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Abstract. This paper explores multi-objective stochastic fuzzy linear
programming problems using picture-fuzzy theory to model parameter
uncertainty and fuzziness. Picture-fuzzy theory provides a flexible way
to handle uncertain data by representing acceptance, rejection, and hes-
itation degrees. Our study introduces a method to transform the initial
stochastic fuzzy problem into a quasiconvex programming problem. Our
study enhances computational efficiency and ensures algorithm conver-
gence by applying a gradient descent approach rather than conventional
heuristic methods. Our study provides theoretical proof using quasicon-
vex optimization to validate the proposed method, establishing a founda-
tion for its convergence and effectiveness. To illustrate the method’s fea-
sibility and efficacy, the paper presents computational examples demon-
strating its correctness and potential applications, particularly in eco-
nomics and finance where uncertainty and fuzziness in market data are
significant. The research opens new pathways for solving complex pro-
gramming problems in uncertain environments.

Keywords: Multiobjective stochastic linear programming · Picture Fuzzy
decision · Probability maximization · Gradient Descent · Variance covari-
ance matrices.

1 Introduction

This paper addresses the complex challenge of multi-objective stochastic linear
programming, where the problem becomes more complicated due to the ran-
domness not only of vector b in the inequality A ≤ b, but also of matrix A,
whereas previous studies have mentioned this but focused only on solving with
the stochastic component b (see [4, 5]). Such randomness in both components
significantly increases the complexity of the constraint space. Despite these com-
plexities, we have successfully demonstrated that the overall feasible set remains
convex, an essential property for applying advanced optimization techniques.

To effectively tackle this increased complexity, we propose a new approach
using picture fuzzy theory (see [6]). This theory extends traditional fuzzy logic
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by incorporating degrees of acceptance, rejection, and hesitation, thus providing
a richer framework for representing uncertainty. The improvements include the
use of monotonic membership functions in picture fuzzy sets, ensuring that as
the uncertainty in the parameters decreases, the membership values adjust in
a predictable and consistent manner. This feature is crucial for maintaining
the integrity of decision-making processes under uncertainty, especially in multi-
objective situations. This is the key difference between our research and previous
studies that have employed non-monotonic functions such as Gaussian (see [18]),
trapezoidal (see [16, 17]), etc.

Our paper further proposes a methodological transformation of the original
stochastic fuzzy problem into a quasiconvex programming problem. To solve this
type of problem, previous studies have used traditional heuristic methods (see
[13, 14]). Nonetheless, we have shown that this class of issues can be resolved
using a gradient descent approach (see [12, 19]), which is a robust and widely
applied method in optimization problems. To ensure that the proposed gradi-
ent method can solve the proposed problem, we provide rigorous theoretical
proof using quasiconvex optimization techniques. This proof establishes a solid
foundation for the convergence and effectiveness of the algorithm, ensuring that
the derived solutions are both theoretically robust and operationally viable. To
demonstrate the practicality and accuracy of our approach, the paper includes
computational examples that illustrate the validity of the methodology.

This problem is particularly relevant to the fields of economics and finance,
where portfolio optimization and other financial instruments often grapple with
significant uncertainty and ambiguity in market data. The objective function in
this problem is the Sharpe Ratio (SR) (see [15]), which is a widely recognized
measure for evaluating risk-adjusted returns, quantifying the ratio of expected
returns to the portfolio’s standard deviation. While SR is extensively used in
financial applications and carries substantial economic relevance, its non-convex
nature poses challenges when directly used in optimization problems. Neverthe-
less, this paper demonstrates that objective functions like SR can still be effi-
ciently and globally solved using existing convex programming techniques (see
also [12]). The global convergence of the solution is guaranteed.

Regarding the structure of this paper, we have organized it into key sec-
tions to facilitate a thorough understanding of the concepts and methodologies
employed. In Section 2, we delve into the foundational theories of fuzzy logic
and quasiconvex optimization, setting the stage for their application in com-
plex stochastic problems. Section 3 is dedicated to presenting the general frame-
work of the multi-objective stochastic linear optimization problem, detailing how
we incorporate picture-fuzzy sets to model the inherent uncertainty. This sec-
tion also includes the fuzzification process of both the objective functions and
constraints to adequately capture the nuances of randomness in A and b. To
demonstrate the practical application and effectiveness of our proposed method,
we conclude Section 3 with computational example that highlight how our ap-
proach can be effectively applied.
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2 Preliminaries: Concepts and definitions

2.1 Picture Fuzzy

Given a universal set U, a generalization of fuzzy sets that introduces more
granularity and flexibility in representing uncertainty is called a picture fuzzy
set of U, denoted by S̃. This set is described by three distinct mappings: the
positive membership function µS̃ : U → [0, 1], the neutral membership function
ηS̃ : U → [0, 1], and the negative membership function νS̃ : U → [0, 1]. The
definition of the picture fuzzy set S̃ is formalized as follows:

Definition 1 (see [6]). Given the condition 0 ≤ µS̃(θ) + ηS̃(θ) + νS̃(θ) ≤ 1 for
all θ ∈ U, the picture fuzzy set S̃ is given by:

S̃ = {(θ, µS̃(θ), ηS̃(θ), νS̃(θ)) | θ ∈ U} (1)

We can now express the general optimization problem with the following
formulation:

min F (θ)

s. t zt(θ) ≤ 0, t = 1, . . . , k, (2)
θ ∈ X ,

where X denotes a compact convex set (X ̸= ∅).
This study employs a fuzzy optimization model that integrates fuzzy com-

ponents, treating the variables and parameters as exact values. This is termed
flexible optimization (see [1]). Two categories of fuzzy components exist. The
first concerns the objective function (indicated by (m̃in or m̃ax)), while the sec-
ond applies to a fuzzy relation (such as (⪯,≃,⪰)). A fuzzy optimization problem
comprising fuzzy elements can be expressed as follows:

m̃in F (θ)

s. t zt(θ) ⪯ 0, t = 1, . . . , k, (3)
θ ∈ X

In this formulation, the symbols "m̃in" and "⪯" refer to the fuzzy versions of
"minimize" and "less than or equal to," respectively, implying that the objec-
tive function should be minimized as much as feasible and that the constraints
should be as well accepted as possible. Fuzzy optimization approaches with fuzzy
objectives are widely utilized in decision-making for real-world applications.

2.2 Quasiconvexity

Definition 2. (Pseudoconvex function (see [7])). Let X denote a non-
empty convex set, and let f : Rn → R represent a differentiable function defined
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on X . We characterize f as a pseudoconvex function on X If for each θ1, θ2 ∈ X ,
the subsequent condition is satisfied:

f(θ2) < f(θ1) ⇒ ⟨∇f(θ1), θ2 − θ1⟩ < 0. (4)

If f is pseudoconvex, then the negative of f , i.e., −f , is referred to as a pseu-
doconcave function.

Definition 3 (Semistrictly quasiconvex function (see [2])). Let X ⊂ Rn

be a convex set, and f be defined on X . If for any θ1, θ2 ∈ X and 0 < λ < 1, the
condition

f(θ1) > f(θ2) (5)

implies that
f(λθ1 + (1− λ)θ2) < f(θ1), (6)

then f is called semistrictly quasiconvex.

Definition 4 (Semistrictly quasiconvex programming problem). The
semistrictly quasiconvex programming problem is articulated as follows:

min f(θ) s.t. θ ∈ X , (SQP)

where X ⊂ Rn is a convex set, and f(θ) is semistrictly quasiconvex on X .

Proposition 1. In the semistrictly quasiconvex programming problem (SQP),
any local minimum is also a global minimum (see [1]). In light of this, convex
programming methods are a powerful tool for solving this challenge.

3 Methodology and problem formulation

3.1 Multiobjective Stochastic Linear Programming Problems

We focus on multiobjective stochastic linear programming in this part. The issue
at hand can be stated as:

maxCθ = (c1θ, . . . , ckθ) s.t. Aθ ≤ b, θ ≥ 0, (MSLP)

where θ = (θ1, θ2, . . . , θn)
T is an n-dimensional decision variable vector, ci =

(c̄i1, . . . , c̄in) is an n-dimensional random variable vector, c̄iℓ, ℓ = 1, . . . , n, i =
1, . . . , k are Gaussian random variables, represented as N (mc̄iℓ , σiℓℓ). The variance-
covariance matrix V c̄i

, i = 1, . . . , k, describing the relationship between the
Gaussian random variables, is defined as:

V c̄i
= [σizt]n×n, i = 1, . . . , k. (7)

The predicted value of the row vector ci with respect to the random variable is
represented by:

mci
= (mc̄i1 , · · · ,mc̄in) , (8)
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and with the covariance matrix V c̄i
, the random variable vector c can be ex-

pressed as:
ci ∼ N (mci ,V c̄i) . (9)

The objective function ciθ also follows a Gaussian distribution, based on the
features of Gaussian random variables in general:

ciθ ∼ N
(
mci

θ,θTV c̄i
θ
)
, (10)

Conventional mathematical programming techniques are inapplicable to the
multiobjective stochastic linea r programming (MSLP) issue because it incor-
porates random variables into the objective functions and restrictions. We deal
with the limitations of (MSLP) as conditions that are confined by chance (see
[5]) in order to solve this problem. A certain probability βj or above, referred to
as the constraint probability level, is required for the j-th constraint of (MSLP)
to hold. The definition of the set X (β) that meets this requirement is:

X (β) =
{
θ ∈ Rn,θ ≥ 0 | P

(
ajθ ≤ bj

)
≥ βj , j = 1, · · · ,m

}
(11)

where aj = (āj1, . . . , ājn) is the j-th row vector of random variables from matrix
A, and β = (β1, . . ., βm).

To determine the deterministic equivalent constraints for the chance - con-
strained formulation, we first assume that only b̄i is a random variable on the
right-hand side, and that āij = aij is constant. Thus, we use the notation
aij = aij . Let Fi(τ) represent the cumulative distribution function of b̄i. Since

P

 n∑
j=1

aijθj ≤ b̄i

 = 1− Fi

 n∑
j=1

aijθj

 , i = 1, . . . ,m (12)

the chance constraints (11) can be rewritten as:

Fi

 n∑
j=1

aijθj

 ≤ 1− βi, i = 1, . . . ,m (13)

Let K1−βi denote the maximum value of τ such that τ = F−1
i (1− βi). Therefore,

the inequality in (13) can be expressed as:

n∑
j=1

aijθj ≤ K1−βi
, i = 1, . . . ,m (14)

We may describe the probability as follows if we assume that b̄i is a normally
distributed random variable with a mean of mb̄i and variance σ2

b̄i
:

P

 n∑
j=1

aijθj ≤ b̄i

 = P

(
b̄i −mb̄i

σb̄i

≥
∑n

j=1 aijθj −mb̄i

σb̄i

)

= 1− Φ

(∑n
j=1 aijθj −mb̄i

σb̄i

)
,

(15)
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where Φ represents the cumulative distribution function of the standard normal
distribution N (0, 1). Thus, the chance constraint (15) can be reformulated as:

n∑
j=1

aijθj ≤ mb̄i + σb̄iΦ
−1 (1− βi) , i = 1, . . . ,m (16)

where Φ−1 denotes the inverse cumulative distribution function of the standard
normal distribution.

Now, in the scenario where both b̄i and āij are normally distributed, we
define mb̄i and σ2

b̄i
as the mean and variance of b̄i, respectively, and māij

and
Vāi as the mean and variance-covariance matrix of āij . Assume that b̄i and āij
are independent; the random variable

b̄i − āiθ −
(
mb̄i −māiθ

)√
σ2
b̄i
+ θTVāi

θ
, i = 1, . . . ,m (17)

adheres to a conventional Gaussian distribution Standard normal distribution
with a mean of 0 and a variance of 1. Therefore, the probability P (āi θ ≤ b̄i)
can be reformulated as:

P

 b̄i −
∑n

j=1 āijθj −
(
mb̄i −

∑n
j=1 māij

θj

)
√
σ2
b̄i
+ θTVāi

θ
≥

−
(
mb̄i −

∑n
j=1 māij

θj

)
√
σ2
b̄i
+ θTVāi

θ


= 1− Φ

∑n
j=1 māij

θj −mb̄i√
σ2
b̄i
+ θTVāiθ

 ,

(18)
which leads to the following transformed inequality for the chance constraint:

n∑
j=1

māij
θj − Φ−1 (1− βi)

√
σ2
b̄i
+ θTVāi

θ ≤ mb̄i , i = 1, . . . ,m. (19)

Proposition 2. With constraint probability level β = (β1, . . . , βm) and 0 ≤ βi ≤
0.5,

∑n
j=1 māij

θj −Φ−1 (1− βi)
√
σ2
b̄i
+ θTVāi

θ is convex and the constraint set
X (β) is a convex set.

According to the previously stated chance-constrained conditions (11), utiliz-
ing a probability maximization strategy for the objective function in (MSLP)
allows us to reformulate the maximizing of the objective functions Cθ, into
maximizing the probability that each objective function ciθ meets or exceeds a
certain acceptable threshold f̂i, which is referred to as the permissible objective
level. This probability function is expressed as:

κi

(
θ, f̂i

)
def
= P

(
c̄iθ ≥ f̂i

)
. (20)
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Consequently, the problem (MSLP) can be restructured as:

max
θ∈X (β)

(κ1(θ, f̂1), . . . , κk(θ, f̂k)) (MOP-P(f̂ , β))

From (10), the objective function κi

(
θ, f̂

)
can be rewritten as:

κi

(
θ, f̂i

)
= P

 c̄iθ − E [ci]θ√
θTV c̄iθ

≥ f̂i − E [ci]θ√
θTV c̄iθ


= 1− Φ

 f̂i − E [ci]θ√
θTV c̄iθ

 (21)

Given that Φ is a monotonically increasing function, the problem (MOP-P(f̂ , β))
is equivalent to:

min
θ∈X (β)

(S1(θ), . . . ,Sk(θ)) (MOP-P1(f̂ ,β))

where Si(θ) = − E[ci]θ−f̂i√
θTV ci

θ
, i = 1, . . . , k. Here, we observe that the objective

function is no longer purely convex but has a more intricate structure, described
as quasiconvex.

Proposition 3. The objective functions Si(θ), i = 1, ..., k are pseudoconvex.

Proof. Let φ1 and φ2 be two functions defined on a set X. If φ1 is positive
and concave, and φ2 is positive and convex on X, with both φ1 and φ2 being
differentiable on X, then the fractional function φ1/φ2 is pseudoconcave on X

(refer to [2]). Observe that E [ci] − f̂i constitutes a positive linear expression,

given that f̂i is a constant, whereas
√
θTV ciθ is convex. Consequently, the

function
E [ci]θ − f̂i√

θTV ciθ
is pseudoconcave, and therefore Si(θ) = −E [ci]θ − f̂i√

θTV ciθ
is

pseudoconvex.

3.2 Problem (MSLP) with fuzzy decision making

To address the issue (MOP-P1(f̂ ,β)), where (MSLP) is expressed using a
probability maximization model, we present a picture fuzzy decision-making
method in this section. The decision-maker needs to know their allowable goal
level f̂ = (f̂1, . . . , f̂k) in advance in order to solve (MOP-P1(f̂ ,β)). Both a
smaller value of the function Si(θ) and a bigger value of the allowed goal level f̂i
are usually preferred by the decision-maker. The objective function Si(θ) rises
as the allowed objective level f̂i rises since these preferences are incompatible
with one another.
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We suggest the following multiobjective programming problem, which is seen
as an obvious continuation of (MOP-P1(f̂ ,β)), from this point of view:

min
θ∈X(β),f̂i∈R,i=1,...,k

(S1(θ), . . . ,Sk(θ),−f̂1, . . . ,−f̂k) (MOP-P2(f̂ ,β))

It is essential to recognize that in (MOP-P2(f̂ ,β)), the allowable objective
levels f̂i, i = 1, · · · , k are not static values, but are regarded as decision variables
to be optimized.

Considering the ambiguity in the decision-maker’s evaluation, it is reason-
able to deduce that the decision-maker has a picture fuzzy goal for each objective
function and a picture fuzzy relation for each constraint in (MOP-P2(f̂ ,β)).
Given these ambiguous objectives and relationships, the issue can be reformu-
lated as the subsequent fuzzy multiobjective programming problem:

m̃in (S1(θ), . . . ,Sk(θ), f̂1, . . . , f̂k)
s. t. gi(θ) ⪯ 0, i = 1, . . . ,m

θ ≥ 0.

(FMOP1)

where gi(θ) =
∑n

j=1 māijθj − Φ−1 (1− βi)
√
σ2
b̄i
+ θTVāiθ − mb̄i . Fuzzy deci-

sions are quantified through the use of membership functions. Let us define
membership functions for a objective function Si(θ) as (µSi

(Si(θ)), ηSi
(Si(θ)),

νSi
(Si(θ))), membership functions of a permissible objective level f̂i as (µf̂i

(f̂i),
ηf̂i(f̂i), νf̂i(f̂i)), and membership functions of a constraints gj(θ) as (µgj (gj(θ)),
ηgj (gj(θ)), νgj (gj(θ))), respectively.

Proposition 4. Consider a monotonically decreasing function m(·). The posi-
tive membership function µ with respect to a function or parameter z is expressed
as:

µ(z) =


0 if z ≥ z0,

m(z) if z0 ≥ z ≥ z1,

1 if z ≤ z1

where z0 is the maximum value for which µ(z) = 0 and z1 is the minimum value
for which µ(z) = 1. On the other hand, for monotonically increasing functions
n(·) and k(·), the neutral and negative membership functions η, ν with respect to
z are given as:

η(z) =


a if z ≥ z0,

n(z) if z0 ≥ z ≥ z1,

0 if z ≤ z1

ν(z) =


b if z ≥ z0,

k(z) if z0 ≥ z ≥ z1,

0 if z ≤ z1

Here, z0 represents the minimum value of z when η(z) = a, ν(z) = b, (a+b ≤ 1),
while z1 is the maximum value where z if η(z) = 0, ν(z) = 0.
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The issue (FMOP1) can thereafter be reformulated as the following multi-
objective programming problem:

max (µSi
(Si(θ)) , µf̂i

(f̂i), µgj (gj(θ))), i = 1, . . . , k, j = 1, . . . ,m

min (ηSi
(Si(θ)) , ηf̂i(f̂i), ηgj (gj(θ))), i = 1, . . . , k, j = 1, . . . ,m

min (νSi (Si(θ)) , νf̂i(f̂i), νgj (gj(θ))), i = 1, . . . , k, j = 1, . . . ,m

s. t. θ ≥ 0.

(FMOP2)

Now, by defining µ̇ = 1− µ, the problem (FMOP2) ecomes equivalent to:

min (µ̇Si
(Si(θ)) , µ̇f̂i

(f̂i), µ̇gj (gj(θ)) ,

ηSi (Si(θ)) , ηf̂i(f̂i), ηgj (gj(θ)) ,

νSi
(Si(θ)) , νf̂i(f̂i), νgj (gj(θ)))

i = 1, . . . , k, j = 1, . . . ,m
s. t. θ ≥ 0.

(FMOP3)

This multiobjective semistrictly quasiconvex programming issue has been
examined in several studies (see [8, 9]). To circumvent the computational com-
plexity of directly addressing this, we propose reformulating problem (FMOP3)
as follows, inspired by [10]:

min max(µ̇Si
(Si(θ)) , µ̇f̂i

(f̂i), µ̇gj (gj(θ)) ,

ηSi (Si(θ)) , ηf̂i(f̂i), ηgj (gj(θ)) ,

νSi
(Si(θ)) , νf̂i(f̂i), νgj (gj(θ)))

i = 1, . . . , k, j = 1, . . . ,m
s. t. θ ≥ 0.

(MP)

This single-objective problem has garnered significant attention in the literature
(see to [11]). The semistrictly quasiconvex characteristics of the objectives intro-
duce complexity to the problem, rendering it tough and inadequately explored
in prior research. This paper delineates the characteristics of the issue are as
follows.

Proposition 5. (MP) is categorized as a semistrictly quasiconvex programming
issue.

Thang et al. [12] have demonstrated the convergence of the universal solution
in the realm of semistrictly quasiconvex programming and devised an algorithm
utilizing the gradient direction approach. The efficacy of this approach has been
confirmed by computational studies. This study employs the gradient direction
method to address (MP), following the methodology of [12] and Proposition 5.

3.3 Examples

Example 1. (see [4]) To illustrate the efficacy of our suggested fuzzy decision-
making methodology, we analyze the subsequent three-objective stochastic linear



10 T.T. Khang et al.

programming problem:
[MOSLP]

max(c1θ, c2θ, c3θ) s.t.ajθ ≤ bj , j = 1, 2 θ ≥ 0 (22)

where θ = (θ1, θ2, θ3, θ4)
T is a 4-dimensional decision column vector. The coef-

ficient row vectors aj , j = 1, 2 are defined as a1 = (7, 3, 4, 6),a2 = (−5,−6,−7,
−9). The Gaussian random variables

(
b̄1, b̄2

)
with b1 ∼ N

(
27, 62

)
, b2 ∼ N

(
−15, 72

)
, ci, i =

1, 2, 3 are 4-dimensional Gaussian random variables, with mean vectors E [c1] =
(2, 3, 2, 4),E [c2] = (10,−7, 1,−2), E [c3] = (−8,−5,−7,−14). The variance-
covariance matrices Vi, i = 1, 2, 3, are as follows:

V1 =


25 −1 0.8 −2
−1 4 −1.2 1.2
0.8 −1.2 4 2
−2 1.2 2 9

 , V2 =


16 1.4 −1.2 1.4
1.4 1 1.5 −0.8
−1.2 1.5 25 −0.6
1.4 −0.8 −0.6 4



V3 =


4 −1.9 1.5 1.8

−1.9 25 0.8 −0.4
1.5 0.8 9 2.5
1.8 −0.4 2.5 36


For this issue, let’s pretend the decision maker has β = (β1, β2) = (0.7, 0.7) as
the levels of the constraint probability.

To validate the efficiency of our proposed method, we compare it with pre-
vious methods (see [4]), including fuzzy decision making and the probability
maximization model.

Proposed Methods Yano’s Method Probability max.
λ∗ 0.546523 0.536605 0.173128

f∗
1 30.1215 28.0819 25
f∗
2 -30.3785 -29.3565 -35
f∗
3 -31.6524 -32.7991 -35

µf1 (f
∗
1 ) 0.543432 0.536605 0.596050

µf2 (f
∗
2 ) 0.542875 0.536605 0.607070

µf3 (f
∗
3 ) 0.537543 0.536605 0.570710

The results from the proposed method demonstrate several advantages compared
to the two previous methods (Yano’s method and the probability maximization
method). First, the λ∗ value in the proposed method is 0.546523, higher than
Yano’s method (0.536605) and the probability maximization method (0.173128),
indicating a better optimal performance. These results were achieved by employ-
ing a fuzzy relation method to extend the acceptable set, which led to a better
optimization outcome. This approach allowed for more flexibility and precision
in handling uncertainties, ultimately improving the overall performance.
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4 Conclusion

This study introduces a multi-objective stochastic linear optimization model de-
signed to maximize probability and threshold values, thus facilitating decision-
making through picture fuzzy relations. We have established that the deter-
ministic problem constitutes a semistrictly quasiconvex programming issue and
have introduced a method utilizing strictly monotonic membership functions to
convert it into a flexible variant, which is also demonstrated to be semistrictly
quasiconvex. The picture fuzzy multi-objective stochastic optimization issue can
be effectively resolved utilizing gradient descent techniques, which demand con-
siderably less resources than the previously utilized genetic algorithms. This
method possesses significant practical benefits and the prevalent presence of
semistrictly quasiconvex functions in real-world applications, indicating its ex-
tensive applicability in diverse mathematical models incorporating semistrictly
quasiconvex functions.
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