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Abstract. Thanks to the efforts and cooperation of the international
community, nowadays it is possible to analyze astronomical data cap-
tured by the observatories and telescopes of major space agencies around
the world from a personal computer. The development of virtual ob-
servatory technology (VO), and the standardization of the formats it
uses, allow professional and amateur astronomers to access astronomical
data and images through internet with relative ease. Immersed in this
environment of global accessibility, this article presents an astronomi-
cal data-driven unsupervised music composition system based on Deep
Learning, aimed at offering an automatic and objective review on the
classical topic of the Harmonies of the Spheres. The system explores the
MILES stellar library from the Spanish Virtual Observatory (SVO) using
a variational autoencoder architecture to cross-match its stellar spectra
via Pitch-Class Set Theory with a music score generated by a LSTM
with attention neural network in the style of late-renaissance music.

Keywords: Deep Learning · LSTM · Sonification · Music · Astronomy.

1 Introduction

The Universe, understood not only as a source of inspiration but also as a source
of musical harmony, has occupied the mind of mathematicians, musicians and
astronomers from the times of ancient Greece. Updating this concept to the cur-
rent available technology, the connection of different astronomical data streams
with the generation and control of sound variables, opens a wide window of
possibilities for Sound Design and Music Composition. This work explores the
potential in the use of Deep Learning techniques to provide an unsupervised per-
spective of the classical concept of the Music of the spheres, focused around the
figure of one of its biggest names, Johannes Kepler, and what was understood as
music during the writing process of his treatment Harmonices Mundi, published
in 1619, and containing his third law for planetary motion.

In summary, this work converts the almost 1000 stellar spectra of MILES
stellar library from the Spanish Virtual Observatory (SVO) into a data base
of “stellar chords”, using a variational autoencoder architecture. These chords
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are cross-matched with the musical chords generated by a LSTM with attention
neural network trained with over 1000 scores of music from the Italian composer
Giovanni Pierluigi da Palestrina (1525-1594), considered one of the leading com-
posers in Europe of late 16th-century. Finally, the spectral music composition
driven by the style of Palestrina is generated with the “matched chords”, that
is, the musical chords present in the stellar chords library, or in a similar way,
the stellar spectra auditory representations that fit the sounds of those times.

2 Concepts of interest

Exploring the intersections between Music and Astronomy using Artificial In-
telligence requires a quick overview of the historical framework as well as some
useful definitions before delving into the technical details of the research.

2.1 Brief History of astronomical harmonies

It seems agreed to mention Pythagoras (VI century BC) and his Music of the
spheres, as the first work of practical and theoretical reference in the field of
Music and Astronomy. According to the ethnomusicologist Mark Ballora, the
demonstration carried out by the Pythagorean school on the mono-chord of
the relationships between intervals of perfect fifths and the distances to the
earth of the bodies that at that time were believed to orbit around it, can
also be seen as the first evidence on astronomical data sonification [1]. This
idea of relating musical intervals to the distances and orbital velocities of the
planets transcends from antiquity to Renaissance from the hand of Plato and
Aristotle. Regarding Plato, through two main sources: The myth of Er and The
passage of Timaeus, both belonging to his ten-volume work The Republic [2].
Regarding Aristotle, through his clear description of the theory of the harmony
of the spheres in De caelo 290 b12 and in 291a 8, in which he affirms that this
concept is Pythagorean [3]. However, and despite the fact that little is known
with certainty about the Pythagorean doctrines, authors specialized in Greek
theories of the harmony of the spheres such as Von Jan (Jan, V. 1893, cited
in [2], p.23), point out that the astronomical references of the Pythagorean school
should be interpreted as simple analogies and not as an astronomical theory due
to their limited knowledge on the subject

In the second century A.D., Ptolemy also outlined the concepts of harmonies
of celestial bodies in his book Harmonics, describing them as mere rational
connections obeying the general laws of motion. For Ptolemy, ordered movement,
both in the stars and in music, follows certain patterns so that the study of these
patterns in one field can help in the understanding of other fields [2].

The writings of Boethius (480-524 AD) on Aristotelian logic and the Quadriv-
ium, had a very influential role in the dissemination of Pythagorean musical the-
ories during the Middle Ages. Since the beginning of the sixth century, Arith-
metic, Geometry, Astronomy and Music, understood as the science of numbers
that describe sound, represented the four main fields of quantitative science.
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The term Quadrivium was used to group these disciplines, considered as the
four branches of Mathematics, capable of describing the knowledge of the nat-
ural world. Boethius established a tripartite classification of music -Mundane,
Human and Instrumentalis-, which implied the acceptance of planetary relations
with musical intervals from an apparently continuist position. Mundane music,
referring to the harmony of the spheres of heaven, Human music dealing with
the influence of music on the human soul and Instrumentalis music, what we
currently know as music [2].

During the fifteenth century, humanists such as Coluccio Salutati or musi-
cians such as Johannes Tinctoris rejected the idea of the existence of worldly or
Mundane music, while music theorists such as Franchino Gaffurio claimed that
it could only be heard by true virtuous people.

At the end of the sixteenth century, in an attempt to describe music in its
entirety, Gioseffo Zarlino published the treatise Istitutioni harmoniche (1558),
which extended the Pythagorean harmonic theory, and was the frame of reference
for the musical theory of that time.

Far from the mysticism of the ancient Greeks, Ptolemy’s approaches together
with the discoveries of the empirical bases of the musical consonances of Vizenzo
Galilei -father of Galileo- in his Dialogo della musica antica, et della moderna
(1581), would inspire the work Harmonices Mundi, in which Johannes Kepler
exposes how the planets move describing an elliptical orbit around the sun. The
book was published in 1619, and it is considered the masterpiece of the inter-
disciplinary musical-astronomical thought. In Book V of this treatise, Kepler
translated the parameters of motion and distance of the planets of the solar sys-
tem into musical intervals, something that apparently led him to formulate the
equation that allowed him to lay the foundations of astronomy. Analyzing his
work as a model of planetary sonification, Kepler used the distances of aphelion
and perihelion to obtain the relationships of musical intervals, matching angular
velocities with frequencies and anticipating the identification of the concepts of
frequency and height of a sound, made by Mersenne in his law of L’harmonie
universelle [4]. In Kepler’s own words, ‘Astronomy and Music are various na-
tionalities of the common homeland, Geometry ’ (Kepler, 1619, quoted in [5]).

2.2 Sonification and Data-Driven Music

As defined by Herman [6], ‘a technique that uses data as input, and generates
sound signals (eventually response to optional additional excitation or trigger-
ing), may be called sonification, if and only if (C1) The sound reflects objective
properties or relationships in the input data. (C2) The transformation is sys-
tematic. This means that there is a precise definition provided of how the data
(and optional interactions) cause the sound to change. (C3) The sonification is
reproducible: given the same data and identical interactions (or triggers) the re-
sulting sound has to be structurally identical. (C4) The system can intentionally
be used with different data, and also be used in repetition with the same data’.

Trying to maintain the accuracy of this definition in the use of terminol-
ogy, we should also remark the main differences between Sonification and Data-
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Driven Music. Understanding Musification as the musical representation of data
and according to Scaletti [7], ‘perhaps the most important distinction between
sonification and music is the difference in intent. The goal and purpose of data
sonification is to aid in understanding, exploring, interpreting, communicating,
and reasoning about a phenomenon, an experiment, or a model, whereas in sound
art, the goal is to make an audience think by creating a flow of experience for
them’. In this sense, the methods here described for unsupervised generation of
music and scores should be considered under the Data-Driven Music paradigm,
although the auditory exploration of stellar catalogs based on Deep Learning is
also being used by the authors in scientific oriented approaches.

2.3 Stellar spectra

Commonly used in star classification, a stellar spectrum is a two-dimensional
graphical representation of the flux variations of the brightness of a star as
a function of wavelength. It contains information used in the characterization
of stars as, for instance, their effective temperature, luminosity and chemical
composition. The MK system and the OBAFGKM temperature sequence of
spectral types of stars are based in the detailed analysis of the absorption and
emission lines revealed in these curves [8].

Fig. 1. Stellar spectra (left) and FITS file header fragment (right) of Feige 110 star.
STELIB library, Spanish Virtual Observatory (SVO) [9].

Stellar spectra are common data products publicly available in the standard
Flexible Image Transport System (FITS) [10] files, that also provide identifi-
cation metadata -as shown in Figure 1 -, including the name of the object, its
position marked by right ascension and declination, the physical units, length
and resolution of the axis, the date, and the instrument or mission of the observa-
tion. All the information about this kind of data can be found in documents like
the Kepler Data Characteristics Handbook [11] and the MAST Kepler Archive
Manual [12, 13].
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3 Unsupervised auditory exploration of stellar catalogs

Providing an additional auditory dimension -understood as a complementary
way of exploration- to the current graphical display systems for the virtual ob-
servation and analysis of astronomical data, opens up endless opportunities to be
used in both, research and creative processes. The development of user-oriented
tools focused on this dual role also represent a field of undoubted application for
improving the accessibility of stellar catalogs, spectra and light curve databases
for blind and visual impaired (BVI) users.

3.1 Autoencoders

Deep Learning is a subset of Machine Learning in which multilayered neural
networks learn from a representative set of population data. Inside this cate-
gory, autoencoders represent one of the unsupervised learning algorithms used
to identify relationships within data.

Fig. 2. Illustration of an autoencoder structure applied to stellar spectra input data.
For the reduction of the 4367 values of each spectrum into a 10 axes latent space tensor,
the encoder uses two hidden layers with 2,099,350 parameters. For the reconstruction of
the decoded spectrum, the decoder uses two hidden layers with 1,913,175 parameters.

As defined by Goodfellow et al. [14] ‘an autoencoder is a neural network
that is trained to attempt to copy its input to its output’. It is composed of
two modules, an encoder and a decoder. Both are feed-forward neural networks
with a variable number of hidden layers. Figure 2, presents an example of this
architecture in which the encoder takes the input and compresses it to a lower-
dimensional representation called the latent space. From this compressed repre-
sentation, the decoder attempts to reconstruct the original input. The model is
designed to be unable to learn to copy perfectly, being forced to prioritize which
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aspects of the input should be copied. This restriction makes the architecture to
learn useful properties of the input data. Figure 3 shows the deviation between
original and decoded spectra measured by the R2 coefficient, which provides a
value between 0 and 1 that represents the variance of the decoded output related
to the variance of the original spectrum.

Fig. 3. Example using a 4D variational autoencoder. Original spectrum (left), devia-
tion with R2= 0.9876 (center), and decoded output (right) for HD 017491 star with
coordinates RA:02:47:55.90 and DEC:-12:27:38.16. MILES spectral library (SVO).

On the other hand, ‘variational autoencoders have the added constraint that
the encoded representation, the latent variables, follow some prior probability
distribution. Usually, a Gaussian distribution is chosen for its generality’ [15].
In this approach, the encoder develops a conditional mean and standard devi-
ation re-parameterized by an epsilon term -distributed normally-, to build the
distribution of latent variables. In addition to the reconstruction loss function,
variational autoencoders incorporate a KL loss function to maintain the shape
of the latent distribution close to the normal. This feature is known as mani-
fold learning or representation learning and provides a simple way of generating
new realistic inputs by sampling the normal distribution of the latent space and
decoding those values to obtain a synthetic output.

3.2 Sequential Chordification of MILES stellar library

One of the most interesting possibilities offered by the application of autoen-
coders to the sonification and musification of astronomical data, is the improve-
ment of the accessibility of stellar spectra catalogs and databases for blind and
visual impaired (BVI) scientists. This section describes a method for the con-
version of stellar spectra into music chords to provide an auditory sequential
representation of the curves from the MILES stellar spectra library [16], devel-
oped by the Spanish Virtual Observatory.
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In this approach, a four-dimensional variational autoencoder is used. Figure
4 shows the structure of its encoder. For each spectrum, the four-values tensor
generated by the encoder is translated into a four-notes musical chord. This
musical structure was chosen in reference to the value of the tetra-chord as
the unit of the harmonic system in ancient Greece [17], with the intention of
generating complex but not-overwhelming sounds. Each latent value is multiplied
by 1000 to bring it to the audible range, and approximated to the closest note’s
fundamental frequency of the chromatic scale. The duration of each chord is
calculated using a self-weighting mechanism that sums the values of the latent
vector, generating longest chords from the vectors with the highest values. An
excerpt of a Sci-Fi style representation of MILES stellar library from the Spanish
Virtual Observatory can be found at: https://vimeo.com/764757244

Fig. 4. Architecture of the variational encoder used to extract latent features from
each stellar spectrum of the MILES library (SVO).

3.3 Pipeline and technical details for the musification of 4D stellar
spectra latent space

Developed in Jupyter notebook [18], the proposed pipeline for the generation
of stellar spectra latent space uses astropy [19], numpy [20] and matplotlib [21]
libraries to allow the analysis of each stellar spectrum and to reduce it to a
4 dimensional latent space representation by a variational autoencoder. The
encoder that generates each latent vector trying to mimic each stellar spectrum
uses 4 dense layers and trains 2,427,624 parameters during 100 epochs. The
neural network has been implemented using tensorflow 2 [22] and, as shown in
figure 5, its results are promising despite the simplicity of the network and the
small number of curves used for the training (899). R2 analysis values for the
test and train sets are respectively 0.8472 and 0.8468 (variance weighted). The
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spectra set has been balanced through the repetition of the only three O type
spectra included in the MILES library, increasing the total number of curves to
1124 spectra. The R2 analysis values for the imbalanced set, using directly the
985 spectra of the library, were 0.8369 and 0.7978 (variance weighted). Finally,
the Python music analysis library music 21 [23] is used to generate a score with
the sequence of chords that is rendered using the open software MuseScore3 [24].

Fig. 5. Four examples generated by the 4D variational autoencoder over the MILES
stellar spectra library (SVO). Original spectrum, deviation with R2 results, and de-
coded output for HD 057061 (up-left), HD 095578 (up-right), HD 026965 (down-left),
and M71 K169 (down-right).

3.4 OBAFGKM evaluation

Spectral classification has traditionally been done by comparing unknown stellar
spectra with those of known standard stars. Most current classification methods,
including automation and artificial neural network pattern recognition, are based
on the Morgan-Keenan (MK ) spectral classification system and make use of the
seven classical OBAFGKM types of stars, with O representing the hottest and
M representing the cooler ones.

With the intention of evaluating the application of the four-dimensional vari-
ational autoencoder on stellar spectra feature extraction, a test with the samples
of each type of star listed in table 1 has been done. Analyzing the results pre-
sented in figure 6, despite the fact that the autoencoder generates an O type
spectrum for the O7Ia input, which suggests that it has learned to differentiate
this type of star with the only three replicated samples, this type of star presents
the poorest response. The resulting OBAFGKM chord sequence can be heard
at: https://vimeo.com/770510584.

The O spectral class was originally defined by the presence of absorption and
sometimes emission lines of the He II at blue-violet wavelengths. The study of
B stars led to the discovery and mapping of the spiral structure of the Milky
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Table 1. Stellar spectra samples used for the OBAFGKM evaluation. Summarizing
the Morgan-Keenan (MK) luminosity classes, Ia and Ib correspond to luminous super-
giants, II to bright giants, III are normal giants, IV are subgiants, V corresponds to
main sequence dwarf stars, VI to subdwarfs and D to white dwarfs. The number allow
scaling each type from 0 (the hottest) to 9 (the coolest).

Type of star R2 Name RA(J2000) DEC(J2000) Library Reference

O7Ia 0.988 HD 057060 07:18:40.38 -24:33:31.32 MILES [25–27]
B5V 0.879 HD 003369 00:36:52.80 33:43:09.48 MILES [25–27]
A0V 0.979 HD 031295 04:54:53.69 10:09:02.88 MILES [26–28]
F1V 0.948 HD 222451 23:40:40.56 36:43:14.88 MILES [25–27]
G1V 0.977 HD 114606 13:11:21.36 09:37:33.49 MILES [26, 27]
K0V 0.972 HD 233832 11:26:05.52 50:22:32.88 MILES [25–27]
M1V 0.949 HD 036395 05:31:27.41 -03:40:37.99 MILES [25–27]

Way. This class was originally defined for those stars showing lines of HeI in the
absence of HeII in the blue-violet. A-stars are characterized by the disappearance
of lines of HeI and often present chemical peculiarities. An F -type star presents
an atmosphere in which important physical changes occur. The sun is an example
of G-type star, characterized by their abundance of spectral features. G- and
K -types are the most likely stars to have habitable planets around them while
M -type stars are the most numerous of all classes [8].

Fig. 6. Results for seven samples of the OBAFGKM types of stars. Original spec-
trum (left) and 4D variational autoencoder decoded output (right) for HD 057060, HD
003369, HD 031295, HD 222451, HD 114606, HD 233832, and HD036395.

3.5 Synthetic stellar spectra from musical chords

To close the circle of this review on the interdisciplinary possibilities involving
stellar catalog exploration, variational autoencoders and music generation, some
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synthetic spectra can be created by sampling the latent space of the model with
user defined chord inputs. Figure 7 shows an example of this approach that
could be used in artistic contexts to generate synthetic stellar spectra with a
piano keyboard.

Fig. 7. Generation of synthetic stellar spectra from user defined chords. Input: A8, D2,
E8, G2. Worth mentioning the appearance of several synthetic absorption lines.

4 Unsupervised music composition system based on Deep
Learning

With the double intention of exploring the possibilities of deep music generation
from astronomical data, and providing an unsupervised and objective approach
to Kepler’s ideas of the music of the spheres, this paper offers some experiments
realized with VAE-LSTM with attention neural networks trained with music
corpus by Josquin Des Prez, Orlando di Lasso and Giovanni Pierluigi da Palest-
rina, as representative renaissance composers that could had inspired Kepler’s
musical thoughts.

4.1 RNN, LSTM networks and attention mechanism

‘A recurrent neural network (RNN) is a neural network specialized for process-
ing a sequence of values’ that ‘can also process sequences of variable length’
through parameter sharing across the model. First described by Rumelhart et
al.(1986a) [29], and specially useful in sequence to sequence models, it ‘shares
the same weights across several time steps’ so that ‘each member of the out-
put is produced using the same update rule applied to the previous outputs. This
recurrent formulation results in the sharing of parameters through a very deep
computational graph.’ [14]

Long short-term memory (LSTM) architectures, first presented by Graves
et al. (2013) [30], are built on gated RNN to resolve the problem of vanishing
and exploding gradients, appearing when RNNs try to learn long-term depen-
dencies [31], through the introduction of context-dependent weighted self-loops.
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They propagate information through long sequences and allow previous outputs
to be used as inputs along the hidden layers. LSTM networks improve the ca-
pacity to learn possible relationships between features over time and allow the
maintenance in memory of relevant features from input data.

An additional attention mechanism, introduced on machine translation by
Bahdanau et al. (2014) [32], can be incorporated to improve the management of
long-term dependencies. This approach makes use of the most relevant parts of
the input sequence by a weighted combination of the encoded input vectors to get
focused ‘at each time step on some specific elements of the input sequence’. [15]

Fig. 8. Network structure of the dual LSTM with attention architecture used to gen-
erate the unsupervised music compositions described in sections 4.2 and 4.3.

4.2 Generative composition using dual LSTM with attention
networks

Some controversy has been found about the influence of most relevant composers
of early seventeenth century in Kepler’s work. For Ball (2009) ‘Kepler’s musi-
cal world embraced the polyphonic opulence of Palestrina and Monteverdi’ [33]
while Pesic (2005) affirms that ‘he (Kepler) accepts Zarlino’s system and refers
only to Lasso and Artusi, never to Monteverdi’ [34]. Anyway, seems clear that
although he didn’t include any explicit mention in his treatment, Kepler could
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had been interested in what we know today as the Franco-Flemish school, es-
pecially focused on the music of Orlando di Lasso, and more specifically on his
In me transierunt motet ‘as approaching the ideal, unwritten celestial motet’
fitting his thoughts [34]. Inspired by this references, several generative composi-
tion experiments have been done using music examples of the sixteenth century
to train and test a LSTM with attention network based on one of the imple-
mentations described in Babcock and Bali(2021) [35]. The network, represented
in figure 8, learns pitch and duration from each chord of the data set thanks
to a dual-input dual-output architecture. Attending some technical details, its
implementation uses Tensorflow 2 and Keras, and includes a temperature-based
sampling strategy after feeding the notes into the prediction function.

Fig. 9. Resulting scores and Loss function for pitch (blue) and durations (red) of four
experiments with different training sets: one single Lasso’s motet (up-left), the same
piece repeated 100 times (up-right), 50 music pieces from Des Prez and Lasso (down-
left) and 1318 pieces from Palestrina (down-right). Note how the Pitch Loss function
reflects an unexpected fast learning rate for Palestrina’s corpus (the biggest), probably
motivated by the composer’s intrinsic musical characteristics.

Figure 9 summarizes the experiments carried out. The up-left score is the
result of testing the behavior of the network when trained with a single MIDI file.
The 203 chords and 7 different note durations of Lasso’s In me transierunt motet
were used to train a 382,803 parameters network but, as expected, the results are
only useful as starting point, providing a final pitch loss error of 3.6543 after 81
epochs. The up-right score was generated with an augmented corpus, repeating
the motet 100 times. Worth mentioning how the network is able to mimic the
piece after less than 10 epochs. The final pitch loss is 0.0118 after 20 epochs.
The down-left experiment used 50 musical pieces, 25 by Josquin Des Prez and
25 by Orlando di Lassso. 3,245 “Chords” and 46 different durations that clearly
increased the learning ability of the system, in this case, with 1,174,620 trainable
parameters. After 100 epochs, the final pitch loss was 0.6431. The down-right
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score results from training the 3,643,876 parameters of the network with 12,884
“chords” and 15 different durations extracted from 1,318 pieces by Giovanni
Pierluigi da Palestrina. Final pitch loss of 0.8879 after 41 epochs.

4.3 Pitch Class Set Theory cross-match

The last step in this approach to generate music from starlight is to cross-
match the musical chords obtained with the neural network described in the
previous section with those “stellar chords” obtained in sections 3.2 and 3.3 by
an autoencoder exploring the MILES library, and generate a final score with
the positive matched chords, which durations are function of their own summed
latent space values. This cross-matching process is hold by the Pitch Class Set
Theory, which provides one of the most used methods for reducing and labeling
musical information [37]. Figure 10 provides a representation of the architecture.

Fig. 10. Four voices astronomical data-driven unsupervised composition system based
on Deep Learning. Block diagram of the complete VAE-LSTM with attention and Pitch
Class Set Theory cross-match architecture.

According to the establishments of the theory, a pitch class A, is a group
of all registers corresponding to that note with octave equivalence, A0, A2, A4,
etc, and without distinguishing enharmonic equivalences like A3 sharp and B3
flat. Translating those classes into numbers, with 0 corresponding to C, and 11
corresponding to B, each generated chord is reduced to a single code that allows
their comparison for finding positive matches between corpus. In this way, the
chord G4-E5-C5-G5 corresponds to the code 047, as an example of a chord which
is present in both generated stellar and musical chord scores, and corresponds to
HD 049933 star with coordinates RA: 06:50:49.8309, DEC: -00:32:27.1675. This
comparison is implemented using the Chord.orderedPitchClassesString method
from Music 21 library. The resulting durations are forked and reduced to only
4 different figures -whole, half, quarter and eight- to maintain a slow cadence in
the music that allows the synchronization with the graphical representation of
the source star, in a multimodal exploration inspired mood. At the end of the



14 G.Riber and Serradilla

process, the score is also generated using the Music 21 library. Final musical
results are rendered with commercial DAW software for best audio quality.

A synchronization of the generated music and score, with the images of each
source star, and its spectrum for the Lasso-Des Prez corpus in an electroacoustic
style render, is available at: https://vimeo.com/770493178.

A similar representation showing the results with the Palestrina corpus for
flute, violin and piano can be found at: https://vimeo.com/746620075.

Finally, in order to obtain more general results, an experiment to train the
network with the MAESTRO data set [36] has been conducted. This corpus of-
fers about 200 hours of virtuous piano performances by several composers from
the 17th to the 20th century. A total of 82,231 unique notes and 118 different
durations have been used to train the 21,492,526 parameters of the network
during 525 epochs, four and a half hours using high performance GPU pro-
cessing. The next video shows the resulting composition obtained when feeding
the model with the notes and durations of Lasso’s In me transierunt motet.
https://vimeo.com/794718061.

4.4 Conclusion and prospective

Assuming that ‘for a sonification to represent information meaningfully, the
information must be part of the experience of the representation’ Worrall [38],
the unsupervised generation of scores from astronomical data has been proved as
an effective way of composition that could be applied in the creation of original
soundtracks for films and audiovisual content and, at the same time, having the
potential of representing stellar information through sound. The method here
described generates completely original pieces that could also be interpreted as
an empirical and automated review of the classical Harmonies of the Spheres
theories, framed in the context of Renaissance Music and Johannes Kepler’s
musical interests. This approach should be understood as a tribute to one of the
most important pioneers of the concept that traces a new line of development
for multimodal analysis and comparison of astronomical data through sound.

Thanks to the highly deterministic characteristics of renaissance music, it is
possible to analyze the behavior of Machine Learning algorithms trained with
renaissance music corpus through sound, which could also make this approach
useful for neural network auditory monitoring, a branch of Sonification that could
be more deeply explored and expanded. The creation of a big MIDI corpus of the
Franco-Flemish school inspired by the MAESTRO concept is being considered,
to generalize the model and potential results.

In the short term, additional efforts will be addressed to the search of interest-
ing scientific case studies, and to the design of new experiments using selected
corpus in both fields, Music and Astronomy. The collaboration and feedback
between experts, as well as the evaluation of the results by specialized and non-
specialized users, constitutes one of the main axis of future development in this
field of research.

The highly interdisciplinary space in which this work is framed, and the poly-
hedral nature of its results, provide a wide field of resources aimed at using the
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Music-Astronomy binomial on science communication, outreach, and engage-
ment, while improving the accessibility of astronomical catalogs and databases
for blind and visual impaired users.
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