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Abstract

Cryptographic algorithms are fundamental to security. However, it has been shown
that secret information could be effectively extracted through monitoring and analyzing
the cache side-channel information (i.e., hit and miss) of cryptographic implementations.
To mitigate such attacks, a large number of detection-based defenses have been proposed.
To the best of our knowledge, almost all of them are achieved by collecting and analyzing
hardware performance counter (HPC) data. But these low-level HPC data usually lacks
semantic information and is easy to be interfered, which makes it difficult to determine the
attack type by analyzing the HPC information only.

Actually, the behavior of a cache attack is localized. In certain attack-related steps, the
data accesses of cache memory blocks are intensive, while such behavior can be distributed
sparsely among different attack steps. Based on this observation, in this paper, we pro-
pose the locality-based cache side-channel attack detection method, which combines the
low-level HPC running data with the high-level control flow graph (CFG) of the program
to achieve locality-guided attack pattern extraction. Then we can use GNN graph clas-
sification technology to learn such attack pattern and detect malicious attack programs.
The experiments with a corpus of 1200 benchmarks show that our approach can achieve
99.44% accuracy and 99.47% F1-Score with a low performance overhead.

1 Introduction

The past ten years have seen increasingly rapid exploits in the field of cache attacks, such as
Flush+Reload [1], Flush+Flush [2], Prime+Probe [3], and etc. This type of attack is extremely
harmful. On the one hand, cache attacks themselves can be used as a standalone attack against
cryptographic algorithms. On the other hand, they can also be combined with attacks that
exploit hardware vulnerabilities like Meltdown [4] and Spectre [5] to form stronger attacks.

To defend against the above-mentioned attacks, many defense techniques have been proposed
to mitigate vulnerabilities, such as SP cache and PL cache and etc [6, 7, 8, 9, 10, 11, 12, 13].
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However, as the number of exploits and varieties are gradually increased, some of these defenses
are obsolete and can be bypassed. As an effective complement to the mitigations against
vulnerabilities, attack detection technology has played an important role in system security.

The cache attack detection technology identifies the malicious intrusions by collecting and
analyzing the runtime signals of target programs such as hardware performance counters (HPC).
In addition, the signals commonly used for attack detection usually include instruction execution
traces, memory access traces, and so on. These attack detection methods driven by runtime
signal analysis can be called as detection-based defenses [14]

Detection based methods usually collect the necessary low-level information of hardware
performance events and use the machine learning method for attack identification and clas-
sification. As the most widely used detection-based solution, the attack-oriented detection
strategy needs to train the HPC data of attack samples and benign samples to classify the
target program [15, 16, 17, 18, 19, 20].

Existing works on the attack-oriented detection only consider the usage pattern of cache.
However, cache is a shared component. The usage pattern of cache can be easily interfered by
other normal cache accesses, which will lead to inaccurate recognition. Furthermore, hardware-
level runtime information contains few semantics information of the attack program. Therefore,
it is difficult to identify different types of attacks by using the low-level cache pattern only, which
may cause false alarms.

Actually, the behaviors of cache attacks are normally distributed sparsely in different steps
of the attack program’s behavior. Compared with the behavior of the program’s normal step,
there always exist a large number of attack-related program controls and data dependencies in
the program’s attack steps. We call this phenomenon as Locality in this paper.

Based on this observation, to overcome the above-mentioned challenges, we propose the
locality-based cache side-channel attack detection method with a novel program representation,
which bridges the gap between the low-level runtime information and the high-level static
information of the target program.

The key idea of our method is to reduce the impact of runtime noise on pattern extraction
by matching the attack-related program behavior in the static level, i.e., the control flow praph
(CFG) of the program, with the dynamic level, i.e., the runtime HPC data, to increase the
accuracy of attack recognition and decrease the false alarm rate.

In order to integrate the runtime HPC data and the static CFG, we first find and label the
attack-related structures in the CFG. Then, with the CFG as the backbone, we encode different
types of edges and the corresponding HPC data triggered by the instruction behavior in the
control flow nodes into the graph with heterogeneous edges. The obtained control flow graphs
will eventually be trained with Graph Neural Networks (GNN). Finally, the trained GNN graph
classifier can be used for the identification and classification of potential attack programs.

The summary of the contributions of this work is as follows:

1. We propose a new program representation to highlight the attack behavior of a program.
By integrating the runtime HPC data into the corresponding control flow graph of a
program, the attack-related program controls and data dependencies are highlighted.

2. With the novel program representation that combines dynamic data and static data ac-
cording to the attack locality, our method uses GNN to identify the target program
accurately with a low performance overhead.

3. We implement the attack detection and classification framework with a data set contains
Flush+Reload (400 samples), Prime+Probe (400 samples), and benign applications (400
samples). The classification results show our approach brings an average 99.44% accuracy
and 99.47% F1-Score.
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2 Background

2.1 Control flow graphs

A control flow graph (CFG) of a program represents the structure and all the potential paths
of a program. Therefore, CFG has been widely used in attack detection [21, 22].

Definition 1 The CFG of a program is a tuple, that CFG = (Vertices, Edges).

• Vertices is a set of vertices, each vertice consists of an Instruction and the corresponding
Instruction Address.

• Edges is a set of control flow edges which connecting two vertices.

There are mainly three typical subgraph structures in a CFG of a program. Figure 1 (a)
shows the subgraph with a sequence of basic blocks, in which all the blocks will be executed one
by one. Figure 1 (b) shows the subgraph with a branch structure, which represents conditional
branches like if-else, and switch. The subgraph with a circle indicates the program loop. The
program can repeatedly execute the basic blocks in the loop body (shown in Figure 1 (c)).

2.2 Hardware performance counter

Hardware performance counters (HPC) are a number of registers equipped in modern micropro-
cessors to store data of various CPU-related events, e.g. clock cycles, cache hits, etc. Existing
works [15, 16, 17, 18, 19, 20] usually use sampling technology to collect the number of occur-
rences of HPC events in a specified time interval. Then, the execution pattern in the collected
data is extracted to identify potential attack programs.

The collected HPC-related data usually contains the current time Timestamp and the HPC
event information HPC Event, which is denoted as HPC Data and shown in Definition 2.

Definition 2 The HPC Data of a program is a tuple, HPC Data = (Timestamp, HPCEvent).

• Timestamp: Each ti ∈ Timestamp represents the timestamp when the data was collected.

• HPCEvent : Each ei ∈ HPCEvent represents the HPC data collected at time spot ti
1.
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Figure 1: The typical subgraph structures of control flow graphs

1Noted that ei is a tuple of HPC event information, including number of occurrences of cache misses, cache
hits, branch misses and etc. Due to space limitation, we do not give the complete list of ei in the definition [23].
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2.3 Cache side-channel attacks

As the cache side-channel attacks are widely concerned, different exploits emerge endlessly.
Two of the most concerned attacks are Flush+Reload [2], and Prime+Probe [3]. Both of
them are access-based cache attacks, and can exploit Last Level Cache (LLC) side-channel
vulnerability. More importantly, they can be combined with the recently proposed hardware
vulnerabilities [4, 5].

Flush+Reload [2] is a class of attack which needs shared memory between the attacker and
the victim. Its high accuracy and ease of operation make it extremely threatening. In Figure
2, each rectangle represents a memory block, and the blue area represents the memory blocks
shared by the attacker and the victim. The Figure 2 (a) shows that the instruction clflush can
be used directly to invalid the target cache lines. Then the attacker needs to flush the target
cache lines repeatedly and wait for the victim’s execution (shown in Figure 2 (b)). When the
attacker accesses the flushed cache lines again, if the required time is short, it means cache hit
happens and the victim’s sensitive information has been cached before. This entire attack is
shown step by step in Figure 2.

However, not all of the instruction set architectures (ISA) have the clflush instruction. Thus
the Evict strategy is proposed to replace the Flush operation in Flush+Reload attack. More
specifically, attackers are able to repeatedly read and write the specified cache sets. If all the
cache lines in a cache set are not empty, the oldest one will be evicted according to the cache
replacement policy. Therefore, the victim’s cache lines will be replaced by the newly stored data.
Then, similar to Flush+Reload attack, the attacker needs to wait for the victim to execute and
probe the cache lines again. Finally, the secret information can also be leaked by analyzing the
access time.

Prime+Probe [3] is another widely focused attack with fewer restrictions. It does not rely
on shared space nor special instructions. Prime+Probe accesses memory blocks selected (the
blue rectangles shown in Figure 3 (a)) to fill the target cache sets and monitor these cache
lines. Similar to Flush+Reload, Prime+Probe needs to repeat the memory access operations
and wait for the victim’s execution (shown in Figure 3 (b)). When the victim executes the
critical operation, the attacker will access the selected memory blocks again (shown in Figure
3 (c)). If the access time of certain cache line is significantly longer than the access time of
other cache lines, it means that this cache line has been accessed by the victim. In this way,
the victim’s cache use pattern can be observed by the attacker.

In 2018, hardware vulnerabilities are reported to be combined with existing cache side-
channel attacks to form new threatening attacks. In Figure 4, Meltdown [4] and Spectre [5]
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Figure 2: The Flush+Reload Attack
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Figure 3: The Prime+Probe Attack

exploit out-of-order and branch prediction respectively to perform transient execution attacks.
During the attack, they train a Speculative Execution, and illegally leak the secret-related data
into the cache. When the CPU finds the wrong speculation, the results of speculative execution
will be discarded. However, the sensitive information is still in cache. Then, such information
can be retrieved by attackers easily.

2.4 Attacker-oriented cache side-channel attack detection

Cache side-channel attack detection technology can be divided into two major categories:
attack-oriented detection and victim-oriented detection [24, 25]. This paper focuses on the
attacker-oriented detection technology. The key point of attacker-oriented detection is to ex-
tract the attack pattern from known attacks and perform pattern matching with target pro-
grams. Chiappetta et al. [18] believe that it is possible to continuously compute the correlation
of HPC values between a target program and the attack program. If the correlation is larger
than a certain predetermined threshold, the given program could be considered as an attack
program. In addition, they use the machine learning method to train HPC models for cache
attacks, and then identify whether the HPC value generated by the target program matches the
previously trained model. Furthermore, supervised learning is also introduced to train attacker
and victim programs. Then, the trained classifier can be used to identify whether the given
program is a benign program or a side-channel attack program. Similarly, in [15, 16, 17], they
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Instruction
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Figure 4: The Speculative Execution Attack
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Figure 5: The workflow of the cache side-channel attacks detection

also collect HPC data and use machine learning to identify cache attacks.
By reproducing existing works and manually analyzing the collected HPC data, we observe

two major problems may caused by existing HPC value based detection methods:

1. On the one hand, when the attack program is running, the corresponding HPC value will
be relatively high. But while other normal codes are running, the HPC value may also be
high, which will lead to high false alarm rate in the existing HPC data pattern extraction
and attack identification method.

2. On the other hand, different side-channel attacks use different attack operations to clear
the target cache lines. For example, Flush+Reload invalidates the cache lines through the
clflush instruction, while Prime+Probe evicts cache lines by accessing the cache repeat-
edly. All of these different attack operations may change the HPC value. Therefore, if
we use HPC pattern as the detection metric only, it will be difficult to distinguish these
attack operations in different attacks.

3 Locality based cache side-channel attack detection

In this section, we introduce the locality phenomenon of attack steps in the cache side-channel
attacks. Then, based on this observation, our specifically designed locality based attack de-
tection is illustrated in detail. As Figure 5 shows, the proposed method in this paper can be
divided into two steps. The first phase is Data Integration. In this phase, we collect the runtime
HPC information of the target program and embed the HPC data into the basic blocks of the
CFG of the target program according to the locality of attack. The second phase is Multi-Class
Classification. In this phase, the dataset collected in the previous stage will be fed to the GNN
based graph learning and classification. Then, the GNN based classification can tell whether
the target program is benign or falls into an attack class, i.e., Flush+Reload or Prime+Probe.
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3.1 Locality of the cache side-channel attack program

As we all know, the CFG of a program consists of series of basic blocks. We observed that,
given the CFG of an attack program, there exist several groups of connected basic blocks in
the CFG. The instructions in these groups of blocks frequently perform operations on certain
memory blocks. Furthermore, these frequently visited memory blocks can be mapped back to
the victim’s cache lines. Different from the instructions in the above-mentioned group of blocks,
the instructions in other basic blocks have much fewer access to the victim-related data. The
above-mentioned behavior is called Locality in our paper. We call such group of blocks which
are attack-intensive as an Attack Step.

Take the attack Flush+Reload with Spectre for example, the Flush+Reload with Spectre
is a widely concerned new variant of the Flush+Reload attack. We demonstrate the locality
phenomenon in detail as follows. Figure 6 shows the simplified control flow graph of the program
Flush+Reload with Spectre with special emphasis of three attack step-related basic blocks2. The
code with respect to these three steps are given in Algorithm 1, Algorithm 2, and Algorithm 3
correspondingly.

Let us look at the CFG of the attack program first. In the Flush phase, there exists a circle
in the CFG. This group of basic blocks represents the loop in Algorithm 1. In the Spectre phase,
the grouped nodes 21, 22, and 23 form a tree structure, which represents the if-else structure
in Algorithm 2. Similarly, the basic blocks of Reload phase are also grouped and form a tree
structure with a circuit, which represent the loop and the if-else structure in Algorithm 3.

Now, we observe the algorithms in detail to analyze the data dependency. The first attack
step is Flush shown in Algorithm 1. In this step, the attacker frequently flushes the array2 to
invalid the cache lines mapped from the items in array2. The Spectre attack step (Shown in
Algorithm 2) tries to mapped the victim’s data to cache lines by illegally accessing the array2
items that contains secret data during the speculative execution. The last attack step Reload
(Shown in Algorithm 3) probes each item in array2 and finds the one that contains secret data
by analyzing the access time.
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21 30
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Flush

Spectre Reload
31
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Figure 6: The attack steps in the Flush+Reload with Spectre attack

2The complete control flow graph is too complex and unreadable. In order to facilitate the introduction of
attack locality, the control flow structure that has nothing to do with the attack is represented by a dotted line
in the simplified control flow graph.
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Algorithm 1 The Key Code In Flush Phase

Input: The attacker-selected memory blocks array2 ;
1: /* Attack Step 1: Flush*/
2: for i=0 to 255 do
3: clflush(array2[i])
4: end for

Algorithm 2 The Key Code In Spectre Attack Phase

Input: The attacker-selected memory blocks array2, The index x ;
1: /* if given x>array1 size, array1 is a base address, x is the offset,

and secret data=*(array1+x)=array1[x].*/
2: if x <array1 size then
3: tmp data &= array2[array1[x]];
4: end if

Algorithm 3 The Key Code In Reload Phase

Input: The attacker-selected memory blocks array2 ;
Output: The leaked data secret data;
1: /* Attack Step 3: Reload */
2: for i=0 to 255 do
3: time1 = RDTSCP;
4: Read array2[i];
5: time2 = RDSTCP;
6: if time2 - time1 <CACHE HIT THRESHOLD then
7: secret data=CHAR(i);
8: return secret data;
9: end if

10: end for

As shown in the above example, the attack-related basic blocks are often distributed in the
control flow graph according to the attack steps, and all of these basic blocks within the same
attack steps conduct intensive operations on the same memory blocks. This example shows the
locality phenomenon proposed in this paper.

As described in section 2.4, we find the collected HPC data can be easily interfered by other
normal behaviours. If we use HPC data only to extract the pattern and identify the attack,
the detection result will be affected by the runtime noises. Therefore, in the next paragraph,
we propose a data embedding method for program representation. By integrating the dynamic
HPC data and static CFG data as the program representation to highlight the attack locality,
we can reduce the impact of runtime noise and improve the attack detection accuracy.

3.2 Locality guided program representation generation

In this subsection, we introduce the locality guided data embedding methods for program
representation generation. Intuitively speaking, we map the attack-related running HPC data
with the CFG of the target program to highlight the attack-related behavior and structure in
the program for future detection.

To integrate HPC data into the CFG of a target program, we need to find the common
items that can connect these two parts. From the definition given in section 2, a CFG consist
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Table 1: Selected Events related to cache side channel attacks

Scope Description Event

L1 Cache

L1 Data Cache Load Miss L1-DCLM
L1 Data Cache Load Hit L1-DCLH
L1 Data Cache Store Hit L1-DCSH

L1 Instruction Cache Load Miss L1-ICLM

LLC Cache

LLC Load Miss LLC-LM

LLC Load Hit LLC-LH

LLC Store Miss LLC-SM

LLC Store Hit LLC-SH

Others
Branch Miss OTH-BM

Branch Load Miss OTH-BLM

Cache Miss OTH-CM

of blocks with instructions information and control flow edges, while the traditional HPC data
includes only timestamp and HPC events. Thus, there is no explicit common item between
CFG and HPC Data.

In order to connect HPC Data with CFG, we propose to extend the scope of the data
recorded in HPC Data and record the corresponding instruction address as well. More specifi-
cally, when tracking the execution of instructions in a program, the currently executed instruc-
tion and its address can be recorded. Meanwhile, HPC information is also collected (Noted
that the HPC events needed in this paper and their description is shown in Table 1). In this
way, the HPC event and the corresponding instruction address are collected and recorded in
the log file. With the instruction address, we can map the dynamic HPC data into the static
CFG.

Figure 7 shows an example of the integration of HPC data with the CFG in our running
example3. This statistical chart shows the HPC value of each basic block. The horizontal
coordinate represents the index of each basic block, and the vertical coordinate shows the HPC
value. The flattened control flow graph below the graph is transformed from Figure 6. In
this flattened graph, the basic blocks are arranged in chronological order of program execution.
Figure 7 shows that if we can map the HPC value with the three attack steps, the dynamic
HPC noise, e.g. HPC data on CFG nodes 27 which is not attack-related, can be recognized.
Therefore, what we need to do is to find a method that can detect such attack steps with HPC
data patterns efficiently.

To reduce the impact of dynamic noise, we propose a novel program representation, HPC-
embedded CFG, that combines the dynamic HPC data and the static CFG to highlight the
locality of the attack program.

Definition 3 The HPC-embedded CFG G of a program is a tuple, that G = (V, E, A, C ).

• V is a set of nodes, and each node vi ∈ V represents the basic block of control flow.

• E is the set of control flow edges.

3Noted that each basic block corresponds to 11 HPC events. Due to space limitation, we simplify the graph
by accumulating the values of 11 events.
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Figure 7: The mapping relationship between dynamic runtime information and static control
flow graph

• A represents the features of V, and the feature of each node vi is denoted as A[i]. A[i] is
the collected HPC data that mapped to the node vi.

• C contains the types of each CFG edge, and each edge (i,j) is labeled as C[i.j].

Given a target program, the dynamic running HPC data and the static CFG of the program,
it is obvious that the node set V and edge set E in the HPC-embedded CFG G are directly from
the Vertices and Edges in its CFG. Therefore, we focus on the generation of the components
A and C in the following.

According to the phenomenon of attack locality, the instructions in the attack related basic
blocks within the same attack step frequently access certain memory blocks, which makes the
HPC data within certain blocks varies. To embed these dynamic HPC features into the graph,
every node vi ∈ V is appended with a vector that contains 11 HPC items, shown in Table 1, as
its node feature (A[i]).

The locality phenomenon also suggests that the attack related basic blocks within the same
attack step are grouped and have unique structures. Therefore, in the HPC-embedded CFG G,
we also have a component C to indicate the CFG structure information on edges. Firstly, we
list several class of structures according to the characteristics of cache attacks as follows.

1. type 0: The circuit structure represents a loop. Loops are important used in attack
program, because cache attacks need to repeatedly flush or evict the target cache lines
so that the attackers can monitor them, such as the Flush phase in Flush+Reload attack
and the Prime phase in Prime+Probe attack. In order to distinguish between loops and
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other structures with backward edges, we highlight the loop edges by marking them as
type 0.

2. type 1: The tree structure indicates a branch like if-else or switch. They are frequently
used in attack, and is marked as type 1 in our . For example, Flush+Reload with Spectre
needs to decide whether to train the branch predictor or perform the speculative execution
attack according to the current CPU state.

3. type 2: The tree structure in a circle represents a branch in the loop. Some attack steps
such as Reload phase in Flush+Reload or Probe phase in Prime+Probe need to repeatedly
access the target cache lines again and determine whether the victim executes by the cache
access time. Therefore, we mark this combination as a special class in our system.

4. type 3: The remaining structures belong to type 3 by default.

According to the rules, we identify the structures in CFG automatically. Each edge (i,j) in
the HPC-embedded CFG will be labeled as the corresponding type in C. More specifically, type
information of edge (i,j) is stored in C[i,j] directly.

With the locality guided program representation generation method, we can highlight the
attack locality in both the static CFG data and dynamic HPC data. In the next paragraph,
the GNN graph classification technology is used to train the program representations, HPC-
embedded CFG, of samples, and finally to identify potential attack programs.

3.3 Locality based cache side-channel attack detection

In this subsection, we introduce the workflow of the attack detection with the proposed program
representation generation method.

With the proposed program representation generation method, we can obtain the dataset
contains program representation for training and classification.

1. Phase 1: Data collection (Algorithm 4 line 3-5). When given the attack samples and
benign samples (where FR is the Flush+Reload attack, PP represents the Prime+Probe
attack, and BN indicates the benign program), necessary static CFG data and dynamic
HPC data of each training sample are collected.

2. Phase 2: Locality guided data embedding (Algorithm 4 line 7-15). According to the attack
locality, the node embedding and the edge embedding are performed on the collected data
to form the HPC-embedded CFG G

3. Phase 3: Dataset generation (Algorithm 4 line 17-18). The transformed HPC-embedded
CFG of all samples and their labels are added into the dataset.

4. Phase 4: GNN training (Algorithm 4 line 21). The Enhanced Graph Attention Network
(EGAT) [26] is used in the paper for training an attack classifier AG. EGAT is one of
GNN schemes, which allows the graph to aggregate the information of neighbor nodes
and edges according to the weight, and then to update the feature representation of the
current node and edge. We use EGAT in the training since it pays attention to both the
edges and the neighbour nodes in the graph. Thus, it can handle the features of HPC
data and CFG strcuture encoded into the CFG.
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Algorithm 4 Training the GNN classifier for cache side-channel attack detection

Input: The attack samples and benign samples S(FR,PP,BN);
Output: Attack Classifier AC ;
1: DATASET=[]
2: for Each sample Si in S do
3: /*Data Collection*/
4: Get CFG of Si as (Vertices(InstructionAddress, Instruction), Edges)
5: Get Extended HPC Data as (Timestamp, InstructionAddress, HPCEvent)
6:

7: /*Locality guided data embedding as the HPC-embedded CFG G(V,E,A,C) */
8: G[V]=CFG [Vertices];
9: G[E]=CFG [Edges];

10: for Each node Vj in G[V] do
11: G[A][j]=SUM( HPC Data mapped to Vj according to the InstructionAddress )
12: end for
13: for Each edge E(j, k) in G[E] do
14: G[C][j,k]=TYPEOF(The structure to which E(j,k) belongs)
15: end for
16:

17: /*Append to the dataset */
18: DATASET.append(G, label) //The labels corresponding to samples FR, PP, and BN are

0, 1, 2
19: end for
20:

21: AC=EGAT(DATASET)
22: return AC

With the trained GNN graph classifierAC, we can deploy the locality based cache-side
channel attack detection solution to the target program. When a new program is launched,
our attack detection solution is triggered to collect the target program’s CFG and the HPC
data, then classify it into benign programs or attach programs like Flush+Reload attack, and
Prime+Probe.

4 Experiments

In this section, we evaluate the locality-based cache side-channel attack detection method pro-
posed in this paper. The experiment is designed to evaluate the accuracy, overhead and so on
of our approach.

4.1 Implementation

As shown in the previous sections, in our method, static CFG and dynamic HPC data of target
programs are needed for the detection. In our implementation, we use Angr [27], Intel Processor
Trace (Intel PT) [28] and Perf [29] to collect such data.

Angr is a python framework for analyzing binaries. It provides a program interface for users
to automatically extract the control flow graph of the target program.
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As for the dynamic information, both the Intel Processor Trace (Intel PT) [28] and Perf [29]
is introduced in our HPC data collection. Intel PT is an extension of the Intel Processor that
collects information about software execution. And, Perf is a performance counter profiling
tool widely used by existing HPC collection methods. It provides the capability of collecting
the HPC data for a target program. It is noted that Intel PT provides an interface provide
an interface to work with perf. When Intel PT works, the current executed instruction and
address can be recorded, and then perf is also triggered to collect current HPC data [30].

In this way, the necessary static CFG and dynamic HPC data of target programs are col-
lected and can be transformed into the program representation. Then the obtained dataset with
program representation of all samples, can be trained by an GNN graph classifier to identify
the cache attacks.

4.2 Experiment setup

For the training of the GNN-based classifier for attack detection, we prepare a set of programs
as shown in Table 2.

First, we choose two classical cache side-channel attack programs Flush+Reload and
Prime+Probe as positive samples. In detail, we collect 3 Flush+Reload implementations and 4
Prime+Probe implementations by different authors from Github [31]. To increase the number
and diversity of positive samples, we also use mutation technology [32] on these two sets of
attack programs. The mutation technology will randomly change the source code with given
constraints. It is noted that minor changes such as replacing logical operators, swapping the
increment and decrement operators do not change the CFG of a program, but major changes,
such as Deletes a whole line may lead to changes of the CFG. After mutation, we obtain 400
Flush+Reload samples and 400 Prime+Probe samples.

We also collect 400 benign samples from the following sources:

1. SPEC2006: SPEC2006 is a standard performance benchmark. We choose 12 test cases
with different degrees of memory access workload from SPEC2006 [33].

2. Leetcode: Leetcode [34] is an online coding platform for professionals. We collect 288
solutions from the platform.

3. “Benign” Flush+Reload programs by randomly removing the attack steps: To evaluate
the detection effect of our method on highly confused samples, we randomly remove
the attack steps from the source code of Flush+Reload attack, and generate 100 different
samples. The CFGs of obtained samples are highly similar to the original attack program.
However, these samples are benign programs as their attack process are incomplete.

Our experiments were conducted on a 3.4GHz*8 core i7 PC with 16 GB of RAM under the
Ubuntu 20.04.

4.3 Detection accuracy

We use the 10 fold cross-validation scheme to evaluate our multi-class classification method.
The experimental results are reported from following aspects: Accuracy, Recall, F1-Score as
calculated below:

Accuracy =
TP

TP + FP
(1)
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Table 2: The dataset situation required for different attack detection methods

Type Cases Number

The positive samples
Flush+Reload 400

Prime+Probe 400

The negative samples
Begin Programs (SPEC2006) 12

Begin Programs (Leetcode) 288

Begin Programs (“Benign” Flush+Reload) 100

Table 3: The results of the GAT classification

Approaches Accuracy Recall F1-Score

Our Method 99.44% 99.50% 99.47%

Congmiao et al [15]
(LR-based)

84.74% 74.41% 75.43%

Maria et al [16, 17]
(SVM-based)

96.26% 96.28% 96.23%

Picek et al [35]
(CNN-based)

86.45% 86.67% 86.54%

Recall =
TP

TP + FN
(2)

F1− Score =
2×Accuracy ×Recall

Accuracy +Recall
(3)

,where TP is the number of attack programs that correctly identified as attacks, FP represents
the number of benign programs that were misclassified, and FN indicates the number of attack
programs that were misclassified.

Meanwhile, we also measure the Accuracy, Recall, and F1-Score of different typical cache
side-channel attack detection methods [15, 16, 17]. The results can be found in Table 3. The
experimental results show that our scheme is able to achieve 99.44% accuracy, and 99.47% F1-
Score. It can be 3%∼15% better than other approaches with fewer false alarms (higher Recall
and higher F1-Score).

4.4 Performance overhead

Our method needs to collect the HPC data and the CFG of target programs. Therefore, we
also examine the performance overhead of monitored target programs and the entire system.

First, we run the target program with and without our detection method, and to record the
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Figure 8: Execution time of SPEC2006 test cases with & without our detection method running

time cost. The average execution time of the target programs without our detection method
is 4764.417s. If our detection method is deployed, the average execution time of these target
programs is 5383.32s. The performance overhead of the target programs is increased by 12.98%.

On the other hand, we also evaluate how our detection method affects the running sys-
tem. SPEC2006, which is used in the benchmark of our experiments, is a standard perfor-
mance benchmark widely used for evaluating the computer’s performance. Therefore, we use
SPEC2006 to evaluate the system performance with the effect of our attack detection.

In this experiment, we run programs in SPEC2006 in two different scenarios: scenario 1, a
clean system that our detection method is not running, scenario 2, a system that our detection
method is checking another program at the same time.

We record the time cost of the SPEC2006 program under these two scenarios correspond-
ingly. The data is shown in Figure 8. In this figure, the blue rectangles show the execution
time of programs in SPEC2006 in scenario 1, and the red rectangles show the time cost of
programs in SPEC2006 in scenario 2. We can see, the height of these two sets of bars are very
close to each other. Actually, after calculation, the average performance cost is only 0.98%.
This confirms our claim that the detection method proposed in this paper has a low impact on
performance, and the performance cost of our method is acceptable.

5 Conclusion and Future Work

Based on the observation of the phenomenon of attack locality, we propose a new program
representation that integrates the information of dynamic runtime data and the static control
flow of a target program. Then, we can use GAT learning of the new program representation to
achieve cache side-channel attack detection with high accuracy and low overhead. In the future,
we plan to keep investigating the “locality” on the data level, to mine the data relationships
between different basic blocks to make the detection more accurate and scalable.
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