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Abstract. QFLan offers modeling and analysis of highly reconfigurable
systems, like product lines, which are characterized by combinatorially
many system variants (or products) that can be obtained via different
combinations of installed features. The tool offers a modern integrated
development environment for the homonym probabilistic feature-oriented
language. QFLan allows the specification of a family of products in terms
of a feature model with quantitative attributes, which defines the valid
feature combinations, and probabilistic behavior subject to quantitative
constraints. The language’s behavioral part enables dynamic installation,
removal and replacement of features. QFLan has a discrete-time Markov
chain semantics, permitting quantitative analyses. Thanks to a seamless
integration with the statistical model checker MultiVeStA, it allows for
analyses like the likelihood of specific behavior or the expected average
value of non-functional aspects related to feature attributes.

1 Introduction

Product line engineering is a methodology that aims to develop and manage, in a
cost-effective and time-efficient manner, a family of products or (re)configurable
system variants, to allow the mass customization of individual variants. Their
variability is captured by feature models, whose features represent stakeholder-
relevant functionalities or system aspects [1]. The challenge when lifting success-
ful modeling and analysis techniques for single systems to families of products
or configurable systems, is to handle their variability, due to which the num-
ber of possible variants may be exponential in the number of features. This led
to so-called family-based analyses [32]: analyse properties on an entire product
line and use variability knowledge about valid feature configurations to deduce
results for individual products. This is applied in, e.g., [8,10,11,15,19–23,28,30].

In [2–4], we presented various facets of the probabilistic modeling language
QFLan, capable of describing a wide spectrum of aspects of (software) prod-
uct lines (SPL). The type of quantitative constraints that are supported by
QFLan are significantly more complex than those commonly associated to
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attributed feature models [9, 18, 26]. This paper presents the QFLan tool, a
multi-platform tool for the specification and analysis of QFLan models, which
has been implemented in the Eclipse environment using XTEXT technology,
thus obtaining a state-of-the-art integrated development environment (IDE).
The tool is available, together with installation and usage instructions, from
http://github.com/qflanTeam/QFLan.

Related work The QFLan prototypes from [2,3] were the first tools that of-
fered statistical model checking tailored for SPL, generating approximately cor-
rect results via sampling, which is particularly useful on very large models when
exact model checking is infeasible [25]. Next to dedicated exact model checkers
such as VMC [6] and the tool suite ProVeLines [17], which offers the best known
SPL-specific model checker, SNIP [12], also popular model checkers like mCRL2
and SPIN have been made amenable to SPL model checking [7,8,19–21]. Further-
more, the tool ProFeat [11] extends the probabilistic model checker PRISM [24]
with feature-oriented concepts to be able to model families of stochastic systems
and to analyze them through probabilistic model checking. QFLan scales to
larger models with respect to precise probabilistic analysis techniques. In fact,
we can handle (cf. http://github.com/qflanTeam/QFLan and [5]) significantly
larger instances of the Elevator case study. Originally introduced in [29], this
case study is now a benchmark for SPL analysis known to be very demanding
in terms of scalability when large sizes of Elevator systems are considered (cf.,
e.g., [5, 10,11,13,14,18,19]).

Outline Sect. 2 describes the tool’s architecture, while Sect. 3 applies the tool
to a simple family of coffee vending machines. Sect. 4 concludes the paper.

2 QFLan Architecture

The architecture of QFLan is sketched in Fig. 1. It consists of a GUI layer and
a core layer, devoted to modeling and analysis tasks, respectively.

Fig. 1. QFLan’s architecture

GUI layer The components of the GUI
layer are depicted in Fig. 2. The QFLan
editor provides state-of-the-art editing
support, including auto-completion, syn-
tax and error highlighting, and fix sugges-
tions. This was obtained using XTEXT
technology. For instance, the editor does
on-the-fly error-detection on the structure
of the feature model. The editor also offers support for MultiQuaTEx, the query
language of the statistical model checker MultiVeStA [31] integrated in the tool.
In particular, the user can specify properties to be analyzed with a high-level lan-
guage consisting of QFLan ingredients only, from which MultiQuaTEx queries
are automatically generated. In addition, the GUI layer offers a number of views,
including the project explorer to navigate across different QFLan models, the
tree-like outline to navigate in the elements of QFLan model, the console view
to display diagnostic information, and the plot view to display analysis results.

http://github.com/qflanTeam/QFLan
http://github.com/qflanTeam/QFLan
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Fig. 2. A screenshot of the QFLan tool

Core layer The main component of the core layer is a probabilistic simu-
lator. According to QFLan’s semantics, each state can have a set of outgoing
admissible transitions, each labeled with a weight to compute the probability
distribution of the transitions outgoing from each state. This leads to a discrete-
time Markov chain semantics. Starting from the initial configuration specified
by the modeler, the simulator iteratively computes all one-step transitions al-
lowed in the state, and probabilistically selects one according to the probability
distribution that results from normalizing the rates of the generated transitions.
In particular, to check whether a transition is admissible the tool uses an ad-hoc
constraint solver to guarantee that the transition does not violate any of the
constraints specified by the modeler.

In [3, 4], we presented a prototypical implementation of a QFLan simulator
based on the Maude toolkit [16] and Microsoft’s SMT solver Z3 [27], integrated
with MultiVeStA. The mature QFLan tool presented in this paper has been
redeveloped from scratch using Java-based technologies in order to obtain a
multi-platform modern IDE for QFLan instead of a command-line prototype.
Furthermore, this led to an analysis speedup of several orders of magnitude.

3 QFLan at Work: Coffee Vending Machine

We consider a family of vending machines inspired by examples from the litera-
ture (e.g., [2,6–8,15,28]). For illustration purposes, we consider a simple version.
Larger case studies can be found at http://github.com/qflanTeam/QFLan, in-
cluding the bike-sharing case study used as running example in [2–4], the above
mentioned SPL benchmark Elevator case study used in [5] to evaluate QFLan’s
scalability, and a case study concerning risk analysis of a safe lock system with
variability used in [5] to illustrate QFLan’s applicability in a non-SPL setting.

http://github.com/qflanTeam/QFLan
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This family of vending machines sells either tea, or the coffee-based beverages
coffee, cappuccino, and cappuccino with cocoa (chocaccino). Its feature model is
depicted in Fig. 3. Listing 1 shows its QFLan specification in 1:1 correspondence.

Machine

• ◦
Beverage Cocoa | price=2OO

CoffeeBased Tea | price=5 oo

Coffee | price=5 Cappuccino | price=7oo

Fig. 3. Feature model of vending machine product line

Each node is a feature, while edges denote constraints defining admissible
combinations of installed features. As is common in feature models, we distin-
guish between concrete and abstract features. The former are the tree’s leaves,
and can be explicitly (un)installed, whereas the latter are internal nodes, used
mainly to group features. The root denotes a product, i.e. a specific vending
machine. To instantiate a machine, one may install the optional feature Cocoa
(its optionality is denoted by a circle in Fig. 3 and with a ? in Listing 1), while
it must contain the mandatory feature Beverage (as denoted by a filled cir-
cle in Fig. 3 and by the absence of a ? in Listing 1). Finer constraints on the
presence of features other than mandatory or optional also can be imposed.
The machine may come equipped with either a Tea dispenser or with one for
CoffeeBased beverages. This is specified by the XOR edges connecting Beverage
to Tea and to CoffeeBased. The CoffeeBased dispenser can be used to pour
Coffee, Cappuccino, or both, as denoted by the OR edges.

1begin abstract features
2Machine Beverage Coffee -based
3end abstract features
4
5begin concrete features
6Cocoa Tea Cappuccino Coffee
7end concrete features
8
9begin feature diagram
10Machine -> {?Cocoa ,Beverage}
11Beverage -XOR-> {CoffeeBased ,Tea}
12CoffeeBased -OR-> {Cappuccino ,Coffee}
13end feature diagram
14
15begin cross-tree constraints
16Cappuccino requires Coffee
17Tea excludes Cocoa
18end cross-tree constraints
19
20begin feature predicates
21price = {Cocoa=2,Tea=5, Cappuccino =7,

Coffee =5}
22end feature predicates
23
24begin quantitative constraints
25price(Machine) <= 10
26end quantitative constraints

Listing 1. QFLan encoding of
feature model displayed in Fig. 3

Features can also be subject to cross-tree
constraints. The arrow from Cappuccino to
Coffee denotes that the former requires the
latter, the rationale being that coffee is a pre-
requisite for preparing cappuccino. Instead, the
double-headed arrow connecting Cocoa and Tea
denotes that they exclude each other, since co-
coa only serves to prepare chocaccino. Such con-
straints are specified in QFLan as shown in
Lines 15–18 of Listing 1. Finally, features can
have quantitative predicates as attributes. In
the example, all concrete features have price as
attribute (Lines 20–22 of Listing 1). Abstract
features implicitly inherit all predicates from
concrete ones, with the cumulative value of all
descendant concrete features actually installed.
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Lines 24–26 of Listing 1 show that QFLan supports another family of con-
straints regarding feature predicates, the quantitative constraints, used in this
case study to exclude machines with a cumulative price that is superior to 10.

The dynamics of our example family is sketched in Fig. 4, while Listing 2
shows a textual QFLan specification in close correspondence. The machine, ini-
tialized with a Coffee dispenser only, is pre-configured in the factory by pos-
sibly installing any admissible feature configuration. After this, one can sell the
machine to a company, in whose deposit minor customizations can be done be-
fore deployment. Once in operation, the machine can serve customer requests,
depending on the installed features, or be reconfigured in the deposit.

In QFLan, one first specifies real-valued variables (Lines 1–3 of Listing 2)
that can be used in the guards of constraints or to facilitate the analysis phase.
Variables can be updated as side effects of the execution of actions, defined in the
actions block (Lines 5–8). In addition, also installed concrete features can be
executed as actions, meaning a user is using them. Note that Chocaccino is not
a feature (like Cappuccino or Coffee) but an action. The rationale is that any
machine provided with Cappuccino and Cocoa dispensers can serve Chocaccino.
This is expressed in QFLan using yet another family of constraints, the action
constraints (Lines 10–12). Finally, Lines 14–32 specify the actual behavior in
terms of a process named dynamics with sets of states (Line 15) and transitions
(Lines 16–31), corresponding to the nodes and edges, respectively, of Fig. 4. Each
transition is labeled with an action, including the (un)installation or replacement
of features, and its weight, used to calculate the probability that it is executed.

The model is completed by specifying an initial configuration (Lines 34–37).

prepareCappuccinoserveCappuccino




factory

install, replace

�� sell // deposit

(un)install

�� deploy // operation
reconfigure
oo

Cappuccino

44

Tea

((Coffee//

Chocaccino
**

prepareCoffee
serveCoffee
oo prepareTea

serveTea

hhOO

prepareChocaccinoserveChocaccino

QQ

Fig. 4. Sketch of vending machine behavior

1 begin variables
2 sold = 0 deploys = 0
3 end variables
4
5 begin actions
6 sell deploy reconfigure chocaccino serveTea
7 serveCoffee serveCappuccino serveChocaccino
8 end actions
9

10 begin action constraints
11 do(chocaccino) -> (has(cappuccino) and has(cocoa))
12 end action constraints
13
14 begin process dynamics
15 states = factory ,deposit ,operation ,prepareCoffee ,

prepareCappuccino ,prepareTea ,prepareChocaccino
16 transitions =
17 // Factory
18 factory -(replace(coffee ,tea) ,20)-> factory ,
19 factory -(install(cocoa) ,10)-> factory ,
20 factory -(install(cappuccino) ,10)-> factory ,

20factory -(sell ,1,{sold =1}) -> deposit ,
21// Deposit
22deposit -(install(cappuccino) ,2)-> deposit ,
23deposit -(uninstall(cappuccino) ,2)-> deposit ,
24deposit -(install(cocoa) ,2)-> deposit ,
25deposit -(uninstall(cocoa) ,2)-> deposit ,
26deposit -(deploy ,2,{ deploys +=1}) -> operation ,
27// Operation
28operation -(coffee ,3) -> prepareCoffee ,
29prepareCoffee -(serveCoffee ,1) -> operation ,
30//Tea , Cappuccino & Chocaccino are similar ...
31operation -(reconfigure ,1) -> deposit
32end process
33
34begin init
35installedFeatures = { coffee }
36initialProcesses = dynamics
37end init

Listing 2. QFLan encoding of vending
machine behavior sketched in Fig. 4
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Note that, as side-effect of executing an action (sell), the transition in
Line 20 sets the variable sold to 1 when a machine is sold. Pinpointing this
precise moment allows to study, e.g., the average price of sold machines, or the
probability that they have dispensers for Coffee, Tea, Cappuccino, and Cocoa.

1begin analysis
2query = eval when {sold == 1 } :
3{ price(Machine) [delta = 0.5],
4Coffee ,Tea ,Cappuccino ,Cocoa }
5default delta = 0.05 alpha = 0.05
6parallelism = 1
7end analysis

Listing 3. QFLan properties

These five properties (average price and four
distinct probabilities) can be expressed as in List-
ing 3. The query specifies the properties to eval-
uate in the first state that satisfies sold == 1.
The expected value x of each property is estimated
by MultiVeStA as the mean value x of n samples
(obtained from n independent simulations), with n large enough such that with
probability (1 − α) we have x ∈ [x − δ/2, x + δ/2]. Default values of α and δ are
provided by the user via the keywords alpha and delta (these can be overruled
for a specific property by providing its new value in square brackets, cf. Line 3).
Finally, keyword parallelism = p allows to distribute simulations across p pro-
cesses to be allocated on different cores. The analysis of the five properties in
Listing 3 with QFLan required ± 2000 simulations, for which it ran in under a
second on a laptop with a 2.4GHz Intel Core i5 processor and 4GB of RAM.

The probability of having Cappuccino dispensers in machines sold is zero:
any machine always has at least either a Tea or Coffee dispenser, with price 5,
so installing Cappuccino would violate the constraint price(Machine) <= 10
because Cappuccino has price 7. For the same reason, the probability to have
Coffee installed is 0.33, which is roughly 1+10

1+10+20 , since in Lines 18–20 of List-
ing 2 we see that 1, 10, and 20 are the weights assigned to sell, install(Cocoa),
and replace(Coffee,Tea), respectively (the weight of installing Cappuccino is
ignored as it is not allowed). Note that Coffee is installed in machines sold if
replace(Coffee,Tea) is not executed, which happens if sell is executed first,
or if Cocoa gets installed, which prevents the execution of replace(Coffee,Tea)
due to constraint Tea excludes Cocoa. The probability of installing Cappuccino
becomes 0.46 if we use the more permissive constraint price(Machine) <= 15.

QFLan also allows to study parametric properties as time progresses. For
example, by replacing “when {sold == 1.0}” with “from 0 to 100 by 1” in
Listing 3, we study the five properties at each of the first 100 simulation steps, for
a total of 500 properties. Analysis results of parametric properties are visualized
in interactive plots, in this case the one in Fig. 2, computed in a few seconds.

4 Outlook

We presented QFLan, a quantitative modeling and verification environment for
highly (re)configurable systems, like SPL, including Eclipse-based tool support.
QFLan offers an IDE for specifying system configurations and their probabilistic
behavior in a high-level language as well as advanced statistical analyses of non-
functional properties based on a discrete-time Markov chain semantics.

In the future, we envision a stochastic semantics based on continuous-time
Markov chains for the analysis of time-related properties and a semantics based
on featured transition systems to interface with the ProVeLines tool suite [17].
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