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Abstract

Certain approaches for missing-data imputation propose the use of learning techniques to identify

regularities and relations between attributes, which are subsequently used to impute some of the missing

data. Prior theoretical results suggest that the soundness and completeness of such learning-based

techniques can be improved by applying rules anew on the imputed data, as long as one is careful in

choosing which rules to apply at each stage. This work presents an empirical investigation of three

natural learning-based imputation policies: training rules once and applying them repeatedly; training

new rules at each iteration; continuing the training of previous rules at each iteration. We examine

how the three policies fare across different settings. In line with the predictions of the theory, we find

that an iterative learn-predict approach is preferable.

1 Introduction

Missing values imputation is an actual yet challenging issue and there are a variety of methods
to handle it, including statistical analysis and machine learning techniques. The selection of
the most appropriate solution is determined by factors such as i) possible relations between
attributes ii) attribute type: continuous, categorical or mixed data iii) the categories of missing
data types. In all cases the solution of the problem is based on two main axes, the first is
discovering rules or correlations between attributes by using available data and the second axis
is data recovery by using the discovered rules.

However, studying literature one can easily detect that most of the cases make use of the
learn-predict iteration model. More precisely, while there are solutions on i) how to modify
existing learning algorithms with aim to cope the difficulty of learning from incomplete data
ii) various data recovery techniques and policies of how to use them; there has not yet given
place,in our opinion, to the investigation on how these two axes should interact at each iteration
of the process in order to deliver more sound and complete dataset.

Additionally the reasons that led us to study the various imputation approaches are the
following, firstly once the solution involves learning automatically inherits all the problems that
concern learning research area (discovery of incomplete and/or incorrect learning rules) and
secondly if we assume that our original data were only incomplete, after the first imputation
step they will be noisy too. Thus the question that rise is: Is there a natural way to chain the
process of learning and recovery in order to maximize soundness and completeness?
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This study aims to give an answer to the above question through an empirical investigation
of three natural learning-based imputation policies: training rules once and applying them
repeatedly; training new rules at each iteration; continuing the training of previous rules at
each iteration using recovered data. More over we examine how those policies respond with
different type of learning algorithms, percentages of missing attributes and dataset sizes.

2 Imputing Values Through Learning

Learning from incomplete or missing data has been studied under different perception of missing
data types [16]:, Missing Completely At Random (MCAR), Missing At Random (MAR) and
Missing Not At Random (MNAR). In case of reasoning with uncertain knowledge, widely used
approaches can be found in the statistics literature [4]. The idea is to impute data based
on their expected values given the observed data. In case of MCAR and MAR, Expectation
Maximization (EM), a two step approach, is commonly used [2].

In more sophisticated Multiple Imputation (MI) Frameworks, multiple imputation procedure
replaces each missing value with a set of plausible values that represent the uncertainty about
the right value to impute. These multiply imputed data sets are then analyzed by using standard
procedures for complete data and by combining the results of these analyses [17].

Statistical approaches are used to discover value estimations when the data are assumed
to be independent, rather than a structure of learning sets. In some cases of high level of
incompleteness such solutions can lead to a bias system. The objective of this study is to
answer the question: ”Is there a natural bases imputation policy that could take into account
all data and the relation between attributes as well in order to lead us to a more complete and
less sound dataset?”

Two machine learning based approaches are demonstrated [7] as alternatives to standard
statistical data completion methods: i) Autoclass method, to automatically discover clusters in
data (based on Bayesian classification theory) and ii) the C4.5 method, a supervised learning
algorithm for decision tree induction. Besides Modern Knowledge Systems use probabilistic
Bayesian networks augmented by decision theory to allow making decision about appropri-
ate actions. In a Bayesian framework the Data Augmentation (DA) algorithm is the natural
analogue of the EM algorithm. Another approach of MI has also been studied under noise-
free deterministic rule learning setting in the Probably Approximately Correct (PAC) learning
framework. It has been shown [21] that the PAC learning semantics can be extended to deal
with arbitrarily missing information, and that certain PAC learning algorithms can be easily
modified to cope with such experiences [9]. Other studies[23] present the benefits of simultane-
ously learning multiple predictors (rules) from a common dataset and [22] the benefits of rule
chaining. To this end a study of Michael [10] presents a theoretical framework for the simulta-
neous learning and predict approaches as well as the possible ways and benefits of chaining the
predictions of each approach.

3 Preliminaries and Notation

Given a set A of attributes xi, with i ∈ {1, ..., n}, define dom[i] the domain of attribute xi, and
by dom[A] the cross product dom[1]× ...× dom[n] of all attribute domains. A complete record
R is defined by R ∈ dom[A], and the value of xi in R is denoted as R[i]. In case of missing
value of xi define R∗ the partially observation of R, and with R∗[i] the value of the attribute
xi in R∗. The imputed version of R∗ is denoted as R+. The number of missing attributes in
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the R∗ is denoted as n∗ and the number of records in D is denoted as r. The complete dataset
is denoted as D, and the dataset with missing values as D∗.

The number of impute iterations of learning-predict process is denoted with epochs, and the
imputed version of a dataset D∗ after j iterations where 0 ≤ j ≤ epochs is denoted as D+

j .

The set of predictors of the jth epoch for all attributes is denoted by Pj where 0 ≤ j ≤
epochs, and the set of predictors for each attribute i of jth epoch is denoted by P i

j where
0 ≤ i ≤ n.

We denote with PoLj the policy layer which defines the order used in epoch j to apply the
predictors of Pj , and a Policy as P, where P =< PoL1, PoL2, ..., PoLepochs >.

We denote depth d the number of layers within a policy P. If d = 1 the P is flat, if d = 0
the P is empty and chained if d > 1. If imputation solution requires the creation of a new set
of predictors in each epoch, then d = epochs. Furthermore, based on the imputation approach,
PoLepochs may shares the same predictors with PoLepochs−1 in a different order. Alternatively,
we denote D+

epochs the final imputed version of D∗ after applying PoLepochs over D+
epochs−1.

Note that the given R∗ may not have the required completeness to attain the missing value of
xi ∈ R, in such a case R[i] =∗.

To this end we consider a dataset as more complete than another when it has less missing
values and as more sound than another, when it has less incorrect values. Thus, for better
evaluation of each approach we calculate the correctly recovered, incorrectly recovered and
unable to recover values.

4 Why Learning and Recovery Processes Should not Be
Decoupled

Machine learning approaches base their success to the ability of the learning algorithms to cope
with the incomplete data. Also they aim to discover knowledge in the form of rules or functions
which can be used accordingly in order to predict values of missing attributes. Those rules
represent the discovered correlation between the attributes of the dataset. Hence, in order to
predict a missing value, all the attributes involved in the rule must have a known value.

In cases that not all necessary values are available and the process is unable to predict the
missing value, there are three approaches to handle the problem: i) to use/find another rule ii)
predict the missing values of the involved attributes and try to predict the specific value again
(creating this way a chain between attribute rules) iii) to combine the two previous processes.

Although little attention has been devoted to the impact of combining the processes of learn-
ing and predict, Michael [10] presents the possible variations of such an iterative approach and
how it better exploits the recovered data in order to achieve further imputation of incomplete
datasets.

Therefore, the two major imputation policies of simultaneous learning and prediction de-
scribed in the study of Michael [10] are designed, tested and compared with the basic approach
of learning and iteratively predict. Yet some, could argue that the success of an imputation
approach does not depend only on the combination of the discovered rules and the way to apply
them but also on other parameters like i) the BLA and its ability to cope with missing values,
ii) the epochs (iterations) needed to impute the data, iii) the degree of correlation between
attributes, iv) the percentage of missing attributes and the reason of their missingness.
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Algorithm 1: FLTC imputation policy

Input: BLA← base learning algorithm; D∗ ← incomplete dataset; e← epochs;
n←number of attributes

Output: D+ ← the imputed dataset
D0 ← D∗;
i←0;
Pi+1← DiscoverPredictors(BLA,Di,n);
PoLi+1← FindPolicyLayer(Di,Pi+1);
while i < e do

Di+1← ImputeData(Di,Pi+1,PoLi+1);
i←i+ 1;

return Di+1;

5 Imputation Policies

Consider a medical incomplete dataset D∗ with multiple rows and columns corresponding to
real-valued patient characteristics xi ∈ A with i ≤ n and a base learning algorithm BLA
modified to cope with incompleteness. Each approach aims to create a policy P of predictor
layers < PoL1, PoL2, ..., PoLd > where d is the depth of the chained layers and PoLi the
ordered set of predictors of each epoch.

First Learn, Then Chain (FLTC): Within this approach proceed as follows: First call
the BLA on the list D∗ to create one predictor P i

1 for each xi ∈ A. Then a policy P will be
created by ordering the initial set of predictors P1 within each layer PoLd where d ≤ epochs and
the policy layers within the policy P. Proceed independently from learning process to predict
missing values in D∗1 using P in order to produce the final D+

epochs. Algorithm 1, henceforth
denoted by FLTC, will be considered as the basic approach for the fair comparison of the
simultaneous parallel learning and prediction variations.

Simultaneous Parallel Learning and Prediction (SLAP): Within this approach learn-
ing and prediction do not proceed independently, but but together at each epoch. First layer
PoL1 of predictors will be created by using the dataset D∗ and will include one predictor P i

1 for
each attribute xi ∈ A, after takes place the prediction phase where the D+

1 will be generated
using D∗ and PoL1. Subsequently a new learning phase will take place to create PoL2 of pre-
dictors by using D+

1 and after predicting missing values to lead to D+
2 and so on. This process

eventually creates a chained policy of layers P =< PoL1, PoL2, ..., PoLd > together with the
imputed version D+

d of D∗, where d = epochs the depth of the chained layers.
There are two ways to continually learning from an incomplete dataset; the first (Algo-

rithm 2), is to discover predictors all over again in each learning phase, henceforth denoted by
SLAP −NP , and the second (Algorithm 3) is to update predictors at each learning phase and
henceforth denoted by SLAP − UP . Each learning phase uses the latest imputed version of the
dataset D+

d−1. Thus, theoretically in both cases PoLd predictors will be an improved version
of those in PoLd−1 where in this approach d ≤ epochs.

In all cases the predictors are applied in parallel for each missing xi ∈ R. Each predictor P i

proceeds independently of the others to predict the missing value of xi in R. After recovering all
missing values, all parallel versions of R will be merged to create the final version R+. Repeat
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for each R in the dataset.

Algorithm 2: SLAP-NP imputation policy

Input: BLA← base learning algorithm; D∗ ← incomplete dataset; e← epochs;
n←number of attributes

Output: D+ ← the imputed dataset
D0 ← D∗;
i←0;
while i < e do

Pi+1← DiscoverPredictors(BLA,Di,n);
PoLi+1← FindPolicyLayer(Di,Pi+1);
Di+1← ImputeData(Di,Pi+1,PoLi+1);
i←i+ 1;

return Di+1;

Algorithm 3: SLAP-UP imputation policy

Input: BLA← base learning algorithm; D∗ ← incomplete dataset; e← epochs;
n←number of attributes

Output: D+ ← the imputed dataset
D0 ← D∗;
i←0;
while i < e do

Pi+1← DiscoverPredictors(BLA,Pi,Di,n);
PoLi+1← FindPolicyLayer(Di,Pi+1);
Di+1← ImputeData(Di,Pi+1,PoLi+1);
i←i+ 1;

return Di+1;

6 Base Learning Algorithms

A BLA is designed to better perform under complete datasets. It has been shown that the
PAC learning semantics can be extended to deal with arbitrarily missing information [21] , and
that PAC learning algorithms can easily modified to cope with such experiences [9]. In our
experiments we tested two algorithms modified to cope with incompleteness, the Winnow2 [8]
and a Back Propagation NN algorithm [18].

Winnow2: For each attribute xi, where i ∈ {1, ..., n}, generate a set of weights Wi =<
w1, ..., wn−1 > and use the prediction function f(xi,Wi,R∗) which, based on the Wi of each
attribute and the available values of a record predicts the missing value of xi. Thus Wi could
be considered as the predictor of xi and the set W =< W1, ..,Wn > as the predictors of the
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learning phase.

f(i,Wi,R) =


1, If

n∑
j=1,j 6=i

wjxj > θ

0, otherwise

Where θ is a real number denoted as threshold.

Modifications in the learning phase: Attributes with missing values in R do not contribute
to weight sum of xi.

Recovery phase: For each attribute with a missing value calculate in parallel f(i,Wi,R∗=0),
where missing values in R∗ are replaced with 0 and f(i,Wi,R∗=1), where missing values in R∗

are replaced with 1. If f(i,Wi,R∗=0) = 1 then predict 1 (because the available values are able
to define the result), else if f(i,Wi,R∗=1) = 0 then predict 0 (because setting missing values
equal to 1 is not enough to change the result), otherwise predict ∗.

P i =


1, if f(i,Wi, R

∗=0) = 1

0, if f(i,Wi, R
∗=1) = 0

∗, otherwise

NN back propagation algorithm: For each attribute xi select all records where xi is not
missing and split them into two datasets: the first includes the values of all attributes except
xi and denoted as input data, and the second and includes all the counterpart values of xi and
denoted as target. Input and target data will be used to train a two-layer feed-forward NN with
sigmoid hidden n-1 neurons and one sigmoid output neuron for predicting the missing values
of xi.

Thus, NNi could be considered as a predictor of xi and the set NN =< NN1, .., NNn > as
the predictors of the learning phase.

Modifications in the learning phase: Use the trainbr as a network training function, which
updates the weight and bias values according to Levenberg−Marquardt [5] optimization. The
trainbr algorithm generally works best when the network inputs and targets are scaled, so that
they fall approximately in the range [−1, 1]. In the case that data are binary we have to make
a data mapping, values equal to 0 are set to −1 and missing values are set to 0, minimizing
this way their impact of missing values in the training function.
Recovery phase: For each attribute xi in D+

d−1 where d the current epoch, use NNi to calculate

in parallel all missing values in the dataset D+
d−1. At the end of recovery phase concatenate all

recovered versions to produce D+
d .

If P i > θ then consider prediction equal to 1 else if P i < −θ then consider prediction equal to
−1, otherwise as missing ∗.

7 Empirical Investigation

To provide and illustration of how each approach performs, a publicly available binary
dataset has been selected. The LUCAS (LUng CAncer Simple set) dataset contains data
generated artificially by Causal Bayesian Networks with binary variables. This dataset in-
cludes n = 11 attributes at each records and r = 11000 records. For more details, see
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http://www.causality.inf.ethz.ch/data/LUCAS.html. The binary set selection came as a result
of the limitation of the one of the BLAs selected for comparing the policies. Despite the fact
that one of the attributes is not correlated with the others and takes arbitrary values although
we still try to predict it in order to test each approach under more realistic scenarios.
Data preparation phase: Initially an incomplete MCAR version D∗ of D is created by copying
the D and removing the appropriate number of values based on the experiment completely
randomly from all attributes.
Learning phase: Select randomly the next R in order to train the predictors.
Recovery phase: Predict in parallel all the missing values of R∗. Select randomly an i where
i ≤ n in order to predict the missing values of R∗.

Evaluation phase: For better conclusions we calculate the following: correctly recovered values
cr; incorrectly recovered values fr; and unable to recover values nr by comparing initial D with
its final imputed version Depochs

+ after 20 epochs. In cases of using the NN as BLA the value
of θ is 0.8.

7.1 Improving Predictors by Using Recovered Values

With FLTC the recovered values contribute to the further imputation of the dataset by sup-
porting predictors, which previously abstain to predict due to incompleteness, to finally success
in the current epoch. Graphs a. and d. of Figure 1 demonstrate the performance of FLTC
approach for both Winnow and NN BLAs for each epoch after removing the 30% of D. The
significant improvement in the dataset completeness after the first epoch, even for the FLTC
approach, bears out the conclusion that all approaches continue to recover values even after
the first epoch. However this phenomenon stops very early for the case of FLTC. Furthermore,
SLAP-NP continues to recover missing values for more than 20 epochs (see Figure 1 b. and
e.). The underlying argument in favor of SLAP-NP is that unlike FLTC, recovered data do
not only contribute to the recovery phase but also contribute to the learning too, producing
this way an enhancement set of predictors. To this end SLAP-UP (see Figure 1 c. and f.) has
identical behavior to SLAP-NP but tends to be more conservative in its predictions.

Thus the main theoretical premise behind the success of the SLAP-NP is to recover enough
missing values in order to support the enhancement of next epoch’s predictors. SLAP-NP
success against FLTC is based on its ability to discover new relations between attributes and
efficiently cope with incomplete and noisy dataset too. Since, there is no guaranty that the new
set of predictors will be an enhancement version of the previous one, further research in this
area could include a solution which include previously discovered predictors in the current set,
instead of discarding them.

In addition, there is an important difference between FLTC and SLAP approaches: re-
peating learn-predict process of SLAP-NP can improve completeness but also negatively affect
soundness (see Figure 1). This is due to the fact that the D+

d may include mistaken predictions,
thus any farther learning process using D+

d may lead to a new set of unsound predictions and
predictors, generating an avalanche of mistaken predictions. A closer look at Figure 1 indicates
that while epochs pass the average number of correctly recovered values falls and the incorrectly
recovered values increase. This issue leads to the need of such solutions that will bound the
effects of incorrect predictions. Under this perspective the SLAP-UP policy is a promising one.

On the basis of the evidence currently available (see Figure 1), it seems fair to suggest
that SLAP-UP has the ability to carry previously discovered knowledge creating a stronger
chain between the policy layers. Further evidences are extracted by Figure 2, illustrates the
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percentages of final correctly and incorrectly recovered values on the initial version of D∗ (30%
MCAR missing values) using the predictors of the PoLd created by each approach (SLAP-NP
left and SLAP-UP right) after d recovery epochs of D∗. The data gathered in the tests suggest
that SLAP-UP unlike SLAP-NP tends to successfully recover a larger amount of missing values
of the initial D∗ and follows a stable improving behavior as far as concerning its ability to
impute, although SLAP-NP shows also an improving incline.

Figure 2 illustrates the percentages of final correctly and incorrectly recovered values on
the initial version of D∗ using the predictors PoLd generated by NN SLAP-NP (left) and NN
SLAP-UP (right) after d epochs, lends support to the claim that the rules created with SLAP-
NP at each epoch using the D+

d−1 do not carry the knowledge of previous epochs (altough D+
d−1

is an imputed version of D∗) thus they abstain to satisfyingly impute the D∗. This is why
the percentage of correctly recovered values has an unstable behavior. On the other hand each
epoch of SLAP-UP generates predictors that are able to successfully recover missing values of
the initial D∗, fact that indicates that SLAP-UP approach allows the knowledge transfer across
the learning phases.

Additionally, evidences suggest (see Figure 1 and 3) that there are more ways to create
stronger chains between the predictors. Figure 1 illustrates the performance of two different
BLAs tested with the same dataset and approaches and bears out the fact that the choice
of the BLA is able to alter approach’s ability either to respond with an answer very soon
(in this experiment see Winnow) or to behave more conservatively (in this experiment see
NN). Moreover, the modifications of the BLA in order to overcome missingness (e.g. changing
parameters to the NN BLA like the number of hidden layers, the threshold, the activation
function or the size of the training set) can farther contribute to the behavior of each approach.
Nevertheless, creating a tight chain between the predictors only guarantees that the recovery
process will produce a less noisy dataset but costs in completeness. Furthermore, the difference
between SLAP-NP and SLAP-UP is not as clear-cut and parameters like i) the selected BLA
ii) the number of missing values and iii) the number of available records can significally affect
each solutions. Further research in this area will be presented in the next sections.

7.2 How Dataset Size and Missingness Alter the Behavior of Each
Approach

In this section we discuss how the number of available values in the dataset D∗ affects the
behavior of each approach. On the basis of the evidence currently presented on the previous
section, it seems fair to suggest that BLA affects the degree of flexibility of the predictors;
but what about the number of missing values? In order to clearly identify the impact of data
availability, we performed several tests with the same settings as previously with changing only
the size of the initial dataset (using data from the same dataset ensures fairer comparisons
between use cases scenarios). Figure 3 illustrates the results of soundness and completeness of
three different sizes of the D∗ (1D∗,2D∗ and 3D∗ with 500, 1000 and 11000 records respectively)
for each approach with NN as BLA, while the number of MCAR missing values increases from
10% up to 60%.

A closer look at the results illustrated at Figure 3 indicates that data availability either
because of the small number of available records (see Figure 3 a. d. g.) or increased number
of missing values is able to alter the behavior of each approach. Although the performance
of FLTC is not affected significantly by the data availability, however in case of SLAP-NP
small datasets (see Figure 3 b.) tend to have the same performance even in cases of high
percentages of missing values. In cases with large datasets the behavior of the SLAP-NP
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Figure 1: Each graph represents the performance of each approach using as dataset the D∗

with 30% missing values. First row illustrates the performance of the Winnow and the second
row the NN. First column illustrates the performance of FLTC for each BLA, second column
the performance of SLAP-NP and third column the performance of SLAP-UP. Each bar of the
graph represents the percentages of correctly, incorrectly and unable to predict values of the
remaining missing values of previous epoch.

Figure 2: Percentages of final correctly and incorrectly recovered values on the initial version of
D∗ using the predictors of the PoLd created by each approach (SLAP-NP left and SLAP-UP
right) after d recovery epochs of D∗.

approach changes dramatically (see Figure 3 e. h.) by increasing completeness and sacrificing
soundness. Moreover SLAP-UP approach follows the same behavior regardless of the dataset
size. The explanation of such a behavior is that limited available data create high flexible
predictors which can easily conclude to a prediction. An interesting observation is that datasets
with larger number of records and high rate of missingness (see Figure 3 g. h. i.) strengthen the
confidence of such predictors which lead to soaring errors that also contribute to the learning
phase of the next epochs. Unfortunately even SLAP-UP is trapped to a chain of errors, but
at least it continues to predict correctly in the same rate. On the other hand the SLAP-NP is
only affected by the errors of the previous epochs and not by the chained predictors too.
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Figure 3: Average final results of correctly, incorrectly and unable to predict values using three
different subset of the D∗ (1D∗,2D∗ and 3D∗ with 500, 1000 and 11000 records respectively)
for each approach with NN as BLA and MCAR missing values increase from 10% up to 60%.

CORRECT INCORRECT MISSING CORRECT INCORRECT MISSING CORRECT INCORRECT MISSING CORRECT INCORRECT MISSING
NN	
  FLTC NN	
  SLAP-­‐NP NN	
  SLAP-­‐UP MissForest

10% 35% 3% 63% 63% 13% 24% 47% 5% 48% 70% 27% 3%
20% 34% 3% 62% 66% 17% 17% 51% 9% 40% 61% 31% 9%
30% 35% 3% 62% 67% 19% 14% 52% 12% 36% 57% 28% 15%
40% 34% 5% 60% 66% 22% 12% 51% 13% 36% 54% 28% 16%
50% 30% 4% 66% 66% 25% 8% 56% 19% 25% 53% 26% 22%
60% 33% 5% 62% 70% 26% 5% 57% 20% 23% 51% 25% 24%
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Figure 4: Average final results of correctly, incorrectly and unable to predict values for FLTC,
SLAP-NP, SLAP-UP and MissForest approaches using the D∗ with the missing values to in-
crease from 10% up to 60%.

8 Related Work

The FLTC is a common approach, where learning phase is applied only over the subset of com-
pleted records [12]. However in cases where this is not feasible the more advanced approaches
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take advantage of SLAP-NP capabilities. Such a case is [3] that uses the Farmer [11] as BLA
and combines simultaneous learning of multiple predictive rules with differential scoring of ev-
idence. In the same spirit of simultaneous learning and chaining of multiple predictive rules,
[6] considers a set of partially observed assignments closely following the one of [9], and chains
learned rules. [14] creates predictors in a hierarchical manner in order to escape the infeasibility
of learning arbitrary concepts. Firstly they create relevant subconcepts of the target concept,
and then the target concept itself, having this way a chaining list of predictors, with subsequent
predictors being trained on the predictions of earlier ones.

Additionally, the problem of missing data could be considered as a special case of the classifi-
cation problem where each attribute could potentially be considered as a label for the remaining
set of attributes. Keeping this in mind we expanded our research to the area of classifying in-
complete examples [19], where each label could be seen as an attribute in the dataset and the
default classification functions as the predictors of the attributes. Furthermore the FLTC ap-
proach is similar to Binary Relevance method [13], where each classifier is independent from
each other [24] and the dependency relations between classes are ignored. In order to overcome
this issue, a study of Read [13] suggests the Classifier Chain Model (CC). CC involves |L| binary
classifiers linked along a chain, where each Ci classifies the set of attribute-labels (x, l1, ..., li−1)
and generates a BR problem which is associated with label li ∈ L, chaining this way the results
of the previous classification step with the next one. Thus each step where the classification is
expanded can be seen as a new iteration.This study [13] also proposes ECC which trains m CC
classifiers.

Another, two step approach of chaining classifiers is suggested by this study [24] which,
i) obtains a dependency structure for the class variables, and ii) based on the dependency
structure, builds a classifier chain. Respectively to the concept of chaining predictors. A work
of Royston [15] demonstrates (MICE) approach by chaining equations. In the same spirit
MissForest [20] uses the random forests [1] instead the NN and follows the SLAP-NP approach
to impute the dataset.

In order to have a better evaluation of the performance of each approach we also tested
MissForest using again the D∗. For a fair comparison we set the same threshold θ in the
recovery process as we did with NN and the results are illustrated in Figure 4. We can see that
MissForest performs well and much better than FLTC concerning the completeness. However
in the basis of the evidence currently available, it seems fair to suggest that NN SLAP-NP
approach performs quite better for both soundness and completeness for all ranges of missing
percentages. In comparison the NN SLAP-UP, the MissForest shows slightly better results
concerning the completeness but the SLAP-UP outperforms regarding the soundness. While
the number of missing values increases MissForest abstains to recover the values unlike with
NN which exploits better the available data.

9 Conclusions and Future Work

This work presents an empirical investigation of three natural learning-based imputation poli-
cies: training rules once and applying them repeatedly; training new rules before applying them
at each iteration; continuing the training of previous rules at each iteration. In line with the
theory, we find that an iterative learn-predict approach is preferable. Simultaneous learning
and predicting with multiple chained predictors can actually give better results considering
soundness and completeness, without leading to a biased system.

In case of SLAP approaches we show that updating the predictors (SLAP-UP) leads to a
less complete dataset but more sound comparing with SLAP-NP approach which regenerates
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the predictors in each epoch. We also tested how each approach is responding under different
number of missing values. Results show that SLAP approach again is able to cope satisfactorily
even under extreme cases. However data availability is able to alter the ability of each approach
to predict unsound values. In order to have a better understanding we also tested all approaches
under different number of records and percentages of missing values. The evidence gathered
suggest that in cases with high rates of missing values (over 40%), datasets with big number of
records actually prevent the SLAP approaches to perform regarding the soundness and in such
cases a smaller portion of the dataset is more preferable.

We used two different types of BLA that have been modified to cope with the incomplete-
ness in order to compare the three natural learning base imputation policies. Additionally we
show experimentally that the choice of BLA may affects the soundness and completeness of
the process but without minimizing the importance of simultaneous learning and recovering.
In contrast the choice of BLA gives to the framework the flexibility to select between more
complete and less sound results or more sound and less complete results.

In order to better evaluate our solutions we also performed a set of tests using missForest,
a state of the art solutions, which belongs to the SLAP-NP approach. The results provide
evidence that the NN BLA has better performance than missForest for both soundness and
completeness and that SLAP-UP outperforms concerning soundness.

Further research in this area may involve i) optimizing the order of applying predictors in
each iteration with aim to minimize the impact of noisy data ii) identifying the relation between
the number of attributes, rates of missing values and dataset size iii) expanding the solution to
be able to cope with continuous and mixed-type of attributes.
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