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Abstract. This paper introduces a new DQBF solver called DQBDD,
which is based on quantifier localization, quantifier elimination, and
translation of formulas to binary decision diagrams (BDDs). In 2020,
DQBDD participated for the first time in the Competitive Evaluation of
QBF Solvers (QBFEVAL’20) and won the DQBF Solvers Track by a
large margin.

1 Introduction

A binary decision diagram (BDD) is a data structure proposed by Bryant [5]
to succinctly represent all satisfying assignments of a Boolean formula. Unfortu-
nately, BDDs have limited scalability as there exist formulas such that the corre-
sponding BDDs are exponential in the number of Boolean variables [6]. However,
it has been also observed that applying a quantifier to a formula variable often
reduces the size of the corresponding BDD [15]. This observation suggests that
BDDs could be an appropriate data structure for satisfiability solvers processing
formulas with quantifiers. Indeed, recently introduced BDD-based solvers are
usually aimed at quantified formulas. For example, eBDD-QBF [21] is a solver
for quantified Boolean formulas (QBFs) and Q3B [15,16] is an SMT-solver for
quantified bit-vector formulas.

This paper introduces another BDD-based solver for quantified formulas,
namely the tool called DQBDD deciding satisfiability of dependency quantified
Boolean formulas (DQBFs). These formulas are quantified Boolean formulas
with existential quantifiers of the form 3z (D, ), where the value of = can depend
only on the values of the universally quantified variables in the dependency set
D,.. For a precise definition of the syntax and semantics of DQBF, we refer to [11].
While deciding satisfiability of a given Boolean formula is NP-complete, the same
problem for QBFs is PSPACE-complete and it is even NEXPTIME-complete for
DQBFs [22]. Satisfiability of DQBFs has also some practical applications, in
particular the partial equivalence checking (PEC) [12] which answers the question
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of whether a given combinational circuit with unknown parts can be equivalent
to a given specification. Another application is the controller synthesis problem
(CSP) [4] which tries to find a controller that keeps a given system in safe states.

The DQBF satisfiability solving is now a hot research topic. The first algo-
rithm [8], based on DPLL, was introduced in 2012. Since then, several different
solving techniques were suggested and implemented in DQBF solvers iDQ [9],
iProver [18], HQS [13,34,11], and dCAQE [33]. Further, there exist DQBF pre-
processors HQSpre [35] and Unique [30] which can significantly reduce a given
formula and HQSpre can even directly solve some of them. Research advances in
this area are described in existing overviews [19,28]. Out of the mentioned solvers,
the best performing tool is HQS, which won the DQBF Solvers Track of the
Competitive Evaluation of QBF Solvers (QBFEVAL) in 2018 and 2019 [23,24].

The following section briefly explains the basic approach of DQBDD to
DQBF solving and compares it to the approach of HQS. Section 3 describes
the implementation, installation, and usage of our tool. The performance of our
tool is then analyzed in Section 4.

2 Approach

Let us first assume that we want to build a BDD-based solver for QBFs. The most
straightforward approach is to translate a given formula to the corresponding
BDD in a bottom-up manner, i.e., start with atomic subformulas and build BDDs
for larger subformulas from previously constructed BDDs for smaller subformu-
las. The whole formula is satisfiable if and only if the resulting BDD represents at
least one satisfying assignment. When processing a quantified subformula Vz.y
or dz.7, we handle it as the right side of the corresponding equivalence

Ve = Y[1/x] N[0/ x] or Jz.ap = P[1/x] VY[0/]

where [v/z] for v € {0,1} denotes the formula ¢ with all the occurrences of x
replaced by the value v. Given a BDD for ¢, the BDD for ¥[1/x] A ¢¥[0/x] or
¥[1/x] V 9[0/z] contains fewer variables than the BDD for ¢ (except the case
when the BDD for ¢ does not contain z; both BDDs are then identical) and
the number of its nodes is usually also lower. As mentioned before, the main
weakness of BDDs is that they can grow very quickly with an increasing number
of variables and the operations on large BDDs get slower. To reduce the size of
manipulated BDDs, we first push the quantifiers downwards the syntax tree as
far as possible. This process is known as localization [11] or miniscoping [14].
Now we briefly explain the approach of DQBDD to solving satisfiability of
DQBFs. The full description of the algorithm can be found in the master’s thesis
of Juraj Si¢ [32]. The approach has basically three steps: preprocessing, quantifier
localization, and translation of the input formula to the corresponding BDD.

Formula preprocessing The tool gets an input formula in the DQDIMACS
format [9], which implies that the formula is in prenex conjunctive normal form



(PCNF). DQBDD then calls HQSpre to reduce the formula. The preprocessed
formula is still in prenex normal form, but its matrix (i.e., the part of the for-
mula without the prefix of quantifiers) does not have to be in CNF any more.
Alternatively, DQBDD can also read a formula in the prenex cleansed DQCIR
format® which does not have to be in CNF and HQSpre is thus inapplicable.
As the last step of the preprocessing phase, negations are pushed to Boolean
variables as the remaining steps of the DQBDD algorithm expect a formula in
negation normal form (NNF'), where negations appear only in front of variables.
Note that NNF has no restrictions on the position of quantifiers, so DQBDD
can be easily adjusted to handle DQBF's that are not in prenex normal form.

Quantifier localization In this step, DQBDD applies localization rules [11,
Theorems 3 and 4] to push the quantifiers downwards as far as possible. Note that
the rule (3d) of Theorem 3 [11] is not valid when applied to subformulas [32,10].
However, the rule can be fixed by additional side conditions [32,10].

Translation to a BDD This step works similarly to the straightforward algo-
rithm for QBF's described at the beginning of this section: the DQBF formula
produced by the previous steps is translated to the corresponding reduced or-
dered BDD in a bottom-up manner. However, handling quantified subformulas
is not as simple as for QBF. We use the following quantifier elimination rules.

Universal quantifier elimination We can apply so-called universal or Shan-
non expansion to any subformula Vx.i such that all existential quantifiers
Jy(D,) in 9 satisfy x € D,,. That is, we replace this subformula with

P1[0/2] A o[l /2]

where 1); arises from v by removing z from all dependency sets D, and
1o differs from 17 by replacing each variable y existentially quantified inside
this formula by a fresh variable 3’ with the same dependency set. Hence, any
universal quantifier can be eliminated as all potential existential quantifiers
Jy(Dy) in ¢ violating « € D, can be pushed above the subformula. Note
that the elimination can increase the number of variables in the subformula.

Existential quantifier elimination The situation for subformulas 3y(D,).¢
is different. Roughly speaking, such a subformula can be handled as

Y[0/y] vV p[1/y]

but only if ¥ contains no quantifiers and each variable in v is either a free
variable, or a variable from D,, or an existentially quantified variable 3’
satisfying D, C D, [11, Theorem 5]. To satisfy these requirements, it may
be necessary to first eliminate some universal variable in order to remove it
from v or from some D,. Recall that the elimination of a universal quantifier
can again increase the number of existential quantifiers in the formula.

3 This is the prenex cleansed QCIR format [17] extended with quantifiers depend (v,
vl, ..., vn) representing existential variable v with dependencies vi1, ..., vn.



Now assume that we need to translate a subformula of the form

Vi Vg .. Ve, 3y (Dy, )3y2(Dy,) - . . 3ym (Dy,, )0

and 1 has already been translated. Note that the order of these quantifiers can be
arbitrarily changed without any impact on the formula semantics as long as all
variables in each dependency set D,, are quantified before y;. We implemented
three possible strategies for quantifier elimination called none, simple, and all.

none Instead of elimination, we push the quantifiers upwards using the reverse
version of quantifier localization rules. This strategy is equivalent to an algo-
rithm that skips the quantifier localization and keeps the formula in prenex
form.

simple We iteratively eliminate all existential quantifiers for which the elimi-
nation rule requirements are satisfied and the universal quantifiers that are
not in any dependency set D,, and thus their elimination does not introduce
any fresh variable. The remaining quantifiers are pushed up.

all We iteratively eliminate all quantifiers that can be eliminated. More pre-
cisely, we first eliminate all existential quantifiers satisfying the requirements,
then we eliminate a selected universal quantifier, and then we repeat the pro-
cess. If we reach the situation that all universal quantifiers are eliminated and
the remaining existential quantifiers cannot be eliminated due to a variable
quantified outside the considered subformula, then we push these remaining
existential quantifiers up.

If the considered subformula is in fact the whole formula, then we have to apply
the all strategy as we cannot push any quantifier up in the formula. In this
strategy, the universal quantifiers can be eliminated in an arbitrary order. We
implemented three heuristics to determine the order, namely at the beginning,
current lowest, and vars in conjuncts.

at the beginning This heuristics determines the elimination order of universal
variables x1, ..., x, at the beginning of the elimination process according to
the number of dependency sets each variable appears in (variables with the
lowest number are eliminated first). The motivation is to keep the number
of variables added by the elimination process low as long as possible.

current lowest This heuristics is similar to the previous one, but the order
is updated according to the current situation every time before the next
universal variable is selected for elimination.

vars in conjuncts This heuristics is motivated directly by the use of BDDs.
Elimination of a universal variable z produces the BDD for ¢ [0/x] A2[1/x].
As we have the BDD for % in hand and instantiation of a variable is very
cheap, for each universal variable x we compute the set of variables in the
BDDs for 91[0/x] and 12[1/x] and select the variable with the smallest set.

An experimental comparison of all combinations of elimination strategies and
elimination order heuristics [32] shows significant differences between strategies
and only small differences between heuristics. We selected the simple strategy



with the heuristics at the beginning as the default setting. The combination of
the simple strategy with the heuristics vars in conjuncts solved the same number
of instances (not the same instances) but it was slightly slower.

Our approach is very close to the current approach of HQS, which also applies
preprocessing, quantifier localization, and quantifier elimination using the same
elimination strategy simple as we use by default. However, there are two impor-
tant differences. First, HQS uses a succinct representation of Boolean formulas
called and-inverter graphs (AIGs) [20]. Second, after turning the formula back
to prenex normal form, HQS uses dependency elimination [34] (which removes
universal variables only from some dependency sets) and quantifier elimination
to simplify the formula until it gets a QBF, which is then sent to a QBF solver.

3 Implementation and Usage

DQBDD is implemented in C++ under LGPLv3 license. The current stable
version is 1.2. For working with BDDs, our tool uses the library CUDD v3.0.0 [31]
which also implements Rudell’s sifting algorithm [26] for dynamic reordering of
BDD variables to keep the size of BDDs small. Further, DQBDD integrates the
DQBF preprocessor HQSpre? [35] which uses Easylogging++ v9.96.7 library for
logging, and SAT solvers PicoSAT [3] and antom [29]. Finally, DQBDD also uses
the library cxxopts v2.2.0 for command-line argument parsing.

The sources of DQBDD including all the mentioned libraries can be found at
https://github.com/jurajsic/DEBDD. Compilation of the tool requires only
a C++ compiler supporting the C++14 standard and CMake v3.5 or higher.
DQBDD can be compiled into a dynamically linked executable on Linux and Mac
systems while static linking is supported only on Linux systems (and is enabled
by default). The executables of DQBDD v1.2 are available in the repository.

The tool is executed from command-line as

DQBDD [ARGUMENT...] <input file>

where <input file> specifies the input formula in DQDIMACS [9] or prenex
cleansed DQCIR format. The tool supports the following arguments:

--preprocess 0/1 turns the preprocessing off/on (not applicable for DQCIR).

--dyn-reordering 0/1 turns off/on the mentioned sifting algorithm in CUDD.

--localise 0/1 turns off/on the quantifier localization step. Turning off local-
ization effectively enforces the quantifier elimination strategy none.

--elimination-choice 0/1/2 selects the strategy none/simple/all for quanti-
fier elimination. To select none, it is more efficient to switch off the quantifier
localization step.

--uvar-choice 0/1/2 selects the heuristics at the beginning/ current lowest /vars
in conjuncts determining the order of universal quantifier elimination.

The default value of all these arguments is 1 except the last argument, where
the default value is 0.

4 We use the version distributed with HQS downloaded on March 18, 2021, from
http://abs.informatik.uni-freiburg.de/src/projectfiles/21/HQS.zip.
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Table 1: For each tool and instance type, the table shows the total number of
solved instances, the number of solved satisfiable and unsatisfiable instances,
and the number of instances solved uniquely by the solver. All solved CSP
instances are satisfiable.

PEC CSP SAT

3277 instances 404 instances 22 instances

total sat unsat uniq total wuniq total sat unsat uniq

dCAQE 818 132 686 2 41 15 7 3 4 0
DQBDD 3035 364 2671 384 26 4 1 0 1 1
HQS 2625 246 2379 5 24 0 6 4 2 0
iDQ 534 48 486 1 7 0 7 4 3 0
iProver 677 83 594 0 19 0 7 2 5 1

4 Experimental Comparison

We compared the performance of DQBDD v1.2 against DQBF solvers iDQ v1.0,
iProver v3.4°, dCAQE v4.0.1, and the current version of HQS®.

For the experiments, we used the DQBF benchmark set considered also in
other recent papers on DQBF [11,10]. The set consists of 4316 instances of partial
equivalence checking problem (PEC) collected from various sources [9,7,12,27],
461 instances of controller synthesis problem (CSP) [4], and 34 instances of SAT
problem encoded as DQBF with an exponentially smaller number of variables [1].

All our experiments were computed on a 24 core machine with 2.10 GHz Intel
Xeon CPU. We set the runtime limit to 900 s of CPU time and the memory con-
sumption limit to 4 GB for each tool and input formula. We employed the frame-
work for reliable benchmarking and resource measurement called BenchExec
v2.2 [2] to enforce these limits. BenchExec also isolates the measured processes
such that they can run in parallel with minimum interference between each other.

First, we run preprocessor HQSpre on all benchmarks and removed the solved
instances from our benchmark set. This leaves us with 3277 PEC instances, 404
CSP instances, and 22 SAT instances. Then we run solvers dCAQE, iDQ, and
iProver on the remaining instances in the preprocessed form. We run HQS and
DQBDD on the remaining instances in their original form as both these tools
call HQSpre in their solving routine. All the considered benchmarks with the
corresponding BenchExec definitions and obtained results from the solvers can
be found at https://github.com/jurajsic/DQBFbenchmarks.

The results are presented in Table 1. DQBDD dominates on PEC instances.
This can be also seen in Figure 1a which shows the cactus plot comparing running

® Called with “--qbf_mode true --inst_out_proof false —-res_out_proof false”.
5 Downloaded from http://abs.informatik.uni-freiburg.de/src/projectfiles/
21/HQS.zip on March 18, 2021.


https://github.com/jurajsic/DQBFbenchmarks
http://abs.informatik.uni-freiburg.de/src/projectfiles/21/HQS.zip
http://abs.informatik.uni-freiburg.de/src/projectfiles/21/HQS.zip

103
102 7
z W
o ]
E 10° E
2 . — dCAQE | |
o 10 —DQ@BDD | 1
L — HQS ]
10 iDQ |-
—— iProver | ]
1073 = I I I I T 1
500 1,000 1,500 2,000 2,500 3,000

Number of solved instances

(a) PEC instances

103 E T T El
r — dCAQE i
102 L — DQBDD ]
— HQS
D B iDQ i
o 10t E —— iProver E
D B ]
z 10°¢ e
O r i
(Usy= E
102 : T I I I I I I I :
5 10 15 20 25 30 35 40 45

Number of solved instances

(b) CSP instances

Fig. 1: Cactus plots showing on the x axis the numbers of PEC and CSP instances
solved by individual tools for the runtime limit set to values on the y axis.

times of individual solvers on PEC instances. Only HQS can solve a similar
number of PEC instances, but it is significantly slower. The total running time
of DQBDD on solved PEC instances is 28 081s, while for HQS, which solved
410 instances less, it is 58 154 s. The scatter plot in Figure 2a compares running
times of DQBDD and HQS on individual PEC instances. Furthermore, there
was a discrepancy for 7 PEC instances. All these were determined as satisfiable
by dCAQE while at least one other solver determined them as unsatisfiable. We
believe that all these instances are unsatisfiable as we were able to find a simple
unsatisfiable DQBF that dCAQE solves incorrectly [32, Appendix D].

For CSP instances, dCAQE solved the most instances. The comparison of
running times of all tools can be found in Figure 1b. As dCAQE sometimes
returns an incorrect result, we rather focus on the comparison of the two next
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Fig.2: Scatter plots comparing CPU times of DQBDD and HQS on individual
satisfiable (blue) and unsatisfiable (red) instances of PEC and CSP.

best solvers, that is DQBDD and HQS. DQBDD needed 190 s to solve the 22 in-
stances solved by both DQBDD and HQS, while HQS needed 238s. The detailed
comparison of running times is shown in Figure 2b.

Finally, DQBDD solved only one SAT instance, but other solvers were not
able to solve this instance.

QBF As QBF is a special case of DQBF, DQBDD is also a QBF solver. We
tried DQBDD on the QBF benchmarks from the QBFEVAL’20 [25] competition.
Out of the 521 QBFs considered in the Prenex CNF Track, DQBDD solved 250
instances. However, 214 of them were actually solved by the preprocessor. For
the 339 Prenexr non-CNF Track benchmarks, DQBDD solved 109 instances.
As HQSpre works only on CNF benchmarks, no preprocessing was involved. A
comparison of these results with the results of QBFEVAL’20 reveals that our
solver is currently not competitive with leading QBF solvers.

5 Conclusion

We have presented a new DQBF solver called DQBDD. The tool uses a simi-
lar approach based on quantifier localization and elimination as the solver HQS,
but DQBDD essentially translates a given formula to the equivalent BDD, which
other DQBF solvers do not. Our experimental comparison shows that DQBDD
runs significantly faster on instances of the partial equivalence checking problem,
which is currently the principal application of DQBF solving. The good perfor-
mance of DQBDD has also been confirmed by winning the DQBF Solvers Track
of QBFEVAL’20.
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