r.¬C and C tD ≡ ¬(¬C u ¬D).

A well-known approach for proving complexity upper bounds in Description Logics and
Modal Logics is based on the notion of types [12, 14].4 Basically, given a set of concept
descriptions M, the type of an individual in an interpretation consists of the elements of M
to which the individual belongs. Such a type t can also be seen as a concept description Ct,
which is the conjunction of all the elements of t. We assume in the following, thatM contains
all subdescriptions of the concept descriptions occurring in E as well as the negations of these
subdescriptions.

Definition 3. A subset t ofM is a type for E if it satisfies the following properties:

1. for every concept description ¬C ∈M, either C or ¬C belongs to t;

2. for every concept description C uD ∈M, we have that C uD ∈ t iff C ∈ t and D ∈ t.

We denote the set of all types for E with types(E). Given an interpretation I and an individual
d ∈ ∆I , the type of d is the set

tI(d) := {C ∈M | d ∈ CI}.

It is easy to show that the type of an individual really satisfies the conditions stated in
Definition 3. Due to Condition 1 in the definition of types, concept descriptions induced by
different types are disjoint, and all concept descriptions in M can be obtained as the disjoint
union of the concept descriptions induced by the types containing them.

Lemma 4. If t 6= t′ are two different types, then Ct and Ct′ are disjoint, i.e., CIt ∩ CIt′ = ∅
for all interpretations I. In addition, all concept descriptions C in M can be expressed as
disjunctions of such disjoint type concepts:

C ≡
⊔

t type withC∈t

Ct and |CI | =
∑

t type withC∈t

|CIt | for all finite interpretations I.

We transform the ECBox E into a QFBAPA formula φE by introducing an integer variable
vt for every type t, stating that these variables have a non-negative value, and then replacing
every concept cardinality |C| in E by the sum of the corresponding type variables, i.e.,

|C| is replaced by
∑

t type withC∈t

vt.

A model of E yields a solution of φE as follows:

Lemma 5. Assume that I is a finite interpretation that is a model of E. If we define σ(vt) :=
|CIt | for all types t, then σ is a solution of φE .

Proof. This is an immediate consequence of Lemma 4 and the fact that the cardinalities of type
concepts are obviously non-negative integers.

However, not every solution of φE is induced by a model of E in this way. For example, let

E := |∃r.A| > 0 ∧ |A| = 0.

4Note that types are also closely related to the Venn regions used in [10] to show that satisfiability of
QFBAPA formulae is in NP.

11

ALC with Cardinality Constraints Baader and Ecke

In this case, the set M consists of the concept descriptions A,¬A,∃r.A,¬∃r.A, and there are
four types:

t1 := {A,∃r.A}, t2 := {¬A,∃r.A}, t3 := {A,¬∃r.A}, t4 := {¬A,¬∃r.A}.

The ECBox E is now translated into the QFBAPA formula φE by replacing |∃r.A| with vt1 +vt2
and |A| with vt1 + vt3 and adding the information that vt1 , vt2 , vt3 , vt4 have values ≥ 0, i.e.,

φE = vt1 ≥ 0 ∧ vt2 ≥ 0 ∧ vt3 ≥ 0 ∧ vt4 ≥ 0 ∧ vt1 + vt2 > 0 ∧ vt1 + vt3 = 0.

If we set σ(vt1) = σ(vt3) = σ(vt4) = 0 and σ(vt2) = 1, then σ is a solution of φE . However, E
does not have a model. In fact, E requires that there is an element belonging to the concept
∃r.A, which implies that there also must be an element belonging to A, which is however
prohibited by E .

This example shows that we must take elements required by existential restrictions into
account. Basically, if a type t is realized in the sense that the variable vt receives a value > 0,
then we must ensure that also types required by the existential restrictions in t are realized.

Definition 6. Let t be a type, ∃r.C an existential restriction contained in t, and ¬∃r.C1, . . . ,
¬∃r.C` all the negated existential restrictions for the role r contained in t. A type t′ satisfies
∃r.C in t if it has C,¬C1, . . . ,¬C` as elements.

If a type is realized by a solution of φE , then for every existential restriction ∃r.C contained
in t a type that satisfies this existential restriction in t must be realized as well. Thus, we must
conjoin to φE the following formulae: for every type t and every existential restriction ∃r.C
contained in t the formula

vt = 0 ∨
∑

t′ satisfies ∃r.C in t

vt′ > 0. (1)

Let us call the resulting formula ψE .

Lemma 7. The QFBAPA formula ψE is of size at most exponential in the size of E, and it is
satisfiable iff E is consistent.

Proof. Regarding the size of ψE , first note that there are at most exponentially many types t
and thus at most exponentially many variables vt since the cardinality ofM is linear in the size
of E . Consequently, concept cardinalities |C| in E are replaced by sums of at most exponentially
many variables, and φE contains at most exponentially many inequalities of the form vt ≥ 0.
This shows that he size of φE is exponentially bounded. Finally, ψE contains exponentially
many conjuncts of the form (1), and each such conjunct has at most exponential size.

Next, assume that the finite interpretation I is a model of E . If we define σ as in Lemma 5,
then by this lemma we know that σ solves φE . Now, consider a conjunct of the form (1) in
ψE for the existential restriction ∃r.C. If σ(vt) = 0, then this conjunct is obviously satisfied.
Otherwise, there is an individual d ∈ ∆I such that d ∈ CIt . In particular, if ¬∃r.C1, . . . ,¬∃r.C`
are all the negated existential restrictions for the role r contained in t, then

d ∈ (∃r.C u ¬∃r.C1 u . . . u ¬∃r.C`)I .

Consequently, there is an individual d′ ∈ ∆I such that d′ ∈ (C u ¬C1 u . . . u ¬C`)I . Let
t′ := tI(d′). Then t′ satisfies ∃r.C in t, and σ(vt′) > 0 since d′ ∈ CIt′ . This shows that σ solves
all the conjuncts of the form (1), and thus that it solves ψE .

12

ALC with Cardinality Constraints Baader and Ecke

Conversely, assume that there is a solution σ of ψE . Let

Tσ := {t | t type with σ(vt) 6= 0}

be the types that are realized by σ. We now define a finite interpretation I and show that it
is a model of E . The interpretation domain consists of copies of the realized types, where the
number of copies is determined by σ:

∆I := {(t, j) | t ∈ Tσ and 1 ≤ j ≤ σ(vt)}.

For concept names A we define AI := {(t, j) ∈ ∆I | A ∈ t}, and for role names r we set

rI := {((t, j), (t′, j′)) ∈ ∆I ×∆I | t′ satisfies an existential restriction for r in t}.

We want to show that the following holds for all types t ∈ Tσ and j, 1 ≤ j ≤ σ(vt):

(t, j) ∈ CIt . (2)

Note that, due to the disjointness of the type concepts, this implies that (t, j) cannot be an
element of CIt′ for any type t′ 6= t. As an easy consequence we obtain that |CIt | = σ(vt) for all
types t. Thus, the fact that σ solves ψE implies that I is a model of E .

It remains to show (2). For this it is sufficient to show the following: for all concept
descriptions C ∈M, all types t ∈ Tσ and all j, 1 ≤ j ≤ σ(vt) we have

(t, j) ∈ CI iff C ∈ t. (3)

We show (3) by induction on the structure of C:

• Let C = A for a concept name A. Then (3) is an immediate consequence of the definition
of AI .

• Let C = ¬D. Then induction yields (t, j) ∈ DI iff D ∈ t. By contraposition, this is the
same as (t, j) 6∈ DI iff D 6∈ t. By Condition 1 in the definition of types and the semantics
of negation, this is in turn equivalent to (t, j) ∈ (¬D)I iff ¬D ∈ t.

• Let C = D u E. Then induction yields (t, j) ∈ DI iff D ∈ t and (t, j) ∈ EI iff E ∈ t.
From this, we obtain (t, j) ∈ (D uE)I iff D uE ∈ t using Condition 2 in the definition of
types and the semantics of conjunction.

• Let C = ∃r.D. First, assume that (t, j) ∈ CI , i.e., there is (t′, j′) ∈ ∆I such that
((t, j), (t′, j′)) ∈ rI and (t′, j′) ∈ DI . The former implies that there is an existential
restriction ∃r.D′ in t that is satisfied by t′. The latter implies by induction that D ∈ t′.
Now, assume that C = ∃r.D 6∈ t. By Condition 1 in the definition of types this implies
¬∃r.D ∈ t. But then we would need to have ¬D ∈ t′ since t′ satisfies ∃r.D′ in t. This
contradicts the fact that D ∈ t′. Consequently, we have C ∈ t.
Second, assume that C = ∃r.D ∈ t. Since (t, j) ∈ ∆I , we have σ(vt) > 0, and thus
there is a type t′ satisfying ∃r.D in t such that σ(vt′) > 0. Consequently (t′, 1) ∈ ∆I

and ((t, j), (t′, 1)) ∈ rI . Since t′ satisfies ∃r.D in t, we have D ∈ t′, and induction yields
(t′, 1) ∈ DI . This shows (t, j) ∈ (∃r.D)I .

This completes the proof of (3) and thus the proof of the lemma.

Since satisfiability of QFBAPA formulae can be decided within NP even for binary coding
of numbers [10], this lemma shows that consistency of ALC ECBoxes can be decided within
NExpTime. Together with the NExpTime lower bound stated in Proposition 1, this yields:

Theorem 8. Consistency of ECBoxes is NExpTime-complete in ALC both for unary and binary
encoding of numbers.

13

ALC with Cardinality Constraints Baader and Ecke

5 Restricted Cardinality Constraints on Concepts
The extended cardinality constraints introduced above are expressive enough to formulate car-
dinality restrictions on concepts, and thus increase the complexity of reasoning in ALC from
ExpTime to NExpTime. In this section we introduce a restricted version of our constraints,
which still retains some of the extended expressiveness, but is restricted enough to leave the
complexity of reasoning within ExpTime. Basically, the high complexity of ECBoxes comes from
two sources. First, the NExpTime-hardness proof for ALC with cardinality restrictions given in
[17] makes use of constraints of the form |C| ≤ n, where n is a number with exponentially large
value, but polynomially large binary representation. We will disallow such direct comparisons
to integer constants, by restricting the constraints to comparisons between (linear combinations
of) concept cardinalities. Second, the use of arbitrary Boolean combinations of constraints in
ECBoxes causes NP-complexity of testing solvability of the constraint formula independently
of which kind of constraints are actually considered. Restricted cardinality constraints on ALC
concepts avoid these two sources of complexity:

• restricted ALC cardinality constraints are of the form

N1|C1|+N2|C2|+ · · ·+Nk|Ck| ≤ Nk+1|Ck+1|+ · · ·+Nk+`|Ck+`|,

where Ci are ALC concept descriptions and Ni are integer constants for 1 ≤ i ≤ k + `;

• a restricted ALC cardinality box (RCBox) is a conjunction of restricted ALC cardinality
constraints.

Restricted cardinality constraints are still expressive enough to formulate probabilistic condi-
tionals. In fact, the ECBox in Lemma 2 is actually an RCBox. Restricted cardinality constraints
can be seen as generalizations of probabilistic conditionals where one can compare the ratio of
linear combinations of cardinalities. Indeed, any restricted cardinality constraint is equivalent
to an inequality of the form:

N1|C1|+N2|C2|+ · · ·+Nk|Ck|
Nk+1|Ck+1|+ · · ·+Nk+`|Ck+`|

≤ q,

for q ∈ Q, and vice versa.
Lemma 2 implies that an upper bound on the complexity of ALC with restricted cardinality

constraints also holds for statistical ALC. Conversely, the ExpTime-hardness of ALC with CIs
also holds for statistical ALC, and thus for ALC with restricted cardinality constraints.

Proposition 9. Consistency of RCBoxes is ExpTime-hard in ALC, independently of whether
numbers are encoded in unary or binary.

6 Consistency of ALC RCBoxes
In this section, we show that consistency of ALC RCBoxes is in ExpTime even for binary coding
of numbers. As in Section 4 we assume that all the concept descriptions occurring in RCBoxes
are built using the constructors conjunction, negation, and existential restriction only. We
again replace each cardinality |C| occurring in the RCBox by the sum of variables

∑
t|C∈t vt

for all types t that contain C. Additionally, for each type t, we add an inequality vt ≥ 0.
Due to the restriction that RCBoxes may only compare cardinalities with each other, but not
with constants, this system of linear inequalities can be transformed into the form A · v ≥ 0

14

ALC with Cardinality Constraints Baader and Ecke

with v ≥ 0. As in the previous section, however, not every solution to this system of linear
inequalities corresponds to a model of the RCBox since existential restrictions in realized types
are not yet taken into account. For this purpose, we also need to require some of the variables
vt to have a value ≥ 1. Overall, this results in a system of linear inequalities of exponential
size, which satisfies the properties stated in the next lemma.

Lemma 10. Let φ be a system of linear inequalities consisting of A · v ≥ 0, v ≥ 0, and
B · v ≥ 1, where A,B are matrices of integer coefficients and v is the variable vector.

1. Deciding whether φ has a non-negative integer solution can be done in polynomial time.

2. The solutions of φ are closed under addition, and in particular we have the following: if
T is a set of types such that, for all t ∈ T , φ has a solution σt in which vt has a non-zero
value, then there is a non-negative integer solution σ such that σ(vt) ≥ 1 for all t ∈ T .

Proof. Regarding the first statement, note that solvability of φ in the reals can be checked in
polynomial time using linear programming [9]. Since all coefficients occurring in φ are rational,
if a real solution exists, then there is also a rational solution of polynomial size [16]. Since
solutions of A · v ≥ 0, v ≥ 0, and B · v ≥ 1 are obviously closed under multiplication with
positive integer constants, multiplication with the least common multiple of the denominators
then shows that systems solvable in the reals also have an integer solution. Summing up, we
know that solvability of such a system in the non-negative integers can be checked in polynomial
time in the size of the system. Note that this polynomial upper bound holds for numbers in
the matrices A,B encoded in binary.

Regarding the second statement, note that, for solutions σ1 and σ2 of φ, σ with σ(vt) =
σ1(vt) +σ2(vt) is a solution as well, i.e., the solutions of φ are closed under addition. But then,
if T is a set of types such that, for all t ∈ T , the system has a solution σt in which vt has a
non-zero value, then there is a non-negative integer solution σ consisting of the sum of all σt in
which σ(vt) ≥ 1 for all t ∈ T .

Basically, our algorithm for deciding the consistency of RCBoxes described in Figure 1 is a
classical type elimination algorithm [12, 14], but instead of only removing types whose existential
restrictions can no longer be satisfied, we also remove types whose variables are forced to have
value 0 by the current system of inequalities. We need to show that the algorithm is sound and
complete and runs in ExpTime.

Lemma 11. Given an ALC RCBox R, the call consistent(R) runs in time exponential in the
size of R.

Proof. For any RCBox R the number of types of R is at most exponential. Type elimination
removes one type during each iteration of its while loop, and the same is true for the repeat
loop of the procedure consistent.

The system of linear inequalities constructed during the main loop of consistent(R) has at
most exponential size, since each cardinality |C| is replaced by a sum of at most exponentially
many types, and it satisfies the preconditions of Lemma 10. Thus, it can be solved in ExpTime.
All together, this provides us with an ExpTime upper bound on the runtime of consistent(R).

Lemma 12. The algorithm consistent is sound and complete.

15

ALC with Cardinality Constraints Baader and Ecke

Procedure: type-elimination(T)
Input: T : a set of types
Output: the largest subset of T in which every existential restrictions occurring in a type in

this set is satisfied in this set
1: while there is a type t ∈ T with unsatisfied existential restrictions in T do
2: T ← T \ {t}
3: end while
4: return T

Procedure: consistent(R)
Input: R: ALC RCBox
Output: true, if R is consistent; otherwise false
1: T ← type-elimination(types(R))
2: repeat
3: T ′ ← T
4: φT ← replace each |C| in R with

∑
t∈T s.t. C∈t vt and add vt ≥ 0 for each t ∈ T

5: if there is a type t ∈ T such that φT ∧ vt ≥ 1 has no solution then
6: T ← type-elimination(T \ {t})
7: end if
8: until T = T ′

9: return T 6= ∅

Figure 1: The ALC RCBox consistency algorithm

Proof. Let R be an ALC RCBox. In order to show soundness, assume that consistent(R) return
true. This means that it computes a non-empty set T of types such that no type in T has
unsatisfied existential restrictions in T (otherwise it would have been eliminated during the last
call of type-elimination), and for each type t ∈ T there is an solution σt to φT with σ(vt) ≥ 1.
By Lemma 10, this implies that φT has a non-negative integer solution σ in which for all t ∈ T
we have σ(vt) ≥ 1. We define an interpretation I as follows:

∆I := {(t, j) | t ∈ T and 1 ≤ j ≤ σ(vt)},
AI := {(t, j) ∈ ∆I | A ∈ t} for A ∈ NC , and
rI := {((t, j), (t′, j′)) ∈ ∆I ×∆I | t′ satisfies an existential restriction for r in t}.

Analogously to the proof of Lemma 7, we can show that (t, j) ∈ CI iff C ∈ t for all types
t ∈ T and all j, 1 ≤ j ≤ σ(vt) by induction on the structure of C. There is one difference in the
argumentation compared to Lemma 7: For the case C = ∃r.D, if we assume that ∃r.D ∈ t, we
know that (since there are no unsatisfied existential restrictions in any of the types t ∈ T) there
must be a type t′ ∈ T that satisfies ∃r.D in t. As σ assigns a value ≥ 1 to all type variables in
T , we have σ(vt′) ≥ 1 and thus (t′, 1) ∈ ∆I and ((t, j), (t′, 1)) ∈ rI by definition of rI . Since t′
satisfies ∃r.D in t, this implies D ∈ t′ and hence (t′, 1) ∈ DI by induction, which finally yields
(t, j) ∈ (∃r.D)I .

The equivalence we have just shown also implies (t, j) ∈ CIt and thus |CIt | = σ(vt) for all
types t. Since σ solves φT , this implies that I is a model of R.

To show completeness, assume that there exists a model I of R and define TI = {t ∈
types(R) | |CIt | > 0}. Similarly to Lemma 5, we formulate the following claim:

16

ALC with Cardinality Constraints Baader and Ecke

Claim 13. Assume that I is a finite interpretation that is a model of R. Then for all T ⊇ TI ,
if we define σ(vt) := |CIt | for all types t ∈ T , then σ is a solution of φT .

This claim immediately follows from Lemma 5 and the fact that all the types in types(R)\T
satisfy |CIt | = 0. However, it does not immediately imply that consistent(R) returns true.
However, we can show that none of the types t ∈ TI will ever get removed from the set T in the
algorithm. We show this by induction on the number k of iterations of the repeat-until loop.

In case k = 0, i.e., before entering the loop the first time, we know that TI ⊆ types(R)
and no type t ∈ TI has unsatisfied existential restrictions, since I is a model of R and thus all
existential restrictions of any t ∈ TI are satisfied even within TI . Consequently, none of these
types is removed in the call of type-elimination.

For the case k > 0, we know that there is a solution σ of φT due to Claim 13, and in
particular, this solution has σ(vt) ≥ 1 for all t ∈ TI . Thus none of the t ∈ TI can satisfy the
if-statement in the loop. For the same reason as before, type-elimination will not remove types
t ∈ TI .

Thus, the algorithm will eventually terminate due to Lemma 11 with a set T ⊇ TI . Since
the model I has a non-empty domain, TI 6= ∅, and thus the procedure returns true.

This completes the proof that consistency for ALC RCBoxes is in ExpTime for binary coding
of numbers, which implies the same upper bound also for unary coding. Since ALC TBoxes
without cardinality constraints already have an ExpTime-hard consistency problem, this finally
implies ExpTime-completeness of consistency for RCBoxes

Theorem 14. Consistency of RCBoxes is ExpTime-complete in ALC both for unary and binary
encoding of numbers.

Since RCBoxes can express statistical KBs, this also implies ExpTime-completeness for
the consistency problem of statistical ALC KBs. Furthermore, it is not hard to show that the
ExpTime complexity also extends to entailment of PCs from statistical KBs (called l-entailment
in [11]).

Corollary 15. Consistency of statistical ALC KBs, and entailment of a PC (C|D)[`, u] from
a statistical ALC KB K are ExpTime-complete both for unary and binary encoding of numbers.

Proof. The proof for consistency is trivial. Regarding entailment, recall that the PC (C|D)[`, u]
is entailed by a statistical ALC KB K, if all models I of K also satisfy

|D|I = 0 or ` ≤ |C uD|
I

|D|I
≤ u.

Note that models with |D|I = 0 always satisfy the PC (C|D)[`, u], so we only have to check all
models I with |D|I ≥ 1. Let R be the equivalent RCBox for K and let ` = `1/`2 and u = u1/u2
for `1, `2, u1, u2 ∈ N. Then, we know that K entails (C|D)[`, u] iff

R∧ |D| ≥ 1 ∧ `2 · |C uD| < `1 · |D| and R∧ |D| ≥ 1 ∧ u2 · |C uD| > u1 · |D|

are both inconsistent. In particular, since we are only dealing with integers here, we can replace
the strict inequalities by non-strict ones by simply adding a variable vε. Thus, the entailment
holds iff R ∧ |D| ≥ 1 ∧ `2 · |C uD| + vε ≤ `1 · |D| ∧ vε ≥ 1 and R ∧ |D| ≥ 1 ∧ u2 · |C uD| ≥
u1 · |D| + vε ∧ vε ≥ 1 are both inconsistent. This way, we obtain RCBoxes extended by a
single positive integer variable vε, for which vε ≥ 1 must hold. While these are not RCBoxes in
the sense introduced in Section 5, the only effect this additional inequality has is that, in the

17

ALC with Cardinality Constraints Baader and Ecke

systems of inequalities considered in a run of the algorithm consistent, there is an additional
inequality vε ≥ 1, which does not destroy applicability of Lemma 10. Thus, entailment of PCs
by a statistical ALC KB can be decided in ExpTime. This upper bound holds for binary coding
of numbers, and thus also for unary coding. The ExpTime lower bound for unary (and thus
also binary) coding follows from the fact that subsumption w.r.t. ALC TBoxes is a special case
of entailment of PCs from a statistical ALC KB.

7 Conclusion

We have used the quantifier-free fragment of Boolean Algebra with Presburger Arithmetic (QF-
BAPA) as an inspiration for introducing very expressive cardinality constraints on concepts in
the DL ALC. Although considerably more expressive than the traditional cardinality restric-
tions on concepts, the complexity of the consistency problem in this new formalism does not
increase compared to the case of cardinality restrictions. Nevertheless, the NExpTime complex-
ity achieved this way is quite high. For this reason, we have introduced a restricted formalism,
for which the complexity is ExpTime. Since this restricted formalism can express the statistical
knowledge bases of [11], this also settles the open problem of what is the exact complexity of
reasoning w.r.t. statistical knowledge bases in ALC. Interestingly, our complexity results do
not depend on whether unary or binary coding of numbers is assumed.

Regarding related work, we have already mentioned in the introduction that the NExpTime
upper bound for the general case actually also follows from the NExpTime upper bound in [18]
for a more expressive logic with n-ary relations and function symbols, called QFBAPA-Rel. In
fact, our ECBoxes correspond to the restriction of QFBAPA-Rel to the case where no function
symbols are used and the only expressions involving relations are of the form r−1[B] for binary
relations r (see Fig. 3 in [18]), which correspond to existential restrictions. Interestingly, the
NExpTime lower bound for reasoning in QFBAPA-Rel is shown in [18] for the restricted case
without any relation symbols and only one unary function symbol. Thus, expressibility of
ECBoxes in QFBAPA-Rel yields NExpTime-hardness of a quite different fragment of this logic.
We have give our own proof of the NExpTime upper bound for the case of extended cardinality
constraints on concepts since it is quite simple and sets the stage for our ExpTime result in the
restricted case. This result does not follow from any of the results in [18], and thus is the main
new result of this paper.

Regarding future work, it would be interesting to combine the two formalisms for cardi-
nality constraints on concepts introduced in the present paper with the QFBAPA-based more
expressive number restrictions investigated in [1]. Extending our algorithms to the combined
formalisms is probably a non-trivial task. In fact, for the formalisms considered in the present
paper, there is only a weak interaction between the concept descriptions and the cardinality
constraints: existential restrictions in non-empty types may require certain other types to be
non-empty as well. With very expressive number restrictions, more sophisticated interactions
can occur. In fact, both the cardinality restrictions and the number restrictions induce systems
of inequations, which must be appropriately combined.

Regarding implementation, procedures based on type-elimination such as the one employed
to show our ExpTime upper bound for the restricted formalism are usually not useful in practice
since they are not only worst-case but also best-case exponential. We intend to investigate
whether a tableau-like procedure combined with a solver for linear inequations can be used to
obtain a more practical procedure.

18

ALC with Cardinality Constraints Baader and Ecke

References
[1] Franz Baader. A new description logic with set constraints and cardinality constraints on role

successors. In Proc. of the 11th Int. Symp. on Frontiers of Combining Systems (FroCoS’17),
volume 10483 of Lecture Notes in Computer Science, Brasília, Brazil, 2017. Springer-Verlag. To
appear.

[2] Franz Baader, Martin Buchheit, and Bernhard Hollunder. Cardinality restrictions on concepts.
Artificial Intelligence, 88(1–2):195–213, 1996.

[3] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[4] Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduction to Description
Logic. Cambridge University Press, 2017.

[5] Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness, and Lori Alperin Resnick.
CLASSIC: A structural data model for objects. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pages 59–67, 1989.

[6] Robert Hoehndorf, Paul N. Schofield, and Georgios V. Gkoutos. The role of ontologies in biological
and biomedical research: A functional perspective. Brief. Bioinform., 16(6):1069–1080, 2015.

[7] Bernhard Hollunder and Franz Baader. Qualifying number restrictions in concept languages. In
Proc. of the 2nd Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR’91),
pages 335–346, 1991.

[8] Bernhard Hollunder, Werner Nutt, and Manfred Schmidt-Schauß. Subsumption algorithms for
concept description languages. In Proc. of the 9th Eur. Conf. on Artificial Intelligence (ECAI’90),
pages 348–353, London (United Kingdom), 1990. Pitman.

[9] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Proc. of the 16th
Annual ACM Symp. on Theory of Computing (STOC’84), pages 302–311, 1984. ACM.

[10] Viktor Kuncak and Martin C. Rinard. Towards efficient satisfiability checking for Boolean algebra
with Presburger arithmetic. In Proc. of the 21st Int. Conf. on Automated Deduction (CADE-07),
volume 4603 of Lecture Notes in Computer Science, pages 215–230. Springer-Verlag, 2007.

[11] Rafael Peñaloza and Nico Potyka. Towards statistical reasoning in description logics over finite
domains. In Proc. of the 11th Int. Conf. on Scalable Uncertainty Management (SUM 2017), volume
10564 of Lecture Notes in Computer Science, Granada, Spain, 2017. Springer-Verlag. To appear.

[12] V. R. Pratt. Models of program logic. In Proc. of the 20th Annual Symp. on the Foundations of
Computer Science (FOCS’79), pages 115–122, 1979.

[13] Ian Pratt-Hartmann. Complexity of the two-variable fragment with counting quantifiers. J. of
Logic, Language and Information, 14(3):369–395, 2005.

[14] Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. Type-elimination-based reasoning for
the description logic SHIQbs using decision diagrams and disjunctive datalog. Logical Methods
in Computer Science, 8(1), 2012.

[15] Klaus Schild. A correspondence theory for terminological logics: Preliminary report. In Proc. of
the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pages 466–471, 1991.

[16] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Inc., New
York, NY, USA, 1986.

[17] Stephan Tobies. The complexity of reasoning with cardinality restrictions and nominals in expres-
sive description logics. J. of Artificial Intelligence Research, 12:199–217, 2000.

[18] Kuat Yessenov, Ruzica Piskac, and Viktor Kuncak. Collections, cardinalities, and relations. In
Proc. of the 11th Int. Conf. on Verification, Model Checking, and Abstract Interpretation (VM-
CAI’10), volume 5944 of Lecture Notes in Computer Science, pages 380–395. Springer-Verlag,
2010.

19

	Introduction
	Preliminaries
	Extended Cardinality Constraints on Concepts
	Consistency of ALC ECBoxes
	Restricted Cardinality Constraints on Concepts
	Consistency of ALC RCBoxes
	Conclusion

