
EasyChair Preprint

№ 1291

Privacy-Preserving Data Sharing on Multi-Layer

Blockchain: Case Study on Healthcare

Wei-Chen Lin

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 15, 2019

Privacy-Preserving Data Sharing on Multi-Layer
Blockchain: Case Study on Healthcare

Wei-Chen Lin, Department of Electrical Engineering National Taiwan University

Abstract—This thesis designs a data exchange system
architecture and applies it to healthcare cases, and will solve the
following two problems. First, children forgets whether the type
vaccines that has been vaccinated or not. Then, he/she has to
vaccinate again in case. Second, we implement the medical
record exchange between hospitals. The same concept can also
be applied to the following situations. If someone sees a doctor
in different hospitals, the medicines from different hospital may
have drug interactions, which may cause side effects after taking
them at the same time. Doctors can avoid this situation with the
information through the blockchain. Recently, the applications
of the medical blockchain are mostly implemented by Ethereum.
This thesis, unlike other Ethereum applications, also proposed a
new multi-layer blockchain architecture and replaced the
consensus mechanism in order to speed up and make the system
more reasonable in use.

Keywords—Blockchain, Tendermint, Ethereum, Multi-Layers,
Smart Contract, Data Exchange

I. INTRODUCTION

With the immutability and consistency of blockchain, any
records of data exchange in our system will upload to the
blockchain as evidence. Afterwards, if someone in the system
deceives that he/she has not exchanged any information, the
dispute can be audited and trailed through the blockchain. The
blockchain represents a fair third party with all records that
can be reviewed, and these records cannot be tampered or be
deleted. That is to say, it has absolute credibility.

This thesis designs a data exchange system architecture
and applies it to healthcare cases to deal with the following
two cases. First, children's vaccination was recorded on a
small yellow card. If someone was vaccinated at school,
without creating a record file in hospital or CDC (Centers for
Disease Control), and the small yellow card was gone
unfortunately, he/she will forget whether the type vaccines
that has been vaccinated after few years. Then, he/she has to
vaccinate again in case. Second, if we need to transfer or apply
for insurance, which medical records are required, it is
necessary to go through the relevant procedures in person or
by the agent (with consent). And then, we have to pay the cost
of printing the medical records. The medical records
transferring between hospitals should not be so complex and
time-wasting. Some patient will also concern that why they
should pay again for the medical records.

For the convenience of smart contract, the medical
applications on blockchain are mostly implemented by
Ethereum. You can deploy smart contracts to the blockchain
and execute contract changing state or querying data from
blockchain. With the smart contract, blockchain go more
easily using and more potential. The most important is that all
the action will be recorded and will not be eliminated. In
despite of that Ethereum has its credibility, the speed of
sending transaction on Ethereum is not efficient enough. In
real case, it might not be scalable and reasonable. Therefore,
this thesis also proposed a new multi-layer blockchain

architecture remaining the credibility of public chain, and
improving the efficiency.

II. RELATED WORK

A. Evmlite with Tendermint

Evmlite [1] is an open source program. It separates the
Ethereum Virtual Machine (EVM) from the Ethereum, and the
system can be executed. The client can call several APIs of the
EVM, including Get controlled accounts, Get any account.
Send transactions from controlled accounts, Get Transaction
receipt, Send raw signed transactions, Call contract without
state change. Using these APIs lets service to receive message
first, and then send them to the consensus engine for execution.
Once the node reaching a consensus, it will return the results
to the EVM and execute contract or API content to change the
state of the database. Using Evmlite allows solidity's contract
to be executed without Ethereum, and can choose a consensus
mechanism you need. At present, the implementation of
Evmlite has three kinds of consensus: solo, babble, and RAFT.

B. Related Work and Design Consideration

There are many prototypes for medical applications on
Blockchain. After some paper surveys, and discussions with
HTC DeepQ, we have designed a system architecture for data
exchange application. The design concepts of this system
architecture on blockchain are as follows.

First of all, we must return the authority to exchange
medical records to the patient and the owner of the medical
record. William J.Gordon [2] compared three different
healthcare interoperability, one of which is blockchain-
enabled patient-driven interoperability. The patient can
retrieve data directly from hospitals, and patient can also
authorize sharing of medical records to other hospitals that
don’t have a formal relationship between hospitals and
hospitals.

On the blockchain layer, it stores authorization rules. We
use the concept of patients and smart contract-driven to design
the workflow and the logic of contract. As the European Union
proposed the General Data Protection Regulation (GDPR), all
personal data mentioned in GDPR should be properly
protected. People wouldn’t want a company to hold onto their
information because it is likely that it can be leaked or hacked.
This is why they can request the company to forget their
personal information, in other words, delete it.

In order to follow GDPR, Dubovitskaya [3] and Gropper
[4] focused on this topic and proposed their architectures to
avoid personal data problem. Dubovitskaya used messages on
the blockchain, created by patient IDs to identify individuals.
The message is encrypted. However, his medical records
claim to be placed in a secure cloud access control system, and
the access control is managed by the smart contract in
Blockchain.

Gropper allows the patients to possess digital wallets that
allow them to not be identified on the blockchain. Instead of

the patient's ID, Gropper's system would record only the
blockchain-based ID for securing and managing access
control. Both of the above can reach GDPR standard.

 Nevertheless, Dubovitskaya puts the medical record in the
cloud, even if he claims it is a safe cloud, it is still considered
very dangerous to put personal data on a cloud system.
Gropper's system may encounter the risk of user using the
wallet at will and being multiple registered by the same user.

 Andrew Lippman [5] proposed medrec architecture.
There are two points that inspired me, the concept of smart
contract to manage workflow and keeping data in the local
database. Nevertheless, medrec still has some aspects to
improve. They didn’t consider the GDPR and put patient
personal data directly on the blockchain. In addition, they
didn’t divide patient and provider into two categories, so the
patient and the provider are actually in the same role in this
system. A patient has the same accessibility as a provider, so
if I were a patient, I can pass my electronic medical records to
others at will. And the provider can create or share medical
records to other providers if they want.

In summary, our system design takes the advantages of the
above systems and revised their disadvantages. We designed
a role-based contract to manage access control and divide
different roles to achieve their demand respectively. This
design will be discussed in the next Chapter.

III. SYSTEM DESIGN OVERVIEW

A. Scenario

Our data exchange system (DeepLinQ) is mainly designed
to solve the following two problems. The first scenario is that
children will be recorded on the small yellow card when they
are vaccinated at school, without record in the hospital or CDC.
Even if there is a record in hospitals or CDCs, people can't
directly access their database. And, as long as the small yellow
card is gone, we lose the information on small yellow card. In
case, you will vaccinate again, if you are not sure whether you
have been vaccinated. In order to make the vaccine record
easy to obtain, we apply the blockchain technology to make
the vaccine information more accessible.

The second scenario is that when we need transferring
from hospital A to hospital B or insurance claiming (third
parties), we need the proof of medical records. At present, we
must go to the hospital in person or ask the agent with the
consent to do it. Moreover, you have to pay the cost of the
work and paper. However, if the patient has to prove his/her
medical record to other hospitals or to claim insurance, it
should not need the hospital’s consent.

As William J. Gordon said, the owner of the data should
be a patient, so if the patient wants to get his/her record, the
process should not go through hospital’s agreement. Namely,
if the patient agrees that his/her medical record sharing to
other legal unit. The blockchain is a good environment for
patients to easily obtain the metadata of their medical records.
The record on blockchain also let hospitals or the insurance
industry to believe the information on the blockchain is indeed
the information written by the original hospital. With such
credibility, the information on blockchain does not need to be
questioned.

What we need to implement is a data exchange system that
uses the immutability and consistency of the blockchain to
ensure the credibility of the data. No one can tamper with the

records on the blockchain. The decentralized system can also
guarantee the correctness of those data. We can program on
smart contract to manage workflows, access control to data on
the blockchain, and the relationship between patients and
hospitals through the easy-to-develop property of smart
contracts.

When the patient sees a doctor in hospital A, hospital A
will store a medical record of him medical record to the
hospital local database, and save some metadata to the
blockchain and the patient will know that he has been added
a medical record. The medical record can be agreed, by
patient, to share the selected medical record content to other
hospital of third party facility through the patient's device.
For example, after the patient agreeing to share the medical
record with hospital B through the smart contract. Hospital B
will send a data query to Hospital A. Then, hospital A would
check permission on the blockchains, and eventually, the
medical record will be transmitted to the hospital B database.

B. System Architecture

In this part, I want to introduce our system architecture.
This multi-layer architecture can be divided into three layers
as shown in Fig. 1:

Fig 1. Multi-layers System Structure Architecture

1) First Layer: Application Layer: The first layer is the

application layer, which mainly designs the client
interface and figures out how to interact with the
smart contract on the blockchain. It includes how to
implement the situation in workflow with web pages,
how to design the smart contract content to define the
relationship between patient and doctor, and design
what functions they should implement in the system
related to their character to manage access control.
The client webpages in the application layer are sort
into patient registration webpage, hospital registration
webpage, hospital registration approving webpage
(CDC), doctor user interface webpage, and patient
user interface with sharing medical record webpage.
The functions of these webpages will interact with the
smart contract to complete the workflow. The
workflow includes medical examination and
exchanging medical records and recorded them on the
blockchain.

2) Second Layer: Consensus and EVM Layer: The
second layer is the consensus and the EVM layer.
Why do we have this layer? Because if you use
Ethereum directly in this system, you will encounter
the problem of scalability. Ethereum generates anew

block with an average speed 15 seconds. This is not
acceptable for practical applications.

 Nevertheless, at the beginning, our system is
implemented by using the API of web3.js which let
the system connecting directly to the private chain of
Ethereum, it is found that if a medical record is sent
out and the state is changed by calling a complicated
smart contract, it takes about 30 seconds for the EVM
to execute bytecode and return messages to the
application layer. If the system is used in a real
hospital, there are dozens of computers in different
division sending medical records to the blockchain at
the same time. There will be a lot of transactions
which is in a pending state, or even the transactions
will fail.

 To solve this problem, we need to use a faster
consensus algorithm, in which Tendermint is a
consensus algorithm that is both fast and can solve the
problem of Byzantine fault tolerance. Tendermint is
also easy to develop because of the part of ABCI.
Developers can use any programming language to
process transactions, but there is no way to use these
smart contracts like Ethereum with Tendermint. We
found an open source program called evmlite, which
separates the EVM from Ethereum. In their words, the
EVM can reach a consensus with different consensus
modules with retaining the smart contract function for
application layer use. By changing consensus, it also
increases the speed generating new blocks and reach
consensus.

3) Third Layer: Public Chain Layer: Some people may
question the credibility of the second layer, private
chain. Therefore we propose the third layer
architecture. The system can regularly collect the
second layer, Tendermint, block data. In the way of
Merkle Tree, it accumulate a certain amount and then
get the hash value upload to the public chain. The
Merkle Tree method can save the cost of the public
chain, and also allows the most credible public chain
to help record the information of the private blockchain.

C. Contract Design Overview

Smart contracts are the programs that exist on the
blockchain network [6]. Once a contract has been deployed,
the blockchain will assign an address to record the encoded
contract data, binary code, and this record cannot be revised
in the future. An authorized user in this system can invoke
contracts through the website interface with gas for
consuming the computing power and storage of the network.
By interacting with smart contracts in our system, patients can
share the authentic data of their own Electronic Health
Records (EHRs) to an authorized hospital. And, the contracts
manage patient’s relationship with hospitals or third parties.

The functions in the workflows will be completed by
executing the following three types of smart contracts on
blockchain, entity contracts (EC), relationship contracts
(RLC), and data contracts (DC). The concept of these smart
contracts is motivated by MedRec [5], but our system
(DeepLinQ) makes these smart contracts more general and
more systematic. What’s more, we consider more situations
that the system may encounter. For example, the personal data
that GDPR concerns, access control problems that someone
may share medical records at will to his/her friends, or hospital

secretly create a fake records to another hospital or third party.
Our design is more complete concern, and that entity,
relationship, and data contract can be used beyond just
supporting the healthcare domain.

In contract overview Fig. 2, we have designed a role-based
contract architecture, and you can see how the contact is
composed in the figure. At the very beginning, the
administrator creates two Entity Contracts (ECs). EC contains
the patient and hospital basic data and the address of Relation
Contract (RLC). RLC contains the address of Medical Data
Contract (MDC). And, MDC contains metadata of electronic
health records (EHR).

Fig 2. Contract Design Overview

1) Entity Contract (EC): Entity Contract (EC). In Fig.3,
we apply role-based contract design to divide EC
contracts into two types, which are patient EC and
hospital EC. Because that patient personal data should
be well-protected, we should deal with the data to be
anonymous. And, the hospital, a public and
transparent institution, should keep data public on
blockchain.

Fig 3. Role-based Entity Contract Design Consideration

 In Fig. 4, a patient EC records two data of a
registered patient. The first one is Hash ID. To avoid
GDPR’s concern, the Hash ID is a pre-processed ID
encrypted by a one way function from patient’s
identity which is composed of the patient’s citizen ID
number and name. Hospital can use the both
information to find the other two kinds of data by
mapping. The second one is the relationship contract
address. It records the relevant Relationship Contract
address. A hospital EC records the hospital’s name,
its Relationship Contract address, and the relevant ID
that is given by the government institution for
identifying that hospital.

 If the user concern other contact user’s identity, for
instance, patients can check a hospital’s identity by
calling an EC’s smart contract methods, mapping, and
vice versa. In order to guard against malicious users,
all participants are certificated by the system
administrator (CDC).

Fig 4. Entity Contract (EC)

2) Relationship Contract (RLC): Relationship Contract
(RLC). RLC is created by EC when user registration.
In Fig. 5. we design role-based contract to solve the
problem of access control. Preventing sending MDC
at will, there are two types of RLC, patient and
hospital RLC. Hospital RLC can send an MDC only
to a patient RLC; likewise, a patient can share their
medical records only with authorized hospitals and
send it to their RLCs. In Fig. 6. no matter what type
an RLC is, it also records the owner (patient or
hospital account address) of the Relationship Contract
to manage the permission executing this contract. It
also records medical data contract (MDC) addresses
that the owner owns.

Fig 5. Role-based Relation Contract Design Consideration

Fig 6. Relationship Contract (RLC)

3) Data Contract (DC): Data Contract (DC). In Fig. 7, a

DC, or MDC in the healthcare domain, represents data
stored in off-ledger storage. The owner recorded in
MDC is the patient account address. Without
containing sensitive personal data, an MDC records
metadata including hospital ID, division, doctor name,
time stamp, database name (the data location key
access). Authorized users of an MDC can access
EHRs by the data location written in the MDC.

Fig 7. Data Contract (DC)

IV. SYSTEM FLOW AND IMPLEMENTATION

In this chapter, I will introduce the implementation of this
system. First, I will introduce the deployment of smart
contract. Then, I will introduce the System Flow of the
webpage and the smart contract in the three scenarios of our
system application. The second section will introduce the
registration. The third section will introduce the scenario of
seeing a doctor. The fourth section will introduce the scenario
of sharing Electronic Health Records (EHRs). The last section
will introduce how we change the system from the full-
functional web3.js API (Ethereum) to the evmlite with only
basic API functions.

A. Contract Deployment

The process Contract deployment, first, needs to compile
our pre-written solidity smart contract using the solidity
compiler (version 0.5.9). After compiling, we can get the
bytecode and Application Binary Interface (ABI) of these
smart contracts. Once the Tendermint commit your
transaction, the message will be sent back to EVM and let
EVM to execute the function of the smart contract or return
the value of the parameter. When you need to call functions
and parameter, you can know which public function or public
parameter is in the smart contract from the ABI.

The initial smart contract, which is called administrator
contract, we only allow the CDC to deploy and execute, the
CDC is the largest administrator in the contact system. When
preparing the administrator's smart contract, you need to input
the administrator's account address, and this address will be
recorded in the admin variables in the smart contract. After the
administrator's smart contract is successfully deployed, the
hospital EC and the patient EC will be automatically generated
in the constructor. Then, the hospital EC address and the
patient EC address can be called through the API. The EC
address parameter, which will become an important role in our
registration scenario, will be used recording patient and
hospital registration content.

B. Registration Scenario

After the administrator (CDC) has deployed the first smart
contract, we can obtain the patient EC address and hospital EC
address recorded in the smart contract. These addresses will
be set in the back end of the registration page. After the
registered person fills in the information, the information will
be sent to the EC by a transaction. Then, the function in the
smart contract will be executed to register system members,
and a corresponding RLC will be generated for that user.

1) Patient Registration Webpage: As shown in Fig. 8,
the patients need to enter citizen ID number and name,
and sets a password. After registration, CDC (default
consent) will help patients hash their ID and name (for
GDPR concern) and set the hash value in the
transaction and execute the function in EC. It will also
generate A UTC key file which can be downloaded to
the user's device. The UTC contains the account
address of the user and the private key encrypted with

the password set by patient. Afterwards, the patient
can share the medical record by unlocking the UTC
file to prove the patient’s identity.

Fig 8. Patient Registration Flow

2) Hospital Registration Webpage: As shown in Fig. 9,
the hospital should inputs the relevant ID that is given
by the government institution and the name of the
hospital, and set a password. After registration, a UTC
file (used to verify the hospital identity) will be
generated for the hospital to download to the node.
Identity verification is needed when executing the
function of sending MDC, and passes the information
to the CDC webpage for audit. If the CDC confirms,
it will help hospital to send the data to blockchain by
a transaction and execute the smart contract.

Fig 9. Hospital Registration Flow

C. See a doctor Scenario

As both the patient and the hospital have been registered,
we can continue to see the doctor's scenario. As a patient sees
a doctor, the doctor will input the patient's information and
diagnosis results as an electronic medical record and store it
in the hospital's local database. After the server (node of
hospital) listens to the database and finds a new electronic
medical record, it generates an MDC containing the metadata
according to the content of the electronic medical record and
sends it out as a transaction to the patient's RLC.

Doctors can add the patient's electronic medical record
information through this website. As shown in Fig. 10, the
doctor needs to enter the patient's ID number, the patient's
name, and the patient's diagnosis. After the record is
completed, the information will be made into an electronic
medical record and store in the local database of the hospital.
Then, the node of the hospital will listen to the database if
there is a new electronic medical record. If yes, the node will
prepare an MDC and send the MDC address to the patient's
RLC. The hospital needs some information to generate the
MDC. First, the hospital will process the patient's identity card
name and name through the hash function, call the addrById
mapping function to obtain the patient's account address. The
account address calls usreByAddr to obtain the patient's RLC
address. The hospital's account address to call hospitalByAddr
to obtain the hospital's RLC. Using the information obtained

above, the node can generate MDC and sends the MDC
address to the patient's RLC.

Fig 10. See a Doctor Flow

D. Share Medical Record Scenario

This scenario is based on a patient's device (mobile phone
or smart watch). When there is MDC in patient's RLC, the
patients can see the MDC metadata list and registered hospital
on their devices. If the doctor sends the MDC to the patient's
RLC, the patient's device will monitor whether there is a new
MDC in RLC. If yes, the new MDC will be updated in the list.
In this scenario, hospital A had send the MDC to the patient's
RLC. Then, the patient go to hospital B, and use the webpage
on device to check MDC list and the hospital to share, and
send MDC to the hospital RLC. The MDC address is stored in
the RLC of the hospital B. The node of the hospital B will
monitor whether there is a new MDC in the RLC. If yes, the
node of the hospital B will make a request to the patient's
device, and the patient's device will ask the hospital A for the
electronic medical record. Then, the private key will prove the
patient’s identity. The electronic medical record will be sent
to the patient's device and passed to the hospital B local
database.

The patient can connect to patient user interface webpage
through the device. As the patient wants logging in, he/she has
to attach the UTC file and enter the password by registration.
If the password is correct, the private key can be successfully
solved and enter another webpage. After logging in, shown in
Fig. 11, it will call userByAddr in the patient EC to obtain the
patient's RLC address, call the getMDCNum in the RLC to
obtain the total number of MDCs in RLC, and then call
getHistory in RLC to obtain the address of each MDC. After
obtaining the address of the MDC, it calls the getInfo function
in each MDC. The function gets MDC's metadata (hospital
name, date of visit, clinic category, doctor's name) and will be
displayed in the MDC list of the interface.

This page will listen to the newMDCevent that sent by the
sharedMDC function in the RLC. Once there is a new
newMDCevent, it will get the new MDC address, call getInfo
to get the MDC metadata and update the MDC list in the
interface. In addition, the page will call the hospital's
hospitalNum in EC to obtain the total number of registered
hospitals, call idByNum to get the corresponding hospital IDs
in EC, call addrByID to get the account address of each
hospital, call hospitalByAddr to get the name and the RLC
address of each hospital. Finally, it displays the hospital list

information in the interface. As shown in Fig. 12, the main
function of this page is to share the medical record to another
hospital. Patient can check the MDC list of the interface, and
check the hospital to share with, call the Readable mapping
function in the MDC to confirm the return (false) indicating
that it does not repeated sharing to the hospital. The
transaction will be sent and the private key will be used to
prove the patient’s identity. Call addRelation in MDC and
send MDC address into the RLC of hospital B.

Fig 11. Share Medical Record Flow - Showing MDC List

Fig 12. Share Medical Record Flow - Sharing Medical
Records

E. System Transfer to Evmlite Tendermint

We choose Tendermint, which has a relatively high speed
and can solve the problem of Byzantine general's fault
tolerance. However, we need to use smart contract in this
system to implement a more complex process and access
control management on the blockchain. We choose evmlite
with Tendermint consensus instead of the original Ethereum.
However, evmlite did not have the consensus of the
Tendermint. There are only solo (no consensus), Babble, and
RAFT. All of them cannot solve the problem of Byzantine
general's fault tolerance, we need to first embed the consensus
Tendermint into the consensus module of evmlite. My lab
classmate completes the ABCI of Tendermint and
successfully connected the Tendermint consensus module to
the evmlite. With evmlite with Tendermint, there is still a
problem. Compared to web3.js, evmlite's API function is not
complete enough. Evmlite only has basic APIs such as
querying accounts to send transactions and query transaction
receipt. In addition to the transaction function needs to be
rewritten into the form of evmlite, if we want to replace the
function programmed by web3.js to evmlite with Tendermint,
we change the web3.js API to the basic evmlite API and
implement quite functions.

V. CONCLUSION AND FUTURE WORK

We have successfully implemented a data exchange
system. Based on our thorough considerations and reference
to experiences of many other medical blockchains, our system

is more complete. We have improved the problems
encountering in most medical blockchains, scalability in
Ethereum. We have succeeded in making the system faster.

Nevertheless, there are still some problems. High speed
blockchain will encounter the problem of relatively fast
expansion of storage space. There will be similar problems in
the blockchains, such as Bitcoin, which has 200g data storage,
Ethereum has 2T data storage, EOS has 40T data storage.
Maybe partially synchronizing will be a solution. The node
from Blockchain synchronizes with less storing information
or only synchronize the nearest block, or use the methods of
Hyperledger. Hyperledger architecture is designed to
synchronize only the blockchain group information you need.

In addition, to solve the above problems in the future, we
can also implement the functions to improve access control,
such as using time bound to achieve access control
management. For example, I can share my electronic medical
record for hospital B, but only share it for one year. One year
later, hospital B will not be able to view the medical records
of mine from hospital A, or the patient can remove the viewers
on the device anytime. After removal, the status on the
blockchain will be changed. When hospital B wants to view it,
it will be blocked by permission management.

The above future work indicates different improvement on
the first and second layer. In this way, the system can be more
functional and the consensus property be more acceptable.
With the improvement in the future, we hope that people use
our consensus and EVM layer will gradually increase.

REFERENCES
[1] Evm-lite, Mosaic Networks https://github.com/mosaicnetworks/evm-

lite

[2] Gordon WJ, Catalini C. Blockchain technology for healthcare:
Facilitating the transition to patient-driven interoperability. Comput
Struct Biotechnol J 2018 Jan

[3] Dubovitskaya A., Xu Z., Ryu S., Schumacher M., Wang F. 2017.
Secure and trustable electronic medical records sharing using
blockchain. arXiv preprint arXiv:1709.06528.R. C. Gonzalez, R. E.
Woods, Digital Image Processing second edition, Prentice Hall, 200

[4] Gropper A. 2016. Powering the physician-patient relationship with hie
of one blockchain health it.

[5] J. Ray, “A next-generation smart contract and decentralized application
platform,” Ethereum Wiki.

[6] A. Ekblaw, A. Azaria, J. D. Halamka, and A. Lippman, “Medrec
prototype for electronic health records and medical research data,” MIT
Media Lab and Beth Israel Deaconess Medical Center, 2016.

[7] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: https:// bitcoin.org/ bitcoin.pdf

[8] Peterson K., Deeduvanu R., Kanjamala P., Boles K. 2016. A
blockchain-based approach to health information exchange networks.

[9] T. Tyndall, A. Tyndall, “FHIR healthcare directories: adopting shared
interfaces to achieve interoperable medical device data integration”,
Stud Health Technol Inform, 249 (2018), pp. 181-184

[10] H. Wang, Y. Song, “Secure cloud-based EHR system using attribute-
based cryptosystem and blockchain”, J. Med. Syst., 42 (8) (2018),
Article 152

[11] G. Zyskind, O. Nathan, and A. Pentland, “Decentralizing privacy:
Using blockchain to protect personal data,” IEEE Security and Privacy
Workshops, pp.180–184, 2015.

[12] MOAC, “Multi-layer blockchain architecture,” 2018.

[13] C. Cachin and M. Vukolic,´ “Blockchain Consensus Protocols in the
Wild,” ArXiv e-prints, Jul. 2017.

[14] Tendermint Core 2018. Last accessed 15 September 2018.
https://tendermint.com/docs/introduction/introduction.html#consensu
s-overview.

