ﬁ EasyChair Preprint

Ne 5430

OCCAM-Equivalent Syntax with Pure Singleton
Descent Structure

Lawrence Dickson

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 29, 2021

OCCAM-equivalent syntax with pure singleton descent structure

Lawrence J. Dickson
Space Sciences Corporation
Lemitar, New Mexico
Email: larry@spacesciencescorp.com

Abstract—Minor corrections and semantically valid restric-
tions, and one significant but equivalent change, allow the
occam 2.0 syntax to be expressed in a yacc-compatible syntax
(actually flex and bison are used) with very desirable proper-
ties. A rich 13-level descent structure (descent happens when
a syntactic object is part of a definition of another syntactic
object) is all singletons except for two levels (one equivalent
to expression and the other equivalent to process), and these
are broken up themselves into singletons by extended descent
(parenthesis plus square bracket enclosure count, and inden-
tation count, respectively). This will allow formal proofs of
syntactic object behavior, and hence whole language behavior,
to be vastly simplified.

1. Introduction

During the 1970s and 1980s, a mathematical approach
to computer language design led to the Communicating Se-
quential Processes (CSP) paradigm and the occam computer
language. In parallel, the INMOS hardware development
of the Transputer family took advantage of the fact that
core features of CSP applied equivalently to hardware and
software. The result was the classic CSP/occam principle
of hardware-software equivalence (HSE), mentioned in [1]
p 71: “Configuration does not affect the logical behavior
of a program.” This was successfully elaborated with a
configuration language ([2] chapter 5). This means the
design has many consequences in software harnessing and
wrappers, as well as in embedded coding, which was a
strong point of the classic Transputer. Unfortunately, after
new ownership of INMOS, the custom hardware design
toolkit was abandoned, and monolithic cost-effectiveness
comparisons battered the Transputer, which fell victim to
Moore’s Law and faded with INMOS in the 1990s.

The fact that the practical consequences of Moore’s Law
are independent of, or even run counter to, mathematical
elegance, does not imply that mathematical elegance should
be abandoned in computing.

The area which is a natural fit to this CSP/occam/Trans-
puter design is embedded programming, but in the 1990s
both the hardware (T9000) and the language (occam-Pi)
took a leap away from that toward dynamic, operating-
system-type design targets. The T9000 died rather quickly,
unable to compete with Moore’s Law giants like Intel,

while the “soft” occam descendants have struggled on to the
present day. However, troubles with the maintenance of the
“soft” occam toolsets have recently resulted in the revival
of classic tool use, especially Gavin Crate’s Transputer
Emulator, in new projects such as the SME Transputer (
(31, [4]).

The current author has always preferred static, embedded
design, and wishes to bolster this rebirth with a rigorous
language definition that will be able to support formal
proofs and to expand in the direction of modern embedded
programming and heterogeneous multiprocessing, including
the Internet of Things (IoT).

2. Motivation

Any computing language is a mathematical definition.
Any successful computing language is a mathematical def-
inition that is applied to multiple special cases (programs).
These special cases, at varying removes, end up touching the
physical world via hardware, and their physical influences
and effects are intended to be described by the mathematical
consequences of the language.

In most of mathematics, a major definition with exten-
sive consequences through many special cases is simple and
well-defined. It does not change for decades. An example is
a group, whose definition dates from 1854, and though vast
work has been done on implications of this since then, the
definition remains the same. Yet its consequences remain
unexhausted by all this study.

Computing languages suffer “churning” by contrast,
with even the most stable languages such as C getting
decade by decade definition updates. As a consequence,
the full implications of a language definition do not get
explored before the crowds go thundering after newer and,
usually, more complex definitions with changed parameters
of emphasis. Algorithmic efficiency is the usual motive for
the changes, and yet true mathematical proofs are rarely
found, and surprises keep happening in apparently checked
programs [5] due to hidden assumptions (like “no overflow”)
being violated.

In addition, most languages are practically unusable
apart from an operating system (OS), which is a program, of-
ten not even written in the same language. OSs are typically
even more complex than languages and more frequently
changed. Formal verification has reached an OS only in

extremely rare cases like the formally verified microkernel,
sel4 [6].

In this paper, we return to what is probably the solidest
of useful computer languages from a mathematical point of
view, and we define it very firmly using applicable classic
reference manuals for the language [1], the toolset [2],
and the Transputer [7]. Interestingly, the BNF found in [1]
does not quite reach the level of correctness and rigor
needed, although use of the toolset historically reached a
very high level of reliability (the author’s group rescued a
Ford automotive radar project using this reliability).

Therefore, this author has proceeded under the presump-
tion that adjusting the BNF to fit the semantics and practice
should lead to a completely robust result. This presumption
has not been disappointed, as this paper will show. The tools
flex and bison (open-source lex and yacc variants) permit a
complete language definition that breaks down into usable
“building blocks” that avoid syntactic dependency loops,
thus using only self-recursion and non-recursive building.
Even more desirably, the self-recursion falls into two sim-
ple (and unavoidable) classes that will make resource and
behavior theorems easy to prove step by step.

3. Singleton-friendly syntax adjustment and its
implications for occam

In following sections, occlang7 and its demonstrable all-
singleton syntax for occam 2.0 will be demonstrated. It
is clear that, at least for that language, it brings formal
verification within reach. This section will explore the meta-
questions about why this is significant for CSP, occam, and
the general direction of embedded computing.

3.1. Generalities

“Singleton-friendly” is not a complete description of
the driving direction of this syntax, in fact it is rather a
byproduct, a surprisingly simple outcome. To show the real
roots, which have been there since the beginning — the
author just cleaned up a few details — will make clear
why the few syntactic adjustments were made, and why they
“worked.”

occam is CSP, but it is also causal and realistic.

Causality refers to the fact that progress in occam is
triggered, and (in the Transputer implementation) triggered
promptly. This is typically exemplified by the restriction to
“input ALTs” (which could have been a restriction to “output
ALTs”: REQ-DTA instead of DTA-ACK). Attempts to allow
both result in the Alphonse and Gaston “After You” impasse
([8] slide 3, [9], [10]). In fact every construct in occam al-
lows prompt progress in the Transputer implementation, and
hence is proven able to allow prompt progress in general.

Realism is rather subtle and sometimes taken for granted.
Each occam construct can map onto real hardware or soft-
ware (as in the Transputer) and fully describe what it is
doing. Features of occam that feed into this include being
static, being finite, using unbuffered channels, and being

operating-system-free. Most languages give a partial de-
scription, and assume help from dynamic resource alloca-
tion, drivers, and other kinds of constructs at different layers
of abstraction.

This goes really deep, to design causality. In C, for
example, “language lawyers” insist that a union of different
types may have undefined content, refusing to work from
the known bit structure of each type. In occam, RETYPES
takes the opposite view. The value of realism becomes quite
clear with real projects. It is a main reason why workers in
SME ([3]) moved from dynamically extended occam-Pi to
Gavin Crate’s legacy Transputer Emulator, which is pure
occam 2.0.

3.2. Replacement of inline value process

The occam language [1] has a clear bottom-up structure,
in which the expression, the operand, and the element are
found within a line of code as in most languages, while the
process (both sequential and parallel) culminates at a much
higher level in block-structured fashion. Yet one feature, the
inline value process, causes these two levels to be mixed,
allowing a full many-line value process to be part of a single
line of code.

It is unique even from the token point of view, once the
full-line comments, preprocessor directives, empty lines, and
continuation lines are removed, leaving only the INMOS
syntactic NEWLINEs. The end of an inline value process
is the only line whose first nonblank character is a close
parenthesis. When that is not counted, the beginning of
an inline value process is the only creator of parenthesis
imbalance in a line.

It appears only in two syntactic entities,
expression_list and operand, in exactly the same
form in both. It has the same result(s) as a FUNCTION
call instance, which permits its replacement by the ANY
FUNCTION devised by the author. This is completed in
occlang4.

As explained in detail in ANY-FUNCTION-
construction.pdf in the GitHub ([20]), this results in
no change in the semantics — or even in the two-
dimensional text of the value_process enclosed in
either form. Typically,

x (value_process
)y
becomes

ANY FUNCTION name ()
value_process

X name () y

(where each of x and y are a number of entities).

It is always doable, because: (a) if two inline value
processes intersect, then one is inside the other, so an inline
value process depth can be defined, and innermost ones
transformed first; (b) there is always a point above the line
containing (the start of) the inline value process that has the

same variables in scope, and where an ANY FUNCTION
or other specification can be inserted; (c) the number of
possible names (about 52 - 63" ! names of length n) is so
large that a unique new name can always be found.

The conversion to ANY FUNCTIONSs has no semantic
significance, since the value process is identical and the
meaning of everything in scope is the same. However,
its syntactic descent value is very great. It makes all in-
dentations an even number of spaces, so that the tokens
RIND (relative indent) and ROUTD (relative outdent) can be
defined in place of large numbers of spaces at the beginning
of each line. More important, it vastly enriches the descent
structure, separating expression-like entities from process-
like entities and clearly defining lines of code and multi-line
entities.

3.3. Breakdown of types by categories

The other significant change going into occlang4
(other than an error fix, the special treatment of
andor_expression and andor_operator) is the
division of primitive_type into several subsets,
counting_type (BYTE, INT, INT16, INT32, or
INT64), data_type (BOOL, REAL32, REAL64, or
counting_type), and comms_type (various CHAN,
TIMER, and PORT types).

Certain definitions, such as the counted array protocol,
are then narrowed, always according to the INMOS occam
language semantics [1]. For example, the counted array

protocol changes from
primitive.type :: [] type

to

counting_type DOUBLE_COLON INDEF_SPEC type

where DOUBLE_COLON means “::” and INDEF_SPEC
means “[]” (token names), and internal periods are replaced
with underscores so that yacc can deal with them. So the
only real change is the restriction to counting_type,
which is obviously semantically necessary, and will remain
so in future definitions of occam.

The advantage gained from this (other than semantic
precision) is that some of the new sub-primitive_type
entities are plain combinations of tokens, and thus fall into a
lower descent level (see sections below) than the “big one”
equivalent to expression. This kind of disentanglement
is key to the singleton structure achieved at the end.

3.4. Active and passive addressing and types

The changes between occlang4 and occlangb are minor
corrections clearly implied by the INMOS definition and
the test suite (e.g. the fact that "Hello" [3] is legal).
From occlangb to occlang7 two major syntax adjustments
are made, one a tightening and the other a loosening.

The tightening is a further development of type and
its related entities. Though clearly valid for occam 2.0, its
applicability to future developments of occam is not so clear,

and requires some realism-based foundations. The discus-
sion to follow is therefore very important, if not actually
controversial.

Realism says that every resource in a digital computer
is, in some way, addressed. There is a distinction between
“conventional memory” and “everything else” which this
author labels passive addressing and active addressing. This
is clearly exemplified by the Intel 8086 memory address
space and IO address space, but all computers must deal
with it in some fashion.

In passive addressing, the state of the addressed area
of memory, usually a multiple of a byte, is determined by
a write and stays the same until the next write. Any read
will yield only the value last written. No write or read has
any side effects outside the addressed area. Of course, this
is difficult to model in the modern era of cache, but it is
typically a design and security goal.

In occam and CSP, with the three-fold conventional
memory operations of assignment, input, and output, the
“read” is phrased (e.g. in [1] pp 17, 54-55, 75) “used in
expressions” and the “write” is phrased “assigned to by an
input or assignment.” Every read use including an output of
the bare value involves an expression by language definition.

The type restrictions involving the new entity
non_comms_type (which includes data_type
and array types based on it) are meant to exclude every
TYPE1 OF TYPE2 where both TYPEl1 and TYPE2 are
comms (PORT, TIMER, or CHAN). If we grant that all
comms are active, the reason is that an active address has
to have special hardware support, and its nature cannot
simply be transmitted to an arbitrary target location by a
communication. This is clear for PORT and TIMER, but
might be disputed at least for a soft CHAN.

However, a basic CSP/occam characteristic is hardware-
software equivalence, of which one form is the requirement
that a CHAN formal must be agnostic as to whether it is a
soft channel or a hard channel (link). Certainly, addressing
a hard link has side effects, a serial transmission by wire,
and so addressing a soft link must also be treated as active
addressing. Its side effects are outside the process rather
than outside the hardware device.

The upside of making these restrictions are that types
and protocols, which formed a dependency loop in the
expression-like level of syntactic objects, now resolve into
extended descent. You build comms types either as TIMERs
or as PORTs or CHANs of non-comms types. This works
perfectly for occam 2.0, but we will later explore its im-
plications for advanced language developments like mobile
channels.

3.5. Value-only header at zero indentation

The second major adjustment from occlang6 to occlang7
is actually a correction. The original BNF in [1] did not
concern itself with the full program, as required by yacc, but
the author put that in, of necessity, in occlang4. It was done
in simple library fashion (a set of PROCs or FUNCTIONs
at indentation level 0).

This was not quite adequate, because real oc-
cam program files (.OCC files) usually insert an #IN-
CLUDE file or files like HOSTIO.INC at the be-
ginning. These consist of value name declarations and
protocol declarations like CHAN OF SP. To accommo-
date this, value_definition was split away from
definition to include PROTOCOLs and VAL RE-
TYPES constructs, and value_abbreviation was split
away from abbreviation to include VAL x IS y : con-
structs. Then a new entity, value_header, was built of
value_abbreviations and value_definitions.
And such an entity is allowed to lead the code in a
program.

This works (example: the classic library TIMES . OCC).
But it also has a subtle implication for future directions. It
is a restriction to values, which are read-only, but includes
PROTOCOL as a thing that might be shared across a library
(which could be multiple separately compiled programs for
different hardware components). This raises the question of
sharing values between distant (hardware) processes.

The rule is that variables can be shared across a parallel
if they are read-only but not if any member of the parallel
writes to (changes) them. (See for example [1] pp 54-
55.) Since channels are shared, this must mean the channel
(its active nature, not the data sent over it) must remain
unchanged over the connection lifetime. That model allows

the idea of value sharing across a distance — it would
require both sides to agree on what the values (including
channels) are, and then not change them — which cor-

responds precisely to the “three-way handshake” used in
standard TCP!

4. Mathematics

The purpose of this work is to define the occam language
in such a way that mathematical proofs (formal verifications)
are made comparatively easy. The language itself is defined
using a “yacc-style” Backus-Naur Form (BNF) that runs
successfully in bison, the open-source variant of the classic
yacc language syntax builder. Given a lexical foundation
(lexical objects: symbols, keywords, constants, and identi-
fiers satisfying the requirements of a .L file, which gives
regular expressions in a form usable by flex, the open-source
variant of the classic lexical analyzer lex), this analyzes any
legal program into syntactic objects (also called entities in
this paper), according to a fixed finite list (.Y file) defining
each syntactic object in terms of lexical objects and other
syntactic objects.

The mathematical analysis of this section may be more
easily understood if viewed in concert with examples from
the next section (Section 5) and the full BNF listing in the
Appendix.

The fact that syntactic objects are defined in terms of
other syntactic objects induces a preorder [11]. This is useful
because of the fact that the lexical objects, or tokens, are
fully captured by a regular expression analysis before any
syntax work needs to begin. This has been tested on a
modified standard test suite originating from INMOS.

Definition 1 (Descent definition).

A syntax universe is a finite set U of unique synfactic
objects, each of which has one or more syntactic object
definitions in terms of other syntactic objects and lexical
objects.

An entity is a syntactic object. A full definition is the set
of all syntactic object definitions of an entity. An entity
b is a direct descendant of an entity a if b is found on
the right hand side of a syntactic object definition of a.
c is a descendant or a full descendant of a if either ¢ = a,
or for a finite sequence by = a,by,...,b, = c, where
n > 0, b; is a direct descendant of b;_1 for 0 < ¢ < n.
The relationship between a and c is then called descent,
and is denoted ¢ < a.

It is worth noting that the equality case in the last
paragraph can be included in the chain case by allowing
n = 0, since then a = bg = b,, = c and 0 < 7 < n never
happens. The following is an easy consequence.

Lemma 1 (Descent preorder).
The descent relationship is a preorder.

Proof: The reflexive relationship a < a is trivial. The
transitive relationship (a < b AND b < ¢ IMPLIES a < ¢)
follows by chaining the b-to-a direct descents after the c-to-b
direct descents, including the n = 0 case(s), QED.

Definition 2 (Equivalence classes and singletons).
If a and b are entities, we define a is equivalent to b,
ora~b,if a<b AND b < a. The equivalence class
of a, or A(a), is the set {b € U : b ~ a}. Finally, a is
said to be a singleton if its equivalence class A(a) is a
singleton, that is, b € A(a) IMPLIES b = a.

Lemma 2 (Descent partial order).
The descent relationship induces a partial order on its
set of equivalence classes. If a and b are entities such
that a < b, and A and B are their respective equivalence
classes, then ¢ < d for every c € A and d € B.

Proof: The second sentence follows from transitivity and the
definition of the equivalence, and it implies the first sentence
(see [11]), QED.

Definition 3 (Descent-closed sets).
A descent-closed set is a set S of entities such that a € S
AND b < a IMPLIES b € S. If a is any entity, the full
descent set of a is D(a) = {b € U : b < a}. The full
descent count cp(a) of ais [D(a)].

Lemma 3 (Descent-closed unions). (A) A descent-closed set
is the union of all the full descent sets of its members.
(B) The union of any number of descent-closed sets is
a descent-closed set.

(C) The full descent set of any entity is a descent-closed
set.

(D) If b € D(a) then exactly one of the following holds
true:

(D1) b~ a, OR

(D2) ¢p(b) < cp(a).

Proof: In the case of (A), clearly it must be a subset of
that union, but every member of the union is reached by

descent from a member of the descent-closed set, which
means it is also a member of that set. This proves (A). (B)
follows trivially by definition, and (C) follows by transitivity.
To prove (D), note that any two equivalent entities are
descended from each other, and hence must have the same
full descent set. Conversely, if b € D(a) but b is not
equivalent to a, then a is not a member of D(b). Since D(a)
is descent-closed, it follows that D(b) is a strict subset of
D(a). But all these sets are finite, so (D2) is true, QED.

Definition 4 (Underset and next sets).

The underset of an entity a is Dy(a) = D(a) — {a}, the
full descent set of a with a itself removed.

The next step set N, (S) of a descent-closed set S is the
union of all entities whose undersets are subsets of S.
The next difference set Nq(S) = Ny (S) — S = Nyu(S) N
(—S), the set difference between the next step set and
the descent-closed original set.

Lemma 4 (Next step is descent-closed). The next step set
Nu(S) is the disjoint union of S and its next difference
set N4(S), and is descent-closed.

Proof: Because S is descent-closed, every member of S is
a member of N, (S). By definition, N4(S) consists exactly
of those members of N, (S) which are not members of S.
Therefore, for each member a of Ng(S), D(a) is the disjoint
union of {a} and a subset of S. It follows that D(a) is a
subset of Ny, (S), and hence N, (S) = U{D(b) : b € Ny(S)}.
Lemma 3(B) implies N, (S) is descent-closed, QED.

Theorem 1 (All singletons in next difference set). Every
member of a next difference set is a singleton.

Proof: Let a be a member of the next difference set for the
descent-closed set S, and assume a ~ b. Then by definition
of the next difference set, D(a)N(—=S) = {a}. Since D(a) =
D(b), it follows that D(b)N(=S) = {a}. Since S is descent-
closed, b is not a member of S, otherwise a would also be
a member. Since b € D(b) = D(a), it follows that b €
(D(a) N (=S)), hence b = a, QED.

It is important to note that Ny (S) may be empty. The-
orem 1 thus gives a technique for finding singletons. Start
with any descent-closed set S, which may or may not consist
wholly of singletons. Letting Sp = S, keep expanding it
by defining S, = Ny(S,_;), until you reach a value of i
such that S;11 = S;. If S; equals the whole universe, you
are done; otherwise augment S; by an appropriate descent-
closed set containing non-singleton members. Ideally, every
new member added to S; by this process, thus giving an
augmented S; 1, has a full descent set which is the union
of its equivalence class and a subset of S; (see Lemma 3(D)).

This proves to work with the author’s occam 2.0 syntax
universes, occlang6 and occlang7. There are two places
where augmentation has to take place, and each one involves
adding only one non-singleton equivalence class. The first
is the equivalence class containing expression and operand,
and the second is the equivalence class containing process.
The following Theorem eases the task of proving this.

Theorem 2 (Augmenting certain descent-closed sets). Sup-
pose N is a positive integer, and we define Sy = {a €
U : ¢p(a) < N}. Suppose, in addition, that E is an
equivalence class, or a union of equivalence classes, such
that for any b € E we have cp(b) = N. Then both Sy
and E U S_ are descent-closed.

Proof: If b € Scy, then Lemma 3(D) implies any descen-
dant of b has a full descent count less than or equal to that
of b, and hence is also in S. . In addition, Lemma 3(D)
implies any descendant of a member of E is either a member
of E or has a full descent count less than N. This implies
both S.y and E U S_ y are descent-closed, QED.

Corollary 1 (Descent count step). Suppose N is a positive
integer, and we define Scy = {a € U: ¢cp(a) < N}.
Suppose, in addition, that E = {a € U : ¢p(a) = N}.
Then both S. and E U Sy are descent-closed.

Proof: The only change in the hypotheses between the
Theorem and the Corollary is the hypothesis on E. However,
by definition, all members of an equivalence class must
have the same full descent set, and hence the same full
descent count. It follows that E of the Corollary contains
the equivalence class of any member of E, and hence is a
union of a number of equivalence classes, so the hypothesis
of the Theorem holds. This also follows directly because
EUS<y =S (n41), QED.

5. Modeling and reduction to singletons

5 285 @, 588
E" ~ Q 0 2 0-—-Q0
T 19} FERN | 0 E FEae]
U E P e Soerl o pged P
~ A n @ e P PO e
H P e H ~ B e m N QB B e
09 [T -} ll.c.zcu::
oo wn o o o] o P L0
oY PN o £ 4 0o o
el o I e H oo o

H s ® @ e Bl e oo - B3 -
PP O0M (=] E [=] [=]
T O U e Now o3 20 0>un0
£ 8a P08 Il m ool Ooo0Omda
Q3 P ~ 0 — g q S —g
SEgEoT ogEmEogrov=s
v zAmo ol own

= H B~ [55]]
E'—QE:[—'OHIJ 12]

UV a N HZ K

8H-—4:>E-ch

b ot 1111123449423 49949%4 o
I0) 1 ! 2
I 5 0 5 P

Figure 1. Indentation depth pattern of a real occam program (childcs.occ)

The full language syntax work is found ([19])
in ORG3 = https://github.com/SpaceSciencesCorp/
Hard-Stuft-Language/tree/master/occorg3 in subdirectories
langname = occlang6 and occlang7. If ORGLANG
= ORG3/langname, then the sorted full descent set
for each entity synobjname is found in the file
ORGLANG/srt9/synobjname.srt.

In both syntaxes, we start with Sy = the set of all entities
with no direct descendants. (These are the syntactic objects
whose definitions include tokens alone.) Each of these has
only itself as a full descendant, and therefore Sy is descent-
closed and consists only of singletons.

In both cases, the singleton-finding technique described
after Theorem 1 leads to S2, which proves to be the set S< n,
in the following table. Augmenting as suggested in Corollary
1 for N = N3 yields S3, and more of the singleton-finding
technique gets as far as Sg, which proves to be the set S« -
Augmenting as suggested in Corollary 1 for N = Njg
yields Sip, and two more singleton-finding steps consume
the whole universe.

TABLE 1. COROLLARY | STRUCTURE

total | N3 | Nig Number of entities with

full descent count

< N3 | =N3 | <Nig | = Nio
occlang6 99 29 97 15 16 68 29
occlang7 102 28 99 15 15 71 29

To explain some values in Table 1, notice that some of
the members of S may not be in the full descent set of
any member of S_y.

All that remains after Table 1 is the question of how
complex the two E-sets {a € U: ¢p(a) = N} are for N =
N3 and N = Njp. As can be checked by diffing members
of ORGLANG/srt9, each consists of a single equivalence
class. E3 = {a € U : ¢p(a) = N3} is the set of entities
equivalent to expression or operand, while E;g = {a € U:
c¢p(a) = Ny} is the set of entities equivalent to process.

To reduce E5 and Ej to singletons, extended descent
is used. In this, the E-set takes the place of the universe,
treating lower level entities as tokens, since they can be
completely defined before any entity of the given level
or higher is dealt with. In addition, each E-level entity is
indexed by a depth based on a globally defined count that
is lexically accessible.

Newlines and indentation have syntactic significance
in occam. By replacing inline value processes with ANY
FUNCTION:S, all syntactically significant indentations are a
multiple of two spaces, and the tokens RIND (relative two-
space indent) and ROUTD (relative two-space outdent) are
introduced to control these. Full-line comments, preproces-
sor directives, and empty lines are deleted before syntactic
analysis begins, and continuation lines are merged into one
line. Syntactic newlines (a subset of lexical newlines, exclud-
ing full-line comments, preprocessor directives, empty lines,
and continuation lines) get the token NEWLINE. A line
positioning is either the beginning of file or a NEWLINE
followed by one RIND or by zero or more ROUTD, and
a full line positioning is a line positioning not followed
by NEWLINE, RIND, or ROUTD (i.e. it is either end-of-
program or is followed by something other than NEWLINE,
RIND, or ROUTD).

Figure 2. Ascent pattern for occlang7, using extended descent

A syntactic line begins after a full line positioning and
ends with the next NEWLINE. A multi-line syntactic entity
begins with a syntactic line and may contain further syn-
tactic lines, RIND tokens, and/or ROUTD tokens, but must
end at the same indentation at which it began, without ever
internally reaching a lesser indentation. A sub-line entity
is an entity that is neither a syntactic line nor a multi-line
syntactic entity.

In occlang6 or occlang7, every entity that directly or in-
directly contains a NEWLINE is a syntactic line or a multi-
line syntactic entity. Every legal occam program begins and
ends with a syntactic line that is at indentation depth 0.
(Compare Figure 1.)

In E3 the depth of an entity (which is always a sub-line
entity in this case) is its enclosure count, the number of open
parentheses and open square brackets minus the number of
close parentheses and close square brackets before it on its

syntactic line. In E;(the depth of an entity (which is always
a full-line or multi-line entity in this case) is its indentation
count, the number of RIND minus the number of ROUTD
before it in the file. The syntax guarantees that these do not
go negative at any point in a legal program.

In each reduced universe, any entity is assumed to be
tagged with its depth, and greater depths are fully evaluated
before lesser. (This is always possible because a legal pro-
gram is finite.) This means that, in a syntactic definition, any
relative positive enclosure or indentation (as appropriate)
implies that the enclosed or indented entities are already
defined and may be treated as tokens. This is accomplished
in the algorithms by changing their names so they do not
correspond to names of real syntactic objects (the algorithms
then treat them as if they were keywords).

A final variant must be treated for completeness. It turns
out in occam that no syntactic definition in a reduced uni-
verse ever increases enclosure or indentation (as appropriate)
by more than 1. This means there is one special case, the
leaf, where the entity in question is depth-maximal in the
program. It must therefore use a definition that has no added
depth required. Some entities disappear because none of
their definitions satisfy this; others disappear because they
are dependent on disappeared entities, or because all that
is left is an infinite regress definition. After this reducing
process is complete, a special reduced universe for the leaf
remains, which in turn is subjected to the algorithms.

Application of the algorithms (the singleton finding de-
scribed at the top of this section) for syntax occlang7 proves
that all four cases break down completely into singletons.
(Compare Figure 2.)

The standard descents, as explicated by the approach of
Table 1, are shown in Table 2. This includes every entity
of occlang7, and except for levels 3 and 10, they are all
singletons.

The extended descent required for level 3 is shown by
Table 3 for the regular branch, and Table 4 for the leaf. This
is visible in Figure 2 expansion of level 3, as the far ladder,
to which the green arrow leads, has one less rung than the
others.

The extended leaf levels look the same at first glance as
the extended regular branch levels, but an examination of a
single syntactic object shows how they get the given levels.
On the standard CRIL.nl, element has the definitions

element = element ’ [’ subscript "]’
| [’ element FROM subscript FOR count
| scalar

I}I

In the reduced syntax for level 3, general branch case, we
have

element = element ’ [’ subscriptl ']’

TABLE 2. STANDARD LEVELS OF ALL ENTITIES OF OCCLANG7

[Level | occlang7 entities
andor_operator byte
counting_type dyadic_operator

0 integer monadic_operator
name real

1 data_type name_clist
scalar string_head

2 data_type_clist literal
string
andor_expression comms_type
conversion count
element expression

3 expression_clist expression_olist
non_comms_type operand
primitive_type protocol
simple_protocol subscript
table
actual allocation
base boolean

4 case_expression channel
expression_list output_item
selector simple_protocol_slist
type variable
actual_clist case_expression_clist
declaration delayed_input

5 indef_type input_item
output_item_slist replicator
sequential_protocol variable_clist
actual_olist assignment

6 input_item_slist output
specifier tagged_protocol
formal instance

7 tagged_list tagged_protocol_vlist
value_abbreviation

8 abbreviation formal_clist
input value_definition

9 action formal_olist
guard value_header
alternation alternative
alternative_vlist block_definition
case_input choice
choice_vlist conditional
construction definition
function_body guarded_alternative

10 guarded_choice loop
option option_vlist
parallel placedpar
placedpar_vlist procedure_body
process process_vlist
selection sequence
specification valof
value_process variant
variant_vlist

[11 [block_definition_list

[12] program

| 7 [’ elementl FROM subscriptl FOR countl ’ ‘Thus, in branch case, e lement belongs in extended level 1

| scalar

And in the even more reduced syntax for level 3, leaf case,
we have

element = scalar

ecause of a self-recursion, while in leaf case, it references
only standard level less than 3, and so is in extended level
0.

TABLE 3. EXTENDED LEVELS OF ALL OCCLANG7 LEVEL 3 ENTITIES

[Level | occlang7 level 3]
o 1
[T T eclement non_comms_type table]
[2 [operand simple_protocol |
[3 [andor_expression protocol |
[4 [comms_type |
[5 [primitive_type |
[6 [conversion]
[7 [expression |
[8 [count expression_clist subscript |
[9 [expression_olist |

TABLE 4. EXTENDED LEVELS OF ALL OCCLANG7 LEVEL 3 LEAF

ENTITIES
[Level | occlang7 level 3 leaf |
[0 [element non_comms_type table |
[T T operand simple_protocol |
[2 [andor_expression _ protocol |
[3 [comms_type |
[4 [primitive_type |
[5 [conversion |
[6 [expression |
[7 [count expression_clist subscript |
[8 [expression_olist |

Similarly, the extended descent required for level 10 is
shown by Table 5 for the regular branch, and Table 6 for
the leaf. This is visible in Figure 2 expansion of level 10,
as the far ladder, to which the green arrow leads, also has
one less rung than the others.

TABLE 5. EXTENDED LEVELS OF ALL OCCLANG7 LEVEL 10 ENTITIES

[Level | occlang7 level 10]
alternation block_definition case_input
0 conditional guarded_alternative ~ guarded_choice
loop placedpar selection
sequence
[1 [definition parallel placedpar_vlist |
[2] construction specification |
3 alternative choice option
process valof variant
alternative_vlist choice_vlist option_vlist
4 procedure_body process_vlist value_process
variant_vlist

W

function_body |

The conclusion, that ascent shown in Figure 2 is valid
for every program, is central to this paper: if the syntactic
objects of Level 3 are depth-tagged by enclosure count,
and the syntactic objects of Level 10 are depth-tagged by

TABLE 6. EXTENDED LEVELS OF ALL OCCLANG7 LEVEL 10 LEAF

ENTITIES
[Level | occlang7 level 10 leaf |
alternation case_input conditional
0 definition placedpar selection
sequence
[1T T parallel placedpar_vlist _specification |
[2 [alternative choice construction |
[3 [alternative_vlist choice_vlist process |
[4 [procedure_body process_vlist |

indentation count, then the entire occlang7 syntax consists
of singletons only. Each syntactic object definition is either a
non-recursive build, a finite fixed sequence of lexical tokens
and lower-descent entities, or it is a self-recursion, a finite
fixed sequence of lexical tokens, lower-descent entities, and
itself.

6. Complete details on occlang7 self-recursions

The use of occlang7 ascent to analyze the mathematical
consequences of any occlang7-syntax occam program has
now been simplified in principle to the stepwise analysis of
two kinds of syntactic object definitions: builds and self-
recursions. Each build is in principle trivial: the tokens
and lower-descent entities and their sequence are known,
explicitly listed in the definition of the build, and therefore
as direct consequence the build is known (where “known”
refers to timing, resources, and states before and after).

This leaves the self-recursions. A simple search of
all the syntactic object definitions in occlang7 will find
them all. There are 102 syntactic objects and 271 syn-
tactic object definitions in occlang7 (see alldefs.txt

in the GitHub ([19]), or look at the grammar
in y.output there, after running the scripts). The
search for self-recursions is trivial (same entity on

left-hand-side and right-hand-side) and yields 38 self-
recursive definitions (occlang7-recurse—-3-10.txt
and occlang7-recurse—-not-3-10.txt show the 21
that are in Levels 3 and 10, and the 17 that are not,
respectively). Three are discarded from the first list because
from the extended descent point of view they are builds:

element = ' [’ element FROM subscript FOR count ']’

placedpar = PLACED PAR replicator NEWLINE RIND placedpar ROUTD

table = ' [’ table FROM subscript FOR count ']’

This leaves a total of 35, of which 18 are from Levels 3 and
10, and 17 are not.

We will completely analyze these 35. It turns out that
they fall into two categories: lists which append items to
the right or below, and determinations which insert items to
the left or above. There are 24 of the former and 11 of the
latter. They mostly fall into repetitive categories, as shown
by Table 7 and Table 8 respectively.

TABLE 7. OCCLANG7 SELF-RECURSIONS: LISTS

TABLE 9. CHANGES BETWEEN [1] SYNTAX AND OCCLANG4

Template [item Ttem Syntactic objects Lexical objects Fix
= = = — = Add Remove
item_clist = item_clist °,” item | actual case_expression A dyadic_operator digit Remove
H name EXPOHEH[name S[l’il‘lg
data—type express10n monadic_operator hex_digit Add
formal name string_head BYTE_CONSTANT HEX_CONSTANT
. string INT_CONSTANT REAL_CONSTANT
varlable IDENTIFIER STRING_LITERAL*
item_slist = item_slist ’;” item | input_item output_item B COmTS-‘YlPe
. counting_type
simple_protocol data_type
0 0 D = D = o C
item_vlist = item_vlist item altgrnatlve choice 5 o epression S
option placedpar andor_operator
E block_definition e
pro'cess tagged—prOtOCOI block_definition_list
variant program
- - = — F *_clist variable_list | NEWLINE RIND
[item =item '[" subscript '] [element table | ROUTD
S T 1 - *_vlist
[pecial cases | T
andor_expression = andor_expression andor_operator operand 'I* scalar ;‘fﬂ
block_definition_list = block_definition_list block_definition timer
string_head = string_head STRING_LITERAL_MIDDLE timer_input

value_header = value_header value_abbreviation
value_header = value_header value_definition

TABLE 8. OCCLANG7 SELF-RECURSIONS: DETERMINATIONS

[Template [item
item = specification item alternative choice
option process
valof variant
[item = allocation ifem [process |
item = [expression ']’ item | indef_type non_comms_type
type

[Special case |
[indef_type = INDEF_SPEC indef_type]

7. Progressive details on syntax adjustments

The occlang7 syntax was developed over time through
other syntaxes, of which we here reference occlang4 through
occlang6: the earlier ones were consistent but not com-
plete, and did not have the all-singleton property shown
in Figure 2. This section gives specific details, that can
be checked in the GitHub ([19]), not only of the generic
descriptive changes described in Section 3, but also other
changes including corrections both in the syntax of [1] and
in the author’s work. In the column labeled “Fix”, e refers
to an error in the original INMOS BNF, and o refers to an
omission in the author’s previous syntax.

Descriptions of items in Table 9:

A: Lexical foundation: These changes move as much as
possible to regular expressions handled by lex (flex). These
include literals including four varieties of string literals,
three of which serve the multi-line string ([1] 3.2, p 26).
name and string are no longer token names, but syntactic
objects.

B: This is the type breakdown of Subsection 3.3.

C: This is the conversion of inline value processes to
ANY FUNCTION:S, described in Subsection 3.2.

D: Parentheses may be omitted in strings of boolean
operators ([1] 7.2.6, p 48), which is incorrectly omitted from

the INMOS BNF. Here AND and OR may be mixed, and
the order is left to right; not documented, but compilation
experimentation shows it, e.g. for FALSE AND FALSE OR
TRUE.

E: Top level constructs, with program at the apex,
are required by yacc (bison). This satisfies the requirement,
using the format of a zero-indentation library of PROCs or
FUNCTIONSsS.

F: Many organizational changes with no syntactic/se-
mantic implications are required by yacc. Two-character
symbols must be named, curly bracket expressions must
be eliminated and named and built recursively, and the use
of tokens NEWLINE, RIND, and ROUTD is introduced as
described in Subsection 3.2.

G: The new entity indef_type is introduced to break
up specifier so that the occurrence of INDEF_SPEC
(the digraph [], meaning an unspecified dimension) is within
the new entity only.

H: Due to the exigencies of bison, it is convenient to
combine tag with that use of name which names a variable.
This is called scalar, a slight misnomer (it can be an array
name).

I: port and timer are combined with channel due
to their syntactic similarity in use. They will be distin-
guished by type declarations. They are actually closely
related, as active addresses (see Subsection 3.4).

TABLE 10. CHANGES BETWEEN OCCLANG4 AND OCCLANGS

Item | Syntactic objects
Add | Remove
J 0

Lexical objects | Fix

Descriptions of items in Table 10:

J: The author’s occlang4 omitted the NEWLINE after the
definition of tagged_protocol thatis scalar (i.e. tag)
by itself on a line. This was consistent, but incorrect.

Descriptions of items in Table 11:

K: The author neglected to require escaping ’ in a
BYTE_CONSTANT, and to require escaping " in the four

TABLE 11. CHANGES BETWEEN OCCLANGS5 AND OCCLANG6

Item Lexical objects Fix
K Revised o
BYTE_CONSTANT STRING_LITERAL*
L o
M e

STRING_LITERAL«* varieties. This is corrected in oc-
clang6.

L: The author omitted equality (the symbol =) from the
list of dyadic operators. This was consistent but incomplete,
and is here corrected.

M: A string must be a table, not a literal
as the INMOS BNF claims, to allow expressions like
"Hello" [3], as the test programs do.

TABLE 12. CHANGES BETWEEN OCCLANG6 AND OCCLANG7

Item Syntactic objects Fix
Add Remove
N value_abbreviation value_definition e
value_header
(0] e
P non_comms_type array_type

Descriptions of items in Table 12:

N: As described in Subsection 3.5, an additional
breakup of definition and abbreviation can allow
a value_header to be defined that, like HOSTIO. INC,
may precede all the zero-indent members of a library.

O: Inconsistently, the INMOS BNF makes the FOR
value a count for a table but a subscript for an
element. Though there is a hint in the names of Transputer
assembly instructions csub0 and ccntl that one might allow
0 and one not, [1] 6.3 p 41 and 7.1 p 44 makes it clear there
is no distinction.

P: As described in detail in Subsection 3.4, it is ap-
propriate to introduce non_comms_type to unwind the
possible comms types. Also, array_type proves to be
unnecessary, and eliminates the last recursive loop.

8. Conclusions and implications for future
static occam development

The occam 2.0 language had an impressive run, in
the late 1980s and early 1990s, at the head of embedded
programming — including massively parallel and heteroge-
neous hardware with all kinds of then-available 10 (e.g.,
[12]) — despite a paucity of hardware for it to run on. It
was always respected for extremely reliable and predictable
program behavior, verging on the verifiable. This paper
covers the last few gaps that must be covered to bring
formal verifiability within reach. The consequences of this
are considerable, and justify “picking up where we left oft”
to bring this technology forward.

10

8.1. Verifiability

Formal verification is nothing other than mathematical
proof of physical consequences, applied to computing. CSP
[13] gets us part way there, but current tools like Failures-
Divergences Refinement (FDR) are too small, requiring
exploration of all data cases separately using a functional
language, and thus unable to deal with practical-sized prob-
lems. But nested mathematical proofs are valid if all their
parts are valid. This allows a procedural language like occam
to have provable consequences if it is causal, as occam is,
and realistic with fully describable consequences, as occam
is (see 3.1).

Most languages only partially describe reality (compare
the full description in a math function like z=atan2 (x, y)
with the implied OS and interrupt support of its lookalike,
z=read (%, y)). Given occam’s full grip, all the way down
to IO addresses and interrupts, plus hardware that fits its
requirements, including side-effect freedom, all that remains
is the nested steps (Figure 2). What is demonstrated in this
paper starts with the token primitives (compare A in Table 9)
and gets all the way to a program, possibly running on
multiple heterogeneous hardware components. The beauty
of it is that the singleton structure proved here suffices
to show that all the steps needed are just those already
described fully in occam and Transputer documentation such
as [1], [7], and [2].

8.2. Development paths

Work has already been done on the denotational seman-
tics of occam1 ([16]) and occam?2 ([18]), and on large num-
bers of transformation laws valid in occam ([17]). These
have sufficed to perform several practical projects, including
the Transputer floating-point unit. However, they have been
restricted by state space questions, for instance in WHILE
loops. The current paper with its nested mathematics shows
paths forward on this.

This leaves the question of how to move forward from
around 1990 to the present computing world. At the level
of occam foundations, which is OS-free and hence not
subject to “churning,” things are comparatively simple (like
an Arduino rather than a Raspberry-Pi). But there are still
thirty years of developments to deal with.

8.2.1. Current static advancements. Some of the advance-
ments have already been done. The occam-like configuration
language ([2] Chapter 5) is a clean path to heterogeneity,
and most of occam 2.5, like records (the equivalent of C
structs), is a reasonable simplification. The only exception
may be the narrowing of the counted array protocol, but that
can be avoided simply by sticking to the old standard.

8.2.2. Mobiles. The dynamic occam extensions such as
occam-Pi [14] have, in this author’s opinion, lost the thread
by losing HSE, and yet some of the problems they tackled
need to be dealt with but in a static fashion. These include
mobile channel ends (functionally like TCP) and mobile

arrays (functionally like block devices). Work has already
started, such as WACOMSAS [15] and the attachable (
[8] slides 23-25) for the TCP-like development, and the
detachable ([8] slides 21-22) for the block-device-like de-
velopment. The attachable goes beyond the mobile channel
end by using the shared-value-at-a-distance concept (see 3.5)
and static constructs. The detachable replaces copies with
moves in certain channel communications. Both carefully
preserve HSE.

8.2.3. Hardware. The Transputer, though a pioneer chip for
massively parallel design, was itself a CPU uniprocessor.
Driven by the collapse of the cycle-time side of Moore’s
Law, modern dies have gone far beyond that, both in width
(multiprocessing) and depth (cache). Work has begun here
too, using an occam-to-Go language translation ([8] slides
6-15) as a template, since Go must deal with both these
(and all occam lexical objects prove to be expressible in
Go). Riding herd on cache, though in general very difficult,
may be simplified considerably by the static and verifiably
nested nature of occam, which was already friendly in the
1980s to the Transputer’s “cache”, its on-chip memory.
Another path into hardware that is closely allied with
this paper is SME, which uses a related subset of CSP to
vastly simplify FPGA design, including the emulated T425
itself ([4], [3]). This synergy was long ago demonstrated
by the Transputer floating point unit design. Mathematical
support for all these directions has begun ([9], [10]).

8.3. Conclusion

Simplicity is the path forward, not complexity. Massive
and heterogeneous parallelism is the friend of clarity in
computing, not its enemy. The reason for this is that it leads
to understandability of individual functionality, like a village
with paths between the shops of all the special craftsmen.
The best computing of the future will be done following
the embedded model, not the massive OS model. And it
will all be formally verifiable, using mathematical proofs,
and the simple nested structure implied by the singletons of
this paper.

Appendix: occlang7 Syntax

This is the occlang7 syntax, as found in OCCAM-
LIB.Y and CRILnl. To ease reading, later definitions are
preceded by a 4-space tab, and the spaces between syntactic
objects are removed.

program = block_definition_list
| value_header
block_definition_list
block_definition_list = block_definition
| block_definition_list
block_definition
alternation = ALT NEWLINE
RIND alternative_vlist ROUTD
ALT NEWLINE
ALT replicator NEWLINE
RIND alternative ROUTD
PRI ALT NEWLINE
RIND alternative_vlist ROUTD
PRI ALT NEWLINE
PRI ALT replicator NEWLINE

11

RIND alternative ROUTD
alternative = guarded_alternative
alternation
specification
alternative
channel ’?° CASE NEWLINE
RIND variant_vlist ROUTD
channel ’?° CASE NEWLINE
boolean ’&’ channel ’?° CASE NEWLINE
RIND variant_vlist ROUTD
boolean ’&’ channel ’?° CASE NEWLINE
alternative_vlist = alternative
| alternative_vlist
alternative
block_definition

= PROC name ’(’ formal_olist *)’ NEWLINE
RIND procedure_body ROUTD
1> NEWLINE
| data_type_clist FUNCTION name ’(’
RIND function_body ROUTD
* NEWLINE
case_input = channel *?’ CASE NEWLINE
RIND variant_vlist ROUTD
| channel '?° CASE NEWLINE
choice = guarded_choice
| conditional
| specification

formal_olist *)’ NEWLINE

choice
choice_vlist = choice
| choice_vlist
choice
conditional = IF NEWLINE
RIND choice_vlist ROUTD
| IF NEWLINE

| IF replicator NEWLINE
RIND choice ROUTD
construction = sequence | conditional
| parallel | alternation
definition = value_definition
| ANY FUNCTION name ’(’ ’)’ NEWLINE
RIND function_body ROUTD
* NEWLINE
| data_type_clist FUNCTION name ’(’
| specifier name RETYPES element ’:
| block_definition
function_body = value_process
guarded_alternative = guard
RIND process ROUTD
guarded_choice = boolean NEWLINE
RIND process ROUTD
loop = WHILE boolean NEWLINE
RIND process ROUTD
option = case_expression_clist NEWLINE
RIND process ROUTD
| ELSE NEWLINE
RIND process ROUTD
| specification
option
option_vlist = option
| option_vlist
option
parallel = PAR NEWLINE
RIND process_vlist ROUTD
| PAR NEWLINE
| PAR replicator NEWLINE
RIND process ROUTD
PRI PAR NEWLINE
RIND process_vlist ROUTD
PRI PAR NEWLINE
PRI PAR replicator NEWLINE
RIND process ROUTD
placedpar
placedpar = PLACED PAR NEWLINE
RIND placedpar_vlist ROUTD
| PLACED PAR NEWLINE
| PLACED PAR replicator NEWLINE
RIND placedpar ROUTD
| PROCESSOR expression NEWLINE
RIND process ROUTD
placedpar_vlist = placedpar
| placedpar_vlist
placedpar
procedure_body = process
process = SKIP NEWLINE
STOP NEWLINE
action | construction | instance
specification
process
allocation
process
process_vlist = process
| process_vlist
process
selection = CASE selector NEWLINE
RIND option_vlist ROUTD
| CASE selector NEWLINE
sequence = SEQ NEWLINE
RIND process_vlist ROUTD
| SEQ NEWLINE
| SEQ replicator NEWLINE
RIND process ROUTD
specification = declaration | abbreviation | definition
valof = VALOF NEWLINE
RIND process
RESULT expression_list NEWLINE ROUTD
| specification
valof
value_process =

| selection | loop

formal_olist *)”’
* NEWLINE

case_input

valof

IS expression_list

* NEWLINE

variant = tagged_list NEWLINE
RIND process ROUTD
| specification
variant
variant_vlist variant
| variant_vlist
variant

abbreviation = specifier name IS element * NEWLINE
| name IS element ':’ NEWLINE
| value_abbreviation
action = assignment NEWLINE
| input NEWLINE
| output NEWLINE
allocation = PLACE name AT expression ':’ NEWLINE

declaration = type name_clist ’:’ NEWLINE
guard = input NEWLINE

| boolean '& input NEWLINE

| boolean '& SKIP NEWLINE
instance = name '(’ actual_olist ’)’
tagged_protocol scalar NEWLINE

| scalar ’;’ sequential_protocol NEWLINE
tagged_protocol_vlist tagged_protocol

| tagged_protocol_vlist

tagged_protocol

NEWLINE

value_abbreviation = VAL specifier name IS expression ':’ NEWLINE
| VAL name IS expression ’:’ NEWLINE
value_definition = PROTOCOL name IS sequential_protocol ’:’ NEWLINE

| PROTOCOL name NEWLINE

RIND CASE NEWLINE

RIND tagged_protocol_vlist ROUTD ROUTD

*:’ NEWLINE
PROTOCOL name NEWLINE

RIND CASE NEWLINE ROUTD
*:” NEWLINE
VAL specifier name RETYPES expression ’:’ NEWLINE
value_header value_abbreviation | value_definition
value_header
value_abbreviation
value_header
value_definition
actual = element %dprec 2

| expression %dprec 1

actual_clist actual | actual_clist
actual_olist actual_clist
assignment = variable_clist ASSIGN expression_list
base = expression
boolean = expression
case_expression = expression
case_expression_clist

actual
= |

= case_expression | case_expression_clist ’,’ case_expression

channel = element
delayed_input = channel '?° AFTER expression
expression_list = name ’(’ expression_olist)’ %dprec 2

| expression_clist %dprec 1

formal = specifier name_clist | VAL specifier name_clist
formal_clist = formal | formal_clist formal
formal_olist formal_clist

indef_type = INDEF_SPEC type

INDEF_SPEC indef_type

'[* expression ']’ indef_type

input = channel *?’ input_item_slist

| channel ’?° CASE tagged_list

| delayed_input
input_item = variable | variable DOUBLE_.COLON variable
input_item_slist = input_item | input_item_slist input_item
output = channel *!’ output_item_slist %dprec 1

| channel *!’ scalar °;' output_item_slist %dprec 2

output_item
output_item_

expression | expression DOUBLE_COLON expression

list output_item | output_item_slist ’;’ output_item
replicator name base FOR count

selector = expression

sequential_protocol
simple_protocol_slist

simple_protocol_slist
= simple_protocol | simple_protocol_slist ’;’

simple_protocol

specifier = type | indef_type

tagged_list = scalar | scalar ;' input_item_slist
variable = element

variable_clist = variable | variable_clist variable

andor_expression = andor_expression andor_operator operand
| operand andor_operator operand
comms_type = CHAN OF protocol
| TIMER
| PORT OF non_comms_type
conversion = primitive_type operand
| primitive_type ROUND operand
| primitive_type TRUNC operand

count = expression
element = element [’ subscript]’
| "[* element FROM subscript FOR count ']’
| scalar

expression monadic_operator operand
operand dyadic_operator operand
andor_expression
conversion
operand
MOSTPOS data_type
MOSTNEG data_type
expression_clist = expression | expression_clist *,”
expression_olist = | expression_clist
operand element | literal | table |
| name *(’ expression_olist ')’
primitive_type = comms_type
| data_type
protocol name | simple_protocol
simple_protocol = non_comms_type
| counting_type DOUBLE_COLON INDEF_SPEC non_comms_type
subscript expression
table table [’ subscript ']’
| "[" expression_clist ']’

expression

= T

expression)’

| ANY

12

| [’ table FROM subscript FOR count
| string
primitive_type
| *[’ expression ']’ type
non_comms_type = data_type
| *[’ expression ']’ non_comms_type
andor_operator = AND | OR
byte = BYTE_CONSTANT
counting_type = BYTE
| INT
| INT16
| INT32
| INT64
data_type
| BOOL
| REAL32
| REAL64
data_type_clist data_type | data_type_clist *,’ data_type
dyadic_operator = AFTER | BITAND | BITOR | MINUS | PLUS | REM
| TIMES | RIGHT_OP | LEFT_OP | AND_OP | OR_OP | LE_OP | GE_OP

BE

type

counting_type

| XOROP | NEOP | "= | "+ | "s" | /7 | \\" | < | >
| =
integer = INT_CONSTANT | HEX_CONSTANT
literal = integer
| byte
| integer (' data_type ')’
| byte (' data_type ')’
| real (' data_type)’
| TRUE | FALSE
monadic_operator = BITNOT | MINUS | NOT | SIZE | '~ | —°
name = IDENTIFIER
name_clist = name | name_clist ’,’ name
real = REAL_CONSTANT
scalar = name

string = STRING_LITERAL | string_head STRING_LITERAL_END
string_head = STRING_LITERAL_START | string_head STRING_LITERAL_MIDDLE

Acknowledgments

The author would like to thank: Gavin Crate, author
and maintainer of the Transputer Emulator, for his soft-
ware which has been invaluable in this investigation; Kevin
Chalmers, whose help applying the CSP proof tool FDR4
to the author’s FIFO variants was critical in understanding
Formal Verification issues; Brian Vinter and Carl-Johannes
Johnsen, and the rest of the SME team at the Niels Bohr
Institute, for their indispensable work in reviving and ad-
vancing the Transputer design; and finally, the reviewers,
for helping me to clarify certain issues.

References

[11 INMOS Ltd. occam 2 Reference Manual. Prentice Hall, 1988. http:

/Iwww.transputer.net/obooks/obooks.asp.
[2] INMOS Ltd. occam2 toolset user manual - part 1. INMOS, 1991.
www.transputer.net/prog/72-tds-275-02/otdsug1.pdf.
[3] Carl-Johannes Johnsen, Kenneth Skovhede, Brian Vinter, Lind-
say O’Brien Quarrie, and Lawrence J. Dickson. Implementing
a Transputer for FPGA in Less Than 800 Lines of Code. In
Jan Bakgaard Pedersen, Kevin Chalmers, Marc L. Smith, Kenneth
Skovhede, Brian Vinter, and Peter Welch, editors, Communicating
Process Architectures 2018. TOS Press, Amsterdam, The Netherlands,
August 2018.
[4] Brian Vinter and Kenneth Skovhede. Synchronous Message Exchange
for Hardware Designs. In Kevin Chalmers, Jan Bakgaard Pedersen,
Frederick R. M. Barnes, Jan F. Broenink, Ruth Ivimey-Cook, Adam
Sampson, and Peter Welch, editors, Proceedings of Communicating
Process Architectures 2015. TOS Press, Amsterdam, The Netherlands,
August 2015.

[5] William Harwood. Software errors could have de-
stroyed Boeing Starliner, NASA says. CBS News,
February 7, 2020. https://www.cbsnews.com/news/

boeing- faulted-for-starliner-software- errors- that-marred- test- flight.

(6]

(71

(8]

[91

[10]

(11]

[12]

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. sel4: Formal Verification of an OS Kernel. In
Proceedings of the ACM SIGOPS 22nd symposium on Operating
system principles. SOSP 09, 2009.

INMOS Ltd. Transputer Instruction Set, a compiler writer’s guide.
Prentice Hall, 1988. http://www.transputer.net/iset/iset.asp.

Brian Vinter, Lawrence J. Dickson, and James Dibley. Work-
shop on Translating CSP-based Languages to Common Pro-
gramming Languages. In Jan Bakgaard Pedersen, Kevin
Chalmers, Marc L. Smith, Kenneth Skovhede, Brian Vin-
ter, and Peter Welch, editors, Communicating Process Archi-
tectures 2018. 10S Press, Amsterdam, The Netherlands, Au-
gust 2018. Workshop, https://github.com/SpaceSciencesCorp/
Hard- Stuff- Language/CPA- Workshop-2018c.pdf.

Lawrence J. Dickson and Jeremy M. R. Martin. Rigorous Tim-
ing, Static OCCAM, and Classic CSP: Formal Verification for the
Internet of Things. In Jan Bakgaard Pedersen, Kevin Chalmers,
Jan F. Broenink, Brian Vinter, Kevin Vella, and Peter Welch, editors,
Communicating Process Architectures 2017. 10S Press, Amsterdam,
The Netherlands, August 2017. Fringe Presentation, http://wotug.cs.
unlv.edu/files/CPA2017/presentations/presentation-08.pdf.

Lawrence J. Dickson and Jeremy M. R. Martin. Rigorous Timing,
Static OCCAM, and Classic CSP: Mathematical Ground Truth. In
Jan Bakgaard Pedersen, Kevin Chalmers, Jan F. Broenink, Brian
Vinter, Kevin Vella, and Peter Welch, editors, Communicating Process
Architectures 2017. 10S Press, Amsterdam, The Netherlands, August
2017. Fringe Presentation, http://wotug.cs.unlv.edu/files/CPA2017/
presentations/presentation-24.pdf.

Wikipedia. Preorder. Wikimedia Foundation Inc, 2020. https://en.
wikipedia.org/wiki/Preorder.

U. Franke, H. Fritz, A. Kuehnle, and J. Schick. Transputers on
the Road. In Transputer Applications and Systems, Proceedings of
World Transputer Congress 1993, volume 1, pages 1-17. 10S Press,
Amsterdam, The Netherlands, 1993.

13

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
London, 1985. ISBN: 0-131-53271-5.

Frederick R.M. Barnes. Dynamics and Pragmatics for High Perfor-
mance Concurrency. University of Kent at Canterbury, June 2003.
http://frmb.org/pubs/fred-phd-thesis.pdf.

Tor Skovsgaard, Patrick Dyhrberg Sgrensen, Lawrence J. Dickson,
Lindsay O’Brien Quarrie, and Brian Vinter. A Concurrent Data Col-
lection Environment for WAsteful COMmunication SAtellite System.
In Jan Bakgaard Pedersen, Kevin Chalmers, Jan F. Broenink, Brian
Vinter, Kevin Vella, and Peter Welch, editors, Communicating Process
Architectures 2017, pages 187 — 196. 10S Press, Amsterdam, The
Netherlands, August 2017.

A. W. Roscoe. Denotational semantics for occam. International con-
ference on concurrency, Seminar on concurrency, CONCURRENCY
1984. Springer, 1984. urlhttps://link.springer.com/chapter/10.1007/3-
540-15670-4_15.

A. W. Roscoe and C. A. R. Hoare. The laws of occam programming.
Technical monograph PRG-53, Oxford University Computing Labora-
tory, February 1986. https://www.cs.ox.ac.uk/files/3376/PRG53.pdf.

M. H. Goldsmith, A. W. Roscoe, and B. G. O. Scott. Denotational
semantics for occam2. Technical monograph PRG-108, Oxford
University Computing Laboratory, June 1993. https://ora.ox.ac.uk/
objects/uuid:edc1c60a-7f84-4a24-88d6-cc31a95fa366/download_
file?file_format=pdf&safe_filename=47.pdf&type_of_work=Report.

Lawrence J. Dickson. Supporting documentation for ‘OCCAM-
equivalent syntax for pure singleton descent structure’. Space
Sciences Corporation, 26 February 2020. https://github.com/
SpaceSciencesCorp/Hard- Stuff-Language/tree/master/occorg3.

Lawrence J. Dickson. OCCAM Super-Entities and the Inline
Value Process Question. Space Sciences Corporation, 31 January
2020. https://github.com/SpaceSciencesCorp/Hard- Stuff-Language/
tree/master/occorg3/ANY-FUNCTION-construction.pdf.

