
EasyChair Preprint
№ 5344

Smart Image Segregation using Face
Recognition

Raj Shaiwalla and Arindam Chaudhuri

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 18, 2021

Smart Image Segregation using Face Recognition

Raj Shaiwalla

Mukeh Patel School of Technology Management and

Engineering NMIMS University

Mumbai India

raj.shaiwalla1721@nmims.edu.in

Arindam Chaudhuri

Mukesh Patel School of Technology Management and

Engineering NMIMS University

Mumbai India

arindam.chaudhuri@nmims.edu

Abstract: This paper discusses a method of classifying

and segregating images using facial recognition. This

study would define the most critical features for

evaluating within a model that can distinguish one face

from another. Extraction and collection of features are

critical measures to better distinguish people from one

another. Extraction of features is the method of extracting

different properties from a set of results. Selection of

features is the method that follows extraction, where the

most important features are chosen to represent each

sample. Once the appropriate features are selected, they

are added as potential inputs to the neural network. The

image dataset used for this project has been provided to

me by a relative. This dataset contains suitable .jpg files

containing over 4000 images we aim to classify and

segregate. The model in this research differentiates

between types of people based on their faces. Diverse

features are tested to determine which elements

performed better. The project mainly uses dlib and face

recognition libraries in order to provide the functionality.

1 Introduction

Face analysis and identification are two such pathways that

have a promising and beneficial impact on society. Artificial

intelligence and machine learning advances have advanced

these technologies significantly over the years. Computer

vision is another area where technology is extremely useful.

These innovations are in high demand in our daily lives these

days.

While there is a wide range of research in related to facial

recognition, there is relatively little work on applying these

concepts to the real word for image segregation. The

development of several different libraries and APIs for face

recognition has resulted from such study and development of

such problems. These libraries can be customised to meet our

needs in order to solve our problem. Facial recognition is also

one of the most common and most explored tasks in the field

of computer vision. It can provide useful information for both

image understanding and video content analysis.

Classification of people is a common problem with many

practical applications in computer vision. Another

application could be to automatically organize a huge image

dataset and tag every person by their name. These images

can be used for finding similar images of the person.

Convolution neural networks in the field of computer vision

is considered to deliver great outcomes. We've seen a lot of

improvement in this field for several years before we now

achieve better than human accuracy for the classification of

pictures. Such networks learn to recognize specific input

features, and learn more complex features when stacked one

after the other. Through the years some improvements have

been implemented, such as dropout to prevent overfitting,

normalization of batches to make weight initialization not a

problem etc. For this model, libraries such as face recognition

[2], [3] and dlib [1] were used in order to solve our problem.

In this case, computer vision neural network ideas for image

recognition were applied.

.

Face recognition has recently received a lot of attention as

one of the most promising applications of image analysis and

understanding, particularly in the last few years. This

development can be attributed to at least two factors: the

broad spectrum of commercial and law enforcement

applications, and the availability of viable innovations after

30 years of study. Even though current machine recognition

systems have achieved a certain level of maturity, the

conditions imposed by many real-world applications hinder

their performance. Image classification is a fundamental

problem in the field of image processing. The key task is to

extract characteristics from the image, and then classify

which class the image belongs to. It is not just the

classification that is a key problem but the automated

segregation of those classes itself, which is the aim of the

project.

This paper is organised as follows. In section 2 significant

related works are summarised. This is followed by

methodology in section 3. The results and discussions are

presented in section 4. In section 5 conclusions are

highlighted.

2 Related Work

After comparing various research papers related to image and

face recognition, image and face classification available

through resources various similarities has been observed

when it comes to approach and motivation behind these

various works. Keeping this in view we describe here few

related significant research works. These works have

described process used to do perform face recognition and

classification and some related components [8].

Zeiler et al [7] proposed a model which consists of multiple

interleaved layers of convolutions, non-linear activations,

local response normalizations, and max pooling layers. We

additionally add several 1 × 1 × 𝑑 convolution layers

inspired by work of Lin et al [11].

Szegedy et al [9] recently implemented an inception model as

the winning approach for ImageNet 2014. These networks

use mixed layers that run several different convolutional and

pooling layers in parallel and concatenate their responses. We

have found that these models can reduce the number of

parameters by up to 20 times and have the potential to reduce

the number of FLOPS required for comparable performance.

There are vast corpus of face verification and recognition

works. We review here few significant ones only viz Sun et

al [10], Taigman et al [12], Zhu et al [13]. In these works,

complex system of multiple stages has been employed which

combines output of deep convolutional network with PCA for

dimensionality reduction and an SVM for classification.

Zhu et al [13] employed a deep network to warp faces into a

canonical frontal view and then learn CNN that classifies

each face as belonging to a known identity. For face

verification, PCA on the network output in conjunction with

an ensemble of SVMs is used.

Taigman et al [12] proposed a multi-stage approach that

aligns faces to a general 3D shape model. A multi-class

network is trained to perform the face recognition task on

over four thousand identities. The authors also experimented

with a so-called Siamese network where they directly

optimize the L1-distance between two face features. Their

best performance on LFW (97.35%) stems from an ensemble

of three networks using different alignments and color

channels. The predicted distances (non-linear SVM

predictions based on χ2 kernel) of those networks are

combined using a non-linear SVM.

Sun et al [10] proposed a compact and therefore relatively

cheap to compute network. They use an ensemble of 25 of

these networks each operating on a different face patch. For

their final performance on LFW (99.47 %) authors combine

50 responses (regular and flipped). Both PCA and a Joint

Bayesian model that effectively correspond to a linear

transform in the embedding space are employed. Their

method does not require explicit 2D/3D alignment. The

networks are trained by using a combination of classification

and verification loss. The verification loss is similar to the

triplet loss we employ in that it minimizes the L2-distance

between faces of the same identity and enforces a margin

between the distance of faces of different identities. The main

difference is that only pairs of images are compared, whereas

the triplet loss encourages a relative distance constraint.

Rybchak et al [15], [5] describe the actual methods and

technologies for all stages of the development of the

recognition system, since in the field of recognition, a huge

number of unique solutions have been developed. The

researchers introduce the method of face recognition using

the SVM which significantly improve the speed and

efficiency of the process of comparison of faces. Scholars

have introduced the facial landmark estimation algorithms

and techniques which are used to position the faces in the

frame. It in turn helps the model in identifying the faces more

efficiently and increase the overall quality of the system we

are trying to achieve. Based on the study of documentation

and analysis we have come to a conclusion that there no

single pathway to conduct a facial recognition rather there are

many methods and ways one could achieve this goal. But,

pertaining to this article we find it easier to use face

recognition library.

3 Methodology

The primary objective for this project is to use this wedding

dataset to perform image segregation using facial

recognition.

The dataset involves over 4000 .jpg images. The images are

taken over the occurrence of three wedding functions, each

having different locations, different number of photos taken

per function, different amount of people attending the

wedding, different illumination due to the different locations.

The project setup environment includes following significant

artefacts. Processor: Intel® Core™ i7-8750H CPU @

2.2GHz (12 CPUs); RAM: 16384MB RAM; Operating

Systems: Windows 10 64-Bit (Build 18363); Graphic Card:

NVIDIA GeForce GTX 1070 with Max-Q Design;

Programming Language: Python (Version 3.7) with libraries

os, cv2, pickle, face_recognition, imutils, numpy, pandas,

shutil etc.

Now we present all the steps in building a face recognition

and segregating system and implement with help of libraries

as mentioned above.

The first step to make a smart image segregation system is

the step of identifying the face itself in the image [6]. Whether

any face is not identified, or if any other entity is viewed as a

face, the device we are implementing will be ineffective, and

the results will be unsatisfactory. To solve this problem, we

employ one of the most widely used algorithms built by Dalal

et al [14] for detecting faces in images called histogram of

oriented gradients (HOG).

Fig. 1: Grayscale Image

Since we don't need color data to find faces in a picture, we'll

start by converting it to black and white as seen in Fig. 1.

Then we'll go over each and every pixel in our picture one by

one. We want to look at the pixels that are immediately

surrounding each pixel. Our aim is to determine how dark the

current pixel is in comparison to the pixels in its immediate

vicinity. Then we'll draw an arrow indicating which way the

picture is darkening. Hence, we end up with arrows called

gradients that show the flow of light from light to dark across

the entire image.

We'll later divide the image into 16 × 16 pixel squares with

each block being replaced by the strongest arrow path in that

block. The final product would be a very basic representation

of the face caught in the picture as shown in Fig. 2. The image

is then compared to the HOG pattern, which was extracted

from a collection of training faces and marked as the most

common pattern with the identified pattern. As a result, we'll

be able to identify the faces in image dataset we choose to

segregate.

Fig. 2: HOG based image

After finding the face in the picture, the next issue we face is

face positioning; in most images, the face is not centre placed

as the algorithm requires; otherwise, the algorithm's

efficiency and accuracy would suffer. We use face landmark

estimation by Kazemi et al [16] in order to solve this problem.

The basic concept is that we can identify 68 distinct points

(known as landmarks) on any face, such as the top of the chin,

the outside edge of each eye, the inner edge of each forehead,

and so on as seen in Fig. 3. Then, on any face, we'll train a

machine learning algorithm to find these 68 unique points.

Fig. 3: The 68 landmarks we will locate on every face

Now that we know where the mouth and eyes are, we'll rotate,

scale, and shear the picture to focus the eyes and mouth as

much as possible. By completing this step i.e., centering face

we will be able to improve the accuracy and efficiency of the

next step.

The next step will be to learn how to distinguish between

various types of faces. This can be accomplished by taking

simple measurements from each forehead. Then we could use

the same method to calculate our unknown face and find the

known face with the nearest measurements. We might, for

example, take measurements of the size of each ear or the

distance between our eyes. So, we need to consider here

correct metrics. Another issue we may encounter is that, with

such a large database of faces, the comparison process will

take a long time, making it inefficient. At first glance, we

might believe that the main characteristics of the face, such

as the distance between the eyes, the distance between the

ears, or the length of the nose, are appropriate for the main

measurements of the face, but as we dig deeper, we discover

that the machine does not view the face as a whole, but rather

considers the pixels of the picture. To solve this problem, it

was suggested that we can use a deep convolutional network,

which will be trained to identify 128 unique numerical facial

features. But instead of training the network to recognize

pictures objects like we did last time, we generate the 128

measurements called embeddings: The training process

works by following steps:

(a) Load training face image of a known person

(b) Load another picture of the same person

(c) Load a picture of a different person

The deep convolutional network will change the results from

images 1 and 2 so that the 128 characteristics obtained are as

similar as possible, while the image loaded in the third stage

is as different as possible.

The next step is to train the deep convolutional neural

networks to produce unique numerical values of the 128

characteristics from a large number of faces in the databases,

which requires a significant amount of computational power.

When the neural network is equipped, it can take the input of

a face that has never been seen before and instantly produce

unique characteristics. This makes the move the most critical

of the others we've discussed; insufficient preparation can

lead to unsatisfactory results and inefficiency. If you don't

want to train a model, you can always use one that has already

been trained and incorporate it into your algorithm to

generate the features. In this project, we use the same strategy

by using a pre-trained model to drastically minimize our job

and economic costs.

The algorithm's next step will be to compare the faces to

available faces, which means that the available 128 features

from the previous step will be compared to the data we have.

The task at hand is to figure out how to compare the faces,

and for this, we've chosen to use SVM. We train the classifier

with the available features; the more homogeneous the

features are, the better we can determine the face [4].

Fig. 4: Example of Face Recognition on singular face

We proceed to run the model and the face matches are

calculated by the use of embeddings. Internally compare_

faces function is computing the euclidean distance between

the candidate embedding and all faces in our dataset. If the

distance is below some tolerance (the smaller the tolerance,

the more strict our facial recognition system will be) then we

return True, indicating the faces match. Otherwise, if the

distance is above the tolerance threshold, we

return false as the faces do not match.

Fig. 5: Counts

Given our matches list we can compute the number of votes

for each name (number of True values associated with each

name), tally up the votes, and select the person’s name with

the most corresponding votes as shown in Fig. 5. This system

is used to identify and individual person as shown in Fig. 4

and an image containing multiple people in it, and it is done

for each person as shown in Fig. 6.

Fig. 6: Example of Face Recognition on multiple faces

If there are any True votes in matches, we need to determine

the indexes of where these True values are in matches. We

do that by creating a simple list. And we then create a

dictionary that holds the name of the person as the key and

the list of images the person is present in as the values of that

key. Using this dictionary, we export all the images i.e., the

values corresponding to the name, to a folder holding the

person’s name as the name of the folder, with all of the

images of the person as the content [7].

4 Results and Discussions

As we can see from Fig. 7 algorithm has correctly classified

the images based on the face and exported the respected

images to a google drive folder.

Fig. 7: Final Results

We can see that our model has a great accuracy in terms of

detecting the image, classifying it and segregating it. In

today’s age this project right here is a stepping stone for

image segregation, as it cannot be only pertained to a

wedding but any social gathering. And it drastically reduces

the manual effort of finding one’s personal photos in a huge

image collection.

5 Conclusion

In this report, all main aspects of face detection, classification

and segregation have been covered. The growth of

classification systems driven by AI suggests a future for a

personalized user experience of fluid. It will be one of the

most effective ways of delivering content that is context-

conscious. This paper described the development of a simple

image segregation system, and since the usage of pretrained

models available, we were able to utilise them and implement

these models in a real-world use case application. The future

prospects of this project can be to classify people not only in

images and segregate those images but to detect them in

videos and export them along with the images.

References

[1] http://dlib.net/python/index.html

[2] https://github.com/davisking/dlib/tree/master/python_example

[3] https://github.com/ageitgey/face_recognition

[4] https://scikit-learn.org/stable/modules/svm.html

[5] https://www.pyimagesearch.com/2018/06/18/face-

recognition-with-opencv-python-and-deep-learning/

[6] https://www.superdatascience.com/blogs/opencv-face-

recognition

[7] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. CoRR, abs/1311.2901, 2013.

[8] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,

W. Hubbard, and L. D. Jackel. Backpropagation applied to

handwritten zip code recognition. Neural Computation, 1(4),

541–551, 1989.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke and A. Rabinovich. Going deeper with

convolutions. CoRR, abs/1409.4842, 2014.

http://dlib.net/python/index.html
https://github.com/davisking/dlib/tree/master/python_examples
https://github.com/ageitgey/face_recognition
https://scikit-learn.org/stable/modules/svm.html
https://www.pyimagesearch.com/2018/06/18/face-recognition-with-opencv-python-and-deep-learning/
https://www.pyimagesearch.com/2018/06/18/face-recognition-with-opencv-python-and-deep-learning/
https://www.superdatascience.com/blogs/opencv-face-recognition
https://www.superdatascience.com/blogs/opencv-face-recognition

[10] Y. Sun, X. Wang, and X. Tang. Deeply learned face

representations are sparse, selective, and robust. CoRR,

abs/1412.1265, 2014.

[11] M. Lin, Q. Chen, and S. Yan. Network in network. CoRR,

abs/1312.4400, 2013.

[12] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:

Closing the gap to human-level performance in face

verification. In IEEE Conf. on CVPR, 2014.

[13] Z. Zhu, P. Luo, X. Wang, and X. Tang. Recover canonical view

faces in the wild with deep neural networks. CoRR,

abs/1404.3543, 2014.

[14] N. Dalal and B. Triggs. Histograms of Oriented Gradients for

Human Detection. International Conference on Computer

Vision and Pattern Recognition, CVPR 2005, 886–893.

[15] Z. Rybchak and O. Basystiuk, Analysis of computer vision and

image analysis technics, ECONTECHMOD: an international

quarterly journal on economics of technology and modelling

processes, Lublin: Polish Academy of Sciences, 6(2), 79–84,

2017.

[16] V. Kazemi and J. Sullivan. One Millisecond Face Alignment

with an Ensemble of Regression Trees. International

Conference on Computer Vision and Pattern Recognition,

CVPR 2014, 1867–1874.

