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Abstract

SMT-based program verification can achieve high precision using bit-precise models or
combinations of different theories. Often such approaches suffer from problems related to
scalability due to the complexity of the underlying decision procedures. Precision is traded
for performance by increasing the abstraction level of the model. As the level of abstraction
increases, missing important details of the program model becomes problematic. In this
paper we address this problem with an incremental verification approach that alternates
precision of the program modules on demand. The idea is to model a program using the
lightest possible (i.e., less expensive) theories that suffice to verify the desired property. To
this end, we employ safe over-approximations for the program based on both function sum-
maries and light-weight SMT theories. If during verification it turns out that the precision
is too low, our approach lazily strengthens all affected summaries or the theory through an
iterative refinement procedure. The resulting summarization framework provides a natural
and light-weight approach for carrying information between different theories. An exper-
imental evaluation with a bounded model checker for C on a wide range of benchmarks
demonstrates that our approach scales well, often effortlessly solving instances where the
state-of-the-art model checker CBMC runs out of time or memory.

1 Introduction

As programs become larger and more complex, they need more elaborated specifications to be
verified for safety. Specifications with multiple properties are expensive to check as a significant
amount of work is repeated over and over again. To overcome this issue, a verifier needs
to operate incrementally. That is, the results obtained while verifying different properties
should be reused to avoid wasting resources. When a specification involves certain amount of
closely related properties, the incremental approaches are capable of avoiding verifying each
property from scratch, and instead, they automatically identify and focus on small “deltas” in
the verification conditions.

Verification approaches based on Satisfiability Modulo Theories (SMT) represent a program
together with a specification in first-order logic. Often the specification is naturally expressible
as a set of individual properties. Given a specification consisting of multiple properties, each
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property requires its own encoding that is precise enough to show the absence of spurious
counterexamples to the property. In a real sense, this means that each formula requires its
own theory : for example, some properties might be provable with a lightweight and inexpensive
encoding, such as the one to the theory of equality and uninterpreted functions (EUF), while
other properties might require expensive bit-precise reasoning. Identifying automatically which
theory is suitable for verifying each property is challenging. In the incremental verification
setting, maintaining such a framework gives new challenges. In this paper we solve this problem
by designing the theory interface that enables migrating information among formulas in different
theories. An over-approximating function summary [32, 3] is a well-known concept in Bounded
Model Checking [9] that enables reuse of information among verification runs. Summaries are
extracted using Craig interpolation [12] after a successful verification run for one property and
used as a light-weight replacement of the precise encoding of the corresponding functions while
verifying other properties. In this work, we propose an algorithm that effectively incorporates
different theories for incremental verification of multiple properties via creation, reuse, and
refinement of function summaries.

To the best of our knowledge this is the first integrated system for SMT-based, incremental
model checking in which a sequence of safety properties is verified. Our algorithm works as
follows. Given a program, a sequence of properties to verify, and an initially empty set of
function summaries in several available theories T1, . . . , Tn, the algorithm encodes the program
and the current property using the least precise theory T1 and the least precise summaries
available. In case the algorithm finds a proof, the result is sound since we guarantee that
both the theories and the summaries always over-approximate the concrete program. Our
algorithm starts with imprecise encodings since, if sufficient for proving a property, it lowers
the cost of summarization and results in more compact summaries. If no proof is found, the
algorithm increases the precision lazily. Assume that the problem is currently encoded using
the theory Ti. In the phase called local refinement, the algorithm sequentially adds summaries
translated from theories Tj , j 6= i to Ti and checks if the property in this encoding is provable.
The algorithm enters the second phase, global refinement, where the problem is encoded in a
more precise theory Ti+1, only when all summaries are already tried on theory Ti. Then the
algorithm returns to the local refinement again. Similarly to [32], our algorithm is capable of
generating new function summaries and identifying actual bugs. Our refinement is driven by
a counterexample-guided analysis that distinguishes spurious counterexamples from the real
ones.

We have implemented the algorithm on top of the function-summarization-based bounded
model checker HiFrog which uses the OpenSMT solver [23] for both solving and interpolation.
Our implementation supports the theories of EUF, linear real arithmetic (LRA), and bit-vectors
(BV). We provide an extensive evaluation on a range of large-scale benchmarks taken from SV-
COMP1 and crafted by ourselves. The tool exhibits a competitive performance compared to
the state-of-the-art.

To sum up, our contributions are as follows:

• A novel approach to incremental verification that lazily identifies, among several suitable
candidates, the lightest level of encoding for each given property.

• A theory interface for exchanging function summaries among formulas in different theories.

• An algorithm to leverage both function summaries and the overall precision of the program
encoding that in practice demonstrates a competitive performance on a range of large-
scale programs.

1Software Verification Competition, http://sv-comp.sosy-lab.org/, Linux Device Drivers (ldv) category.
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The rest of the paper is structured as follows. After a brief overview on related work in
Sec. 2, Sec. 3 motivates the work with an example. Sec. 4 gives a background on function
summarization and SMT, and Sec. 5 formally describes how the summary conversion is car-
ried out between different SMT encodings. Sec. 6 presents our main algorithm for combining
summary refinement and theory refinement. Finally, Sec. 7 reports on experimental evaluation,
and Sec. 8 concludes the paper.

2 Related Work

Our work is built on top of FunFrog [32], an approach for extracting and reusing interpolation-
based function summaries in the context of Bounded Model Checking. The original work in
FunFrog focuses only on propositional logic and does not consider the rich field of first-order
theories available in modern SMT solvers. Consequently, despite behaving in an incremental
manner, FunFrog is expensive in many cases in practice. In later work [3], we propose to use
function summaries more generally by translating them to various SMT theories.

Different levels of abstraction were supported also by the previous version of our tool
HiFrog [3]. However, information obtained from one level of abstraction can only be reused at
the same level of abstraction. Our new approach has no such limitation and is able to convert
and use information in form of function summaries obtained from the current level of encoding
when working on different levels of encoding.

The idea of using an abstract description of the bit-precise level of encoding has been tried
with success in verification of hardware designs [6] as well as software [18, 22]. The approaches
use different level of encoding for different parts of the problem; these approaches typically start
with uninterpreted functions and gradually refine to bit-level precision to rule out spurious
counterexamples when necessary, while mixing different levels of encoding to verify a single
property. Unlike these approaches, we do not mix different levels of encoding and only shift to
more precise encoding globally, when the previous level of abstraction is insufficient. A single
level of encoding allows us to extract useful information in form of function summaries from
successful verification runs and reuse that information in the next verification run.

Both interpolants and function summaries are heavily used in model checking techniques.
Interpolants are commonly used as a means of abstraction. Since McMillan’s first application
of interpolants in formal verification [26], interpolation has been applied in algorithms with
various extensions in model checking [11, 27, 34, 20, 2, 31, 1, 28, 16, 35, 15, 14, 24]. Model
checkers CPAchecker [8], SeaHorn [17], Ultimate Automizer [19] and others leverage
interpolants in some form.

Function summaries date back to Hoare logic [21] where a pair of pre-condition and post-
condition can be seen as an over-approximating function summary. Besides computation of
function summaries using interpolation, function summaries have been computed using data-
flow analysis [30, 33, 7] and iterative discovery of modification of variable values, used in model
checkers Saturn [36] and Calysto [13]. However, all of these applications are orthogonal to
our approach in incremental model checking.

3 Motivating Example

Fig. 1 shows a C program with a function call containing non-linear operations and two user-
defined assertions. Our approach verifies the two assertions in the code incrementally. It is not
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int a, b, c;

void func() {
c = b;
if (a > 0) a = b;
int m = 0;
for (int i = 0; i < 100; i++)

m += a*b;
b = m;

}

int main() {
a = nondet (); b = nondet ();
if (a <= 0) return -1;
func ();
assert(a == c);
if (a > 0) {

func ();
if (c > 10) assert(a > 7);

}
return 0;

}

Figure 1: Program in C with non-linear arithmetic.

hard to see that the program is safe with respect to both assertions. However, verification of
this program using bit-precise encoding is expensive.

Our algorithm tries the less precise but easier to solve theory of equality and uninterpreted
functions (EUF) as the level of abstraction first, leading to successful verification of the first
assertion almost immediately. Moreover, it generates and stores a summary for function func.
To verify the second assertion, reasoning over linear real arithmetic (LRA) is necessary. Our
algorithm presented later in the paper enables to translate the summary for func from EUF to
LRA and to reuse it to successfully verify the second assertion.

4 Background and Previous Work

Our discussion relies heavily on concepts used in SMT solving. In the following, we will define
the notation that we will use in the presentation. A signature Σ is a union of C,F ,P, pairwise
disjoint sets of constants, and function and predicate symbols respectively. Each function in F
is associated with an arity n ≥ 1.

As usual, a set of terms RΣ is defined inductively comprising constants, variables, and more
complex expressions by applying function symbols on terms. The rules are captured by the
following grammar:

term ::= const

| var

| f(term, . . . , term)

where const ∈ C is a constant, var is a variable, and f ∈ F is a function symbol with arity
equal to the number of terms in parentheses. Similarly, a set of formulas SΣ is built inductively
using the following grammar:

formula ::= Bvar

| p(term, . . . , term)

| term = term | > | ⊥ | ¬formula

| formula ∧ formula | formula ∨ formula

where Bvar is a Boolean variable, p ∈ P is a predicate symbol with arity equaling to the
number of terms in parentheses, and > and ⊥ are Boolean constants denoting true and false
respectively. Finally, a quantifier-free first-order theory TΣ ⊆ SΣ is a set of formulas defined over
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// encoding of the first call of function ‘‘func’’:

c1 = b0 ∧ a1 = ite(a0 > 0, b0, a0) ∧m0 = 0 ∧ L UNW1 ∧ b1 = m10

// encoding of the second call of function ‘‘func’’:

c2 = b1 ∧ a2 = ite(a1 > 0, b1, a1) ∧m11 = 0 ∧ L UNW2 ∧ b2 = m21

// encoding of function ‘‘main’’:

a0 > 0 ∧ a1 > 0 ∧ c2 > 10

// encoding of the negation of the first assertion:

¬(a1 = c1)

// encoding of the negation of the second assertion:

¬(a2 > 7)

Figure 2: Modular encoding of program from Fig. 1 to an SMT formula.

the signature Σ. When T is clear from the context, we call a formula from SΣ a Satisfiability
modulo theory (SMT) instance.

4.1 Programs and Summaries

A loop-free program is a tuple P = (F,main), such that F is a finite set of non-recursive

functions, and main ∈ F is an entry point. Let set F̂ gather all function calls from F , where f̂
is a call of function f . In F̂ we distinguish different calls to the same function f by enumerating
them as f̂1, . . . , f̂n. A summary of a function f is a relation over the input and output variables
of f that over-approximates the precise behavior of f . That is, if a formula fprecise encodes the
body of f , and fsum encodes its summary, then fprecise =⇒ fsum must hold.

In this work, we reduce a Bounded Model Checking (BMC) [9] task to an SMT task. That
is, a program is encoded to a quantifier-free first-order formula in a given theory T , which is
then solved for satisfiability. Our intent is to allow function calls in the considered programs
and to over-approximate them by summaries whenever applicable. If the program encoding is
inconsistent with the negation of safety specification, then the program is safe.

We construct summaries using Craig Interpolation [12], a widely used technique to create
over-approximations in Model Checking. Given a pair of formulas (A,B), Craig interpolant of
(A,B) is a formula I such that A =⇒ I, I ∧ B is unsatisfiable, and I defined over symbols
appearing both in A and B. In our context, unsatisfiable formulas originate from bug-free
programs, and thus the summaries express that no trace allowed by the function body leads
to a violation of the considered safety specification. In order to construct and use function
summaries in the context of BMC, we assume that a BMC formula is a conjunction of encodings
of individual function calls. Thus, the problem of determining whether the program is safe with
respect to a safety assertion Q reduces to the problem of determining the satisfiability of the
SMT formula ∧

f̂∈F̂

encode(f̂) ∧ ¬encode(Q) =⇒ ⊥.

We illustrate the encoding on the following example.

Example 1. Fig. 2 shows a (simplified) encoding of program from Fig. 1 to an SMT formula.

60



Function Summarization Modulo Theories S. Asadi et al.

The formula consists of five parts: a conjunct representing function main, two equivalent (mod-
ulo renaming) conjuncts representing calls of func, and two conjuncts representing the negated
assertions. As customary in BMC, each program variable has its indexed copies (induced by the
single static assignment form). The formulas L UNWi, i ∈ {1, 2}, represent a loop unwinding.
Note that the encoding of main consists only of the path condition to assertions, but in general
it should explicitly encode all possible paths through the function body.

In [32], we presented a method to extract summaries for every function call f̂ exploiting
the proof of unsatisfiability of this formula. In a nutshell, the approach considers a con-

junction of the encoding of all nested function calls from f̂ , i.e., fprecise
def
= encode(f̂) ∧∧

ĝ∈nested calls(f̂) encode(ĝ), treats it as A, treats the rest of the program encoding (includ-

ing the negation of assertion) as B, and interpolates. Note that the resulting interpolant fsum
can now be used in place of fprecise when creating the formula again because by construction
fprecise =⇒ fsum .

Example 2. A possible function summary for func obtained after verifying the first assertion
is (a0 > 0) =⇒ (a1 = c1). It can successfully replace both calls to func (after the variables
are renamed to match the second call) while verifying the second assertion.

Note that for the examples above, using two SMT precisions are enough: EUF for the first
assertion, and LRA for the second one.

5 Theory-Based Model Refinement

This section presents a general framework that allows a translation back and forth among
theories of SMT with different level of precision.

Our work views the problem of bounded model checking of C programs as a decision problem
which is (i) decidable, and (ii) not based on Nelson-Oppen theory combination [29]. We may
therefore concentrate in our framework on four theories of interest: the quantifier-free theories
of equality and uninterpreted functions (EUF), linear real arithmetic (LRA), non-linear real
arithmetic (NRA), and bit-vectors (BV)2. As a result, we obtain a decision procedure that
has a relatively low complexity. Our framework, called theory interface, provides a common
place from which the theories are instantiated, and to which they can also be converted back.
This theory interface is not aimed to be passed to an SMT solver, but instead provides an
infrastructure through which an instance from one theory can be converted to an instance from
another theory.

The transformation from a theory T to the theory interface and back can be expressed in the
theory-specific instantiations of the following rules, where [φ]T denotes that the expression φ is
encoded using theory T :

[f(t)]T

f([t]T )
if f([t]T ) in T [f(t)]T

vf(t)
if f([t]T ) not in T (1)

We use the notation f(t) to abbreviate f(t1, . . . , tn), and f([t]T ) to abbreviate f([t1]T , . . . ,
[tn]T ). Above we write f([t]T ) in T , if f ∈ Σ and there is a derivation recursively using the
rules (1) such that f([t]T ) is expressible in T . We denote by vf(t) a variable that is unique
to the expression f(t). For example, the expression f(x, x) is not expressible in the theory of

2For the signature of bit-vectors, we use a modification presented in [22] that preserves the high-level
programming language structures to facilitate the proofs of over-approximation.
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LRANRAEUF

  Theory Interface  

BV

Figure 3: Theory interface between EUF, LRA, NRA, and BV. The horizontal arrows demonstrate the relation
among these theories from the perspective of over-approximation. This relation is a part of the contribution of
this work.

linear real arithmetic if f is the multiplication operation and x is a variable, and therefore the
result of applying the rules (1) is vx∗x. To simplify slightly the notation, we define a bijection
M that maps terms f(t) to the variables vf(t). For completeness, we present the three rules
for transforming non-atomic formulas

[φ1 ∧ φ2]T

[φ1]T ∧ [φ2]T
[φ1 ∨ φ2]T

[φ1]T ∨ [φ2]T
[¬φ]T

¬[φ]T
(2)

that are independent of a theory and thus common to all transformations.

5.1 Theory Interface

A theory interface T is a general representation for formulas that we use for transformation
among theories. Fig. 3 outlines a communication among our four theories of interest. Because
this paper aims at using from early on a light-weight theory that suffices for reasoning, over-
approximation among theories is at the core of speeding up the solving procedure. In the rest
of this section, we formally define a theory interface and establish a relation among theories in
a sound way.

Definition 1 (Theory interface T). Given a sequence of theories T1, . . . , Tn with signatures

Σ1, . . . ,Σn respectively, a theory interface T is a tuple 〈Σ,M1, . . . ,Mn〉 where Σ
def
= Σ1∪· · ·∪Σn,

and each Mi is a bijective mapping Mi : (SΣ ∪RΣ) \ (SΣi
∪RΣi

)→ Xi where {Xi}0<i≤n are
pairwise disjoint sets of unique variables not used anywhere else.

Intuitively, Mi replaces the formulas and terms that are not expressible in theory Ti by
unique fresh variables. Note that for every Ti, SΣi

⊆ SΣ and RΣi
⊆ RΣ.

The projection of T to one of the theories Ti is done by the following rules. First, if f(t) ∈ SΣi

(i.e., is expressible in theory Ti), then it is projected to Ti without changes. Second, if f(t) /∈ SΣi

(i.e., is not expressible in theory Ti), then we replace it by a fresh symbolMi(f(t))
def
= vf(t) ∈ Xi.

For transformation in the opposite direction, i.e., Ti to T, we define the inverse function M−1
i

as M−1
i : vf(t) 7→ f(t) for vf(t) in the range of Mi.

In the following, we develop a set of translation functions to different theories and build the
over-approximation relation among these translation functions. Given a formula φ in theory
interface T and an arbitrary theory T , we write TrT (φ) for the translation from φ to T .

Definition 2 (over-approximation). Let φ be a formula in T, and T1 and T2 two arbitrary
theories. The two translation functions, TrT1(φ) and TrT2(φ) convert the original formula φ
into T1 and T2 respectively. We say that T1 over-approximates T2 if

TrT1(φ) |= ⊥ implies TrT2(φ) |= ⊥ (3)
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We give the specifics for the theories EUF and LRA, but in the interest of space, provide the
rules of transformation from theory interface to BV and NRA in Appendix A. To establish the
over-approximation relation, we assume in this paper that the programs being verified admit
no overflows or underflows, and that their semantics can be exactly captured by BV.

Definition 3 (Theory of EUF). Let X be a set of variables and F be a set of function symbols
with arities. An Equality logic formula with uninterpreted functions (EUF) is defined by the
grammar

trm ::= const

| var
| f(trm, . . . , trm) where f is uninterpreted

fla ::= Bvar

| p(trm, . . . , trm) where p is uninterpreted

| trm = trm | trm 6= trm | > | ⊥ | ¬fla
| fla ∧ fla | fla ∨ fla |

where fla is a quantifier-free formula, var ∈ X , f ∈ F , and const ∈ C. With the exception of
equality and disequality (=, 6=), function and predicate symbols are treated as uninterpreted.

Semantically, EUF has the axioms of reflexivity, symmetry and transitivity for the symbol
of equality, and congruence axiom for function and predicate symbols (x = y)→ (f(x) = f(y))
and (x = y) → (p(x) ↔ p(y)) where x = y is an abbreviation for (x1 = y1) ∧ . . . ∧ (xn = yn)
and f and p are function and predicate symbols, respectively, of arity n.

Definition 4. A quantifier-free formula in the language of theory of Linear Real Arithmetic
(LRA) is defined by the following grammar:

trm ::= const

| var
| const ∗ var
| f(trm, . . . , trm) where f ∈ {+}

fla ::= Bvar

| p(trm, . . . , trm) where p ∈ { ≤ , < }
| > | ⊥ | ¬fla
| fla ∧ fla | fla ∨ fla |

where var are variables, and const is a rational number.

5.2 Encoding of Theory Interface into Specific Theories

Light-weight theories help removing overly complex or irrelevant details from the encoding of
a program whenever possible. We define the following rules for the theory-specific part of the
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transformation from T to EUF :

[v]EUF

v v is a variable or a constant

[t1 = t2]EUF

[t1]EUF = [t2]EUF

[t1 ./ t2]EUF

(¬[t1 = t2]EUF ) ∧ ([t1]EUF ./ [t2]EUF )
./∈ {>,<}

[f(t)]EUF

f([t]EUF )
otherwise

(4)

Note that in the third rule of (4), if the function symbol > or < is applied over the terms
of theory interface, it can be simply translated into a disequality in EUF. All the other cases
in the signature of theory interface which cannot be applied in the first three rules such as
{≤,≥, . . .} are handled by the fourth rule.

Theorem 1. For every φ ∈ T, TrEUF (φ) |= ⊥ implies TrBV (φ) |= ⊥.

Proof. We show that every model in BV can be translated to a model in EUF.
Assume that there is a satisfying assignment in BV, such that a = b holds for two bitvectors

a and b. This can be trivially translated to an equality a = b in EUF.
In case of equality of two function applications f(a) = f(b), we utilize the congruence rule

in EUF, assuming that each function in BV is implemented as a deterministic circuit.

We define the following rules to transform T to LRA3:

[t1 = t2]LRA

([t1]LRA ≤ [t2]LRA) ∧ ([t2]LRA ≤ [t1]LRA)
(5.1)

[v]LRA

v v is a variable or an integer constant (5.2)

[t1 + t2]LRA

[t1]LRA + [t2]LRA
(5.3)

[− t1]LRA

(−1) ∗ [t1]LRA
(5.4)

[t1 ∗ t2]LRA

[t1]LRA ∗ [t2]LRA
t1 or t2 is an integer constant (5.5)

[f(t)]LRA

M(f(t))
otherwise (5.6)

(5)

3 We assume that before undergoing a transformation, a preprocessing is done for the sake of normalization,
e.g., −1 ∗ 2 ∗ x is normalized to −2 ∗ x.
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The rule (5.6) uniquely associates the expression with a fresh variable. Essentially this
rule is used for over-approximation of all the expressions that cannot be expressed in sufficient
precision in LRA. The rules (5.2) and (5.5) operate only on integer constants in order to
preserve the soundness of translation between LRA and BV. Example 3 illustrates this case in
detail.

Example 3 (Over-approximation of BV by LRA). Consider the following excerpt of a

program written in C: int x = 1; int y = 0.5 * x; assert ( y == 0 ); Let φ
def
= x =

1∧ 0.5∗x = 0 represent the corresponding SMT representation. Following the semantics of C, a
bit-precise encoding of φ is satisfiable since 0.5∗1 is truncated to 0. However, an LRA-encoding
of φ is unsatisfiable. According to Def. 2, this means that LRA does not over-approximate BV.
In order to get that over-approximating behavior, we impose restrictions on LRA rules (5.2)
and (5.5) and apply rule (5.6) when these restrictions are not met. The translation applied to
φ results in x = 1 ∧ v0.5∗x = 0 which is satisfiable in LRA. The same restrictions are imposed
in NRA (see Appendix A).

Theorem 2. For every φ ∈ T, TrLRA(φ) |= ⊥ implies TrBV (φ) |= ⊥.

Proof. We show that every model in BV can be translated to a model in LRA. Assume that
there are no overflows or underflows in BV. This guarantees that the models of all arithmetic
operations in BV are also models in LRA.

5.3 Decoding Theories to the Theory Interface

The previous section describes the instantiation from the theory interface to a specific theory
of interest. This section presents the inverse, that is, transforming from a theory to the theory
interface. Such steps are necessary in order to build the over-approximation relation among
theories. The key insight is to use the mapping M−1. The transformation from EUF to T is
defined by the following rules:

[t1 = t2]T

[t1]T = [t2]T

[v]T

v v is a variable or a constant

[f(t)]T

f([t]T)

(6)
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Algorithm 1: Verify(P, 〈T1, . . . , Tn〉, 〈Q1, . . . , Qm〉)
Input: Program P with function calls F̂ , sequence of theories 〈T1, . . . , Tn〉; sequence of

safety assertions 〈Q1, . . . , Qm〉
Output: Verification result: {safe, unsafe}

1 for each Tj do

2 for each f̂ ∈ F̂ do σTj (f̂)← true;
3 for each Qi do
4 for each Tj do
5 〈result , σTj 〉 ← SumRef(P, Tj , 〈σT1 , . . . , σTn〉, Qi);
6 if result = safe then break;
7 if j = n then return unsafe;

8 return safe;

Similarly, the rules for transforming from LRA to theory interface T are as follows:

([t1]T ≤ [t2]T) ∧ ([t2]T ≤ [t1]T)]

[t1]T = [t2]T

[t1 ./ t2]T

[t1]T ./ [t2]T
is a function or predicate symbol in LRA

[v]T

v v is a variable or a constant, v 6∈ dom(M−1)

[v]T

M−1(v)
v ∈ dom(M−1)

(7)

Determining satisfiability in an over-approximative theory does not guarantee that the for-
mula is satisfiable in a more precise theory, since the satisfiability might have been introduced
by the abstraction. In such cases the strength of the formula must be enhanced through tech-
niques such as refinement. In the next section, we discuss how to use the theory-based model
refinement idea in a model-checking algorithm.

6 Summary and Theory-Aware Model Checking

Our novel approach to incremental bounded model checking is presented in Alg. 1. It takes
as input a program with a sequence 〈Q1, . . . , Qm〉 of safety assertions that are to be verified,
and a sequence of theories 〈T1, . . . , Tn〉, such that for each i and j, i < j, Tj is not an over-
approximation of Tj .4 For simplicity, we assume that all assertions are located in the entry

function (i.e., ˆmain), but our implementation does not have this restriction. We refer to σTj (f̂)
as to a summary for function f which is encoded in theory Tj . Note that the function summary
is initialized with the weakest possible summary, namely true. The algorithm searches for a
first assertion which does not hold and then terminates with the unsafe result. If no such
assertion is found, the algorithm terminates with the safe result.

4In our implementation, we chose T1 = EUF, T2 = LRA, and T3 = BV.
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Algorithm 2: SumRef(P, T , 〈σT1 , . . . , σTn〉, Q)

Input: Program P = (F, fmain) with function calls F̂ , theory T ; sequence
〈σT1 , . . . , σTn〉 of mappings of function calls to their summaries; Q: safety
assertion to verify

Output: Verification result: {safe, unsafe}, updated σT
Data: ϕ: BMC formula, WL ⊆ F̂ , Pr : precision mapping for function calls, CE :

counterexample

1 ϕ← encodeT ( ˆmain) ∧ ¬encodeT (Q);

2 for each f̂ ∈ F̂ do Pr(f̂)← 0;

3 while true do
4 〈result ,CE 〉 ← Solve(ϕ);
5 if result = SAT then
6 WL← getCallsWithWeakSumms(CE);
7 if WL = ∅ then return unsafe;

8 for each f̂ ∈WL do

9 if Pr(f̂) < n then

10 Pr(f̂)← Pr(f̂) + 1;

11 ψ ← σTPr(f̂)
(f̂);

12 ϕ← ϕ ∧ translateT (ψ);

13 else

14 ϕ← ϕ ∧ encodeT (f̂);

15 else

16 for each f̂ ∈ F̂ do

17 σT (f̂)← σT (f̂) ∧ getItpT (ϕ, f̂);
18 return 〈safe, σT 〉;

Alg. 1 maintains a set of mappings for each function call and each theory to a summary
formula that over-approximates the behavior of the source function and is expressible in the
theory. These summary formulas are initially true, but are refined after a verification run of
each assertion Qi. Importantly, they are reused by a verification run of the next assertion Qi+1.

An algorithm for verifying an assertion Q with function summaries is shown in Alg. 2. It
starts by encoding the entry function in a given theory T and conjoins it with the negation of
encoding of Q in T . If this formula ϕ is unsatisfiable, then Q holds, manifesting the weakest
possible summary true was adequate for all nested function calls from ˆmain. Otherwise, our
algorithm starts gradually strengthening the formula ϕ by adding summaries of the function
calls responsible for the satisfiability of ϕ. We rely on a method described in [32] to get models
of satisfiable formulas and identifying the “reason” for their satisfiability.

Our new contribution is a method to refine summaries based on lazy enumeration of available
theories. In particular, Alg. 2 maintains a level of precision for each function call. In each round
of refinement, if a function call f̂ requires strengthening, its level of precision is increased by
one, and a summary of that level, if available, is conjoined to ϕ. The key ingredient here is
the set of translation rules, described in the previous section, that allow effectively reusing
formulas among theories. Note that the translation process is not direct, but operates via a
theory interface (omitted from the pseudocode in order to save space).
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In order to prove the soundness of Alg. 1, we need to show that a summary in one theory can
be reused in another theory. In other words, the correctness of Alg. 1 depends on the correctness
of transferral of summaries from one theory to another theory. To this end, we connect the
over-approximations via function summarization with the over-approximations via less precise
theory. The following theorem captures formally the correctness of summary transformation
through theory interface.

Theorem 3. Let f be a function, fTsum be a summary of f obtained from fTprecise , and fT
′

sum be

a translation of fTsum to theory T ′. Then fT
′

sum is also a summary of f .

Proof. First, notice that by translating back fTsum to the theory interface using the rules in (1) we
obtain an over-approximating representation fsum of fprecise . This follows from the properties
of the translation. Next, by translating fsum to theory T ′ using rules in (1) we obtain an over-
approximating formula fT

′

sum of fsum . Finally, by transitivity fT
′

sum over-approximates fprecise ,

and hence fT
′

sum is a summary of f as stated in the theorem.

Note that the fact that fT
′

sum is a summary of f is sufficient for correctness of using fT
′

sum

instead of fT
′

precise in next verification tasks in case of unsatisfiability results. It is not required

that fT
′

sum over-approximates fT
′

precise . In case of over-approximating theory T ′ it may happen

that the full encoding of a function f , fT
′

precise , is not sufficient to prove a property while a
summary obtained from a different theory might be enough.

7 Implementation and Evaluation

We have implemented our summary and theory refinement algorithm on top of HiFrog, an in-
cremental bounded model checker. As a backend, HiFrog uses the SMT solver OpenSMT [23]
which is equipped with a flexible interpolation framework for EUF [5] and LRA [4] for com-
puting function summaries. Technical information about the setup of the tool and evaluation
results can be found at http://verify.inf.usi.ch/sum-theoref.

With the reported experiments, our goal is to understand how bounded model checking can
benefit from using over-approximative techniques based on function summaries obtained from
SMT theories. We therefore compare our implementation against cbmc v5.8 [25], the most
efficient bounded model checker based on the results of Competition on Software Verification
SV-COMP. Compared to an earlier version of HiFrog [3], this work 1) automates the theory
refinement which previously required manual intervention and 2) transfers the summaries among
theories, which previously was not supported at all. In the following, we also give an explicit
experimental comparison against our earlier version to highlight the usefulness of the proposed
algorithm.

We instantiated the summary and theory refinement framework as described by Alg. 1 and
Alg. 2 with three theories: EUF, LRA and BV (using a standard encoding to propositional
logic). In the global refinement phase of Alg. 1, the program is first encoded in EUF. In
case of unsuccessful verification with EUF, the entire program is encoded in LRA. Where the
verification with LRA fails, the entire program falls back on bit-blasting. In the local refinement
phase, in each of these stages, summaries of functions are used when available and are refined on
demand. After a successful verification run, summaries are extracted in the current theory and
become available for verification of the subsequent assertions. Using the framework described
in Sec. 5, they are translated to different theories on-demand.

Currently in our implementation, only EUF and LRA theories may exchange summaries.
However, before the precise bit-blasting of the entire program, we can bit-blast the more abstract
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EUF and LRA summaries. While this feature is currently under development, we believe that
it will lead to smaller and more compact proofs and thus improve efficiency of the entire tool.
Similarly, the inverse direction of extracting high-level information from bit-precise summaries
remains a future work.

7.1 Results

For benchmarking we used an Ubuntu 16.04 Linux system with two Intel Xeon E5620 CPUs
clocked at 2.40GHz. We limit the memory consumption to 2 Gigabytes and the CPU time to
200 seconds per process.

We chose 109 C programs from the ldv category of SV-COMP that either cbmc or HiFrog
could solve withn our time and memory limits. Our choice of the ldv benchmarks is justified
because they exercise our algorithm in an interesting way due to containing many assertions
and functions, and being relatively large. We excluded programs where cbmc reported an
internal error. In addition, we included 31 tricky hand-crafted smaller programs to stress-test
our implementation. On average, the benchmarks have 10’000 lines of code, the longest ones
reaching to 35’000 lines of code.

In total, our benchmark set contains 140 C programs and 500 assertions (verification tasks)
placed inside these programs. 215 of these assertions were recognized as unreachable statements
by the entry function in the C program. We excluded them from our study and focused on
those tasks that require a full solving procedure. This narrowed down our set to 285 verification
tasks.

In the following, we provide more details on statistics we collected after the extensive evalu-
ation of our algorithm against cbmc and three individual verification approaches from the older
version of HiFrog, namely pure EUF, LRA, BV. Table 1 gives statistics on our benchmark
set. The column Solved indicates the number of benchmarks which were solved by each tool
within the time and memory limits. In total HiFrog solved 24 more benchmarks than cbmc5.
Among 98 benchmarks for which HiFrog succeeded to return an answer within the time and
memory limits, 24 benchmarks were unsafe and 74 benchmarks were safe. Interestingly, the
average running time for unsafe benchmarks was longer (78 s) than the one for safe ones (48
s). This can be explained by our observation that in the unsafe cases, an iterative refinement
of all the summaries was required to confirm the validity of the counter-example. However, in
the safe cases, HiFrog was comparable to cbmc.

As can be seen from the column Timeouts, cbmc performed better than HiFrog on SV-
COMP benchmarks, but it failed on almost 60% of our crafted benchmarks. As can be seen
from the column Memory outs, HiFrog solved eight more SV-COMP benchmarks, on which
cbmc immediately exceeded the memory limits. Overall, the experiments show that HiFrog
is able to solve more benchmarks, and both times out and runs out of memory less often than
cbmc.

Fig. 4 gives a scatter plot representing a more detailed performance comparison of HiFrog
and cbmc. Each cross in the figure stands for a single benchmark with the running time of
HiFrog on the x-axis, and the running time of cbmc on the y-axis. The crosses on the outer
lines correspond to executions that exceeded the memory limit of 2GB, and the crosses on the
inner lines correspond to executions that exceeded the time limit of 200 s. A large amount of
crosses on the top horizontal lines lets us conclude that HiFrog is able to solve benchmarks
which are challenging for cbmc. Furthermore, the solving is relatively fast in these cases.

5 Since many of our benchmarks include non-linear arithmetic, we also tried cbmc with the experimental
--refine option. This did not significantly change the results, and therefore we report here the results obtained
with the default options of cbmc.

69



Function Summarization Modulo Theories S. Asadi et al.

Table 1: HiFrog against cbmc, and the original version of HiFrog with respect to pure EUF, LRA, and BV
solving, where #sv is the number of benchmarks from SV-COMP, and #craft is the number of our tricky
hand-crafted benchmarks.

Tools
Solved Timeouts Memory outs Unknown

#sv #craft #sv craft #sv #craft #sv #craft
HiFrog 67 31 32 0 10 0 - -
CBMC 63 11 28 20 18 0 - -
EUF only 49 0 38 0 10 0 12 31
LRA only 48 1 40 0 11 0 10 30
BV only 43 4 33 4 33 23 - -

100 101 102

100

101

102

HiFrog

C
B
M
C

Figure 4: HiFrog vs CBMC. The outer horizontal and vertical lines refer to memory limit of 2GB, and the
inner lines refer to timeout at 200 s.

The last three rows in Table 1 explain how our novel algorithm in HiFrog performs com-
pared to the earlier version of HiFrog, in which summary reuse was näıve and manual with
respect to successive assertions. Because this functionality was not directly available in the
older HiFrog, we prepared a set of helper scripts so that the older HiFrog could process
assertions one after the other with possible re-use of the summaries. As expected, EUF and
LRA had a large number of unsafe results, 43 and 40 respectively. We marked such results as
unknown since due to the abstract nature of EUF and LRA the results are possibly spurious
and thus cannot be trusted. By comparison, all unsafe results returned by our new algorithm
correspond to actual bugs. Verifying with BV revealed that a large number of benchmarks (56
instances) exceeded the memory limit, manifesting the cost of bit-blasting, which is avoided in
our new approach whenever possible.

In conclusion, we find it encouraging that the techniques described in this paper provide
such an impressive performance increase in our model checking procedure. Considering both
the effectiveness and the downsides of our approach, in overall the evaluation results show a
significant positive impact on the effectiveness and efficiency of verification of large-scale and
multi-property benchmarks. Although we acknowledge that these initial results obtained with
the 140 instances might not be enough to draw a decisive conclusion, the results do justify
future efforts into extending the benchmarking, among others, to large-scale instances with
multiple user-defined assertions.
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8 Conclusion and Future Work

We have presented a novel SMT-based approach to incremental verification scalable to large-
scale programs with multiple properties. Our key idea is to exploit both the function summaries
and the overall precision of the program encoding lazily. That is, among several theories avail-
able for the encoding, we have proposed to identify the lightest one suitable for each given
property. To exploit laziness, we have designed a theory interface which enables the exchange
of function summaries among formulas in different theories and avoids an expensive theory
combination. Thus, our proposed algorithm performs both local refinement and global refine-
ment on demand. We were able to prove the effectiveness of our algorithm in practice, by
implementing the approach on top of the HiFrog tool and carrying out an extensive exper-
imental evaluation on the SV-COMP benchmarks. Our results show that in comparison to a
state-of-the-art model checker cbmc, our tool can solve more instances within the same limits
on time and memory.

Future work. In the future, we intend to study the applicability of this approach to other
areas of program verification, such as upgrade checking [15], which considers a task of verifica-
tion of somewhat related programs against the same property (as opposed to verification of the
same program against somewhat related properties, as in the context of this paper). We also
plan to apply the developed ideas in algorithms such as software verification based on IC3 [10],
where correctness of unbounded programs is reduced to finding general proofs for a sequence
of verification conditions that is generated on-the-fly.

Acknowledgments. This work was supported by the SNF grants 166288, and 1525936, and
the Czech Science Foundation project 18-17403S.
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[31] Philipp Rümmer, Hossein Hojjat, and Viktor Kuncak. Disjunctive interpolants for horn-clause
verification. In Proc. CAV 2013, pages 347–363, 2013.

[32] Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. Interpolation-based function sum-
maries in bounded model checking. In Proc. HVC 2011, volume 7261 of LNCS, pages 160–175.
Springer, 2012.

[33] Sriram K. Rajamani Thomas Ball. Bebop: A symbolic model checker for boolean programs. In
Proc. SPIN Workshop 2000, pages 113–130. Springer, 2000.

[34] Yakir Vizel and Orna Grumberg. Interpolation-sequence based model checking. In Proc. FMCAD
2014, pages 1–8. IEEE, 2009.

[35] Yakir Vizel, Arie Gurfinkel, and Sharad Malik. Fast interpolating BMC. In Proc. CAV 2015,
pages 641–657, 2015.

[36] Yichen Xie and Alexander Aiken. Saturn: A SAT-Based Tool for Bug Detection. In Proc. CAV
2005, pages 139–143, 2005.

73



Function Summarization Modulo Theories S. Asadi et al.

A Appendix

We define here a particular class of quantifier free theory of bit-vectors (BV) which is based
on our earlier paper in [22]. In that paper the presented theory called BVP (Bit Vectors for
Programs) which was an augmented version of the theory of bit-vectors. For abbreviation we
use in this paper the BV notation. In order to be applicable in our framework, BV should
comply with the restriction that no overflows are allowed.

Based on SMT-LIB2 standard the signature in BV is as follows:
ΣBV = {+, ∗, bvand, bvor, bvudiv, bvurem, bvshl, bvlshr, bvnot, bvneg}. We consider the predi-
cate symbols as P = {>,<,≤,≥}. Note that for the addition and multiplication we use the
same notation i.e., “+” and “*” throughout the paper to highlight the fact that the syntax are
in common with our theory of interest. Therefore syntactically they can be used in the trans-
formation rules. However, the task of interpretation of each function symbol must be delegated
to the corresponding theory solver.

In the following the rules for translation from T to BV are as follows:

[t1 = t2]BV

[t1]BV = [t2]BV

[v]BV

v v is a variable or a constant

[t1 ./ t2]BV

[t1]BV ./ [t2]BV

./ is a predicate symbol or binary function symbol in BV ,

i.e., ./∈ {bvand, bvor,+, ∗, bvudiv, bvurem, bvshl, bvlshr}

[4 t1]BV

4 [t1]BV
4 is a unary function symbol in BV , i.e.,4 ∈ {bvnot, bvneg}

[f(t)]BV

M(f(t))
otherwise

(8)

The rules for transforming from BV to theory interface T are as follows:

[t1 = t2]T

[t1]T = [t2]T

[t1 ./ t2]T

[t1]T ./ [t2]T

./ is a binary function symbol in BV ,

e.g., ./∈ {bvand, bvor,+, ∗, bvudiv, bvurem, bvshl, bvlshr}

[4 t1]T

4 [t1]T
4 is a unary function symbol in BV ,4 ∈ {bvnot, bvneg}

[v]T

v v is a variable or a constant, v 6∈ dom(M−1)

[v]T

M−1(v)
v ∈ dom(M−1)

(9)
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In the following we present the translation rules from the NRA to T and vice versa which are
listed in (10) and (11), respectively. The rules for transforming from T to NRA are as follows:

[t1 = t2]NRA

([t1]NRA ≤ [t2]NRA) ∧ ([t2]NRA ≤ [t2]NRA)

[v]NRA

v v is a variable or a constant

[t1 ./ t2]NRA

[t1]NRA ./ [t2]NRA
./ is a function symbol in NRA, e.g., ./∈ {+,−, ∗ }

(10)

Likewise the LRA rules, the rules for transforming from NRA to T are as follows:

([t1]T ≤ [t2]T) ∧ ([t2]T ≤ [t1]T)]

[t1]T = [t2]T

[v]T

v v is a variable or a constant

[f(t)]T

f([t]T)

(11)
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