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Abstract— In this work, we introduce the notion of 

local and 2-local 
1

2
-derivations and describe local and    

2-local 
1

2
-derivation of the octonion and Okubo 

algebras. We prove that every local and 2-local                   

1

2
-derivation on the octonion and Okubo algebras is a 

1

2
-derivation. 
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I. INTRODUCTION 

Filippov studied  -derivations of Lie 

algebras in a series of papers [13-15]. The space of      

 -derivations includes usual derivations ( 1 = ), anti-

derivations ( 1 = − ) and elements from the centroid. 

In [14] it was proved that prime Lie algebras, as a rule, 

do not have nonzero  -derivations (provided 

1
1, 1, 0,

2
  − ), and all 

1

2
-derivations of an arbitrary 

prime Lie algebra A  over the field  of characteristic 

2, 3p   with a non-degenerate symmetric invariant 

bilinear form were described. It was proved that if A  

is a central simple Lie algebra over a field of 

characteristic 2, 3p   with a non-degenerate 

symmetric invariant bilinear form, then any                     

1

2
-derivation   has the form x = for some  .  

In recent decades, a well-known and active 

direction in the study of derivations of associative 

algebras and rings is the problem about local 

derivations. The notion of local derivation on algebras 

was introduced by R.V. Kadison [16], D.R. Larson and 

A.R. Sourour [19]. A local derivation on an algebra A  

is a linear map  :    A A →  which satisfies that for 

any x A , there exists a derivation :    xD A A→  

(depending on x ) such that ( ) ( )  .xx D x= The 

main problems concerning local derivations are to find 

conditions under which local derivations become 

derivations and to present examples of algebras with 

local derivations that are not derivations. Several 

authors investigated local derivations for finite or  

infinite dimensional Lie algebras [1-9, 11, 17, 18, 20, 

21], and it was proved that every local derivation on 

many Lie algebras (for examples, semi-simple Lie 

algebras, Borel subalgebras of finite-dimensional 

simple Lie algebras, the Schrödinger algebra ns  in  

 1n + -dimensional space-time) is a derivation. 

Investigation of local and 2-local  -

derivations on Lie algebras was initiated in [18] by      

A. Khudoyberdiyev and B. Yusupov. Namely, in [18] 

it is proved we introduce the notion of local and 2-local 

 -derivations and describe local and 2-local 
1

2
-

derivation of finite-dimensional solvable Lie algebras 

with filiform, Heisenberg, abelian nilradicals. 

Moreover, in the work [18] is given the description of 

local 
1

2
-derivation of oscillator Lie algebras, 

conformal perfect Lie algebras, and Schrödinger 

algebras. B.Yusupov, V.Vaisova and T. Madrakhimov 

proved similar results concerning local 
1

2
-derivations 

of naturally graded quasi-filiform Leibniz algebras of 

type I in their recent paper [21]. They proved that 

quasi-filiform Leibniz algebras of type I, as a rule, 

admit local 
1

2
-derivations which are not                            

1

2
-derivations. 

II. MAIN RESULTS 

 1

2
-derivation of the octonion algebra . 

Definition [10]. Let L  be an arbitrary 2-

torsion free unital ring. The octonion algebra 

(denoted by ) over L  is a class of non-associative 

algebra. It is a unital non-associative algebra of 



dimension 8 with the basis 

 0 1 2 3 4 5 6 7, , , , , , ,e e e e e e e e=  and the product defined 

in the following relation: 

0

, 0;

, 0;

, otherwise,

j

i j i

ij ijk k

e if i

e e e if j

e e

=


 = =
− + €

 

where ij is Kronecker delta and ijk€ is a completely 

antisymmetric tensor with value 1+  when 

123,145,176,246,257,347,365.ijk =  

Theorem. Let  Octonion algebra over a 

field of characteristic zero. Then any 1

2
-derivation of 

octonion algebra has the following form:  

( ) 11 , 0 7i iD e e i=    

Proof: Let D  be 1

2
-derivation of . Then 

we write  

( )
8

1 1

1

, 1 8i ij j

j

D e e i− −

=

=   . 

Applying D  on the 1 1i ie e− − : 

( )

( )

8 8

1 1 1 1 1 1

1 1

8

1 1 0 0 1 1

1

1

2
i i ij j i i ij j

j j

i i ii j j

j

D e e e e e e

e e D e e

 

  

− − − − − −

= =

− −

=

 
 = + = 

 

= − = − = −

 



 

By comparing the coefficients of basis vectors, we 

get:

11 1 1 1, , 2 8, 0, , 2 8ii i i ji j i j    = = −   =    . 

By using these relations, we find that

1 1 0,2 8j j j = =   . 

Applying D on the product 0 1,ke e − where 2 8k  : 

( ) ( )
8 8

1 1 1 1 1 1

1 1

8 8

11 1 1 1

1 1

1

2

1

2

o k k j j k kj j

j j

k kj j kj j

j j

D e e D e e e e

e e e

 

  

− − − − −

= =

− − −

= =

 
 = =  + = 

 

 
= + = 

 

 

 

By comparing the coefficients of basis vectors, we 

obtain: 0,1 8,kj j j k =    . 

We complete the proof of the theorem.  

 1

2
-derivation of the Okubo algebra . 

Assume first that the characteristic of is not three, 

so  contains a primitive cubic root  of 1 . 

Let ( )3  the associative algebra of 3 3 matrices 

over . Let 3 ( )sl  denote the corresponding special 

Lie algebra. Define a binary multiplication on 3 ( )sl  

as follows: ( )
2

2x y xy xy tr xy 1
3

−
 =  − − .    (1) 

 The vector space 3 ( )= sl  endowed with the 

multiplication in (1) and nonsingular quadratic form 

( ) ( )n x sr x=  is a symmetric composition algebra: 

( ) ( ) ( ) ( ) ( )n x y n x n y ,n x y,z n x, y z , =  =  for any

x, y,z .  

 Definition[12]. The symmetric composition algebra

( ), ,n  is called the Okubo algebra over 

( )3char   . 

 Theorem: Let   Okubo algebras over a field of 

characteristic zero. Then any 1

2
-derivation of Okubo 

algebra has the following form: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 11 1 2 11 2 1 11 1

2 11 2 3 11 3 1 11 1

2 11 2 3 11 3

, , ,

, , ,

, .

e e e e u u

u u u u v v

v v v v

     

     

   

= = =

= = =

= =

 

 Proof: Let   be a 1

2
-derivation of Okubo algebra. 

Then we write: 

( )

( )

( )

( )

1 11 1 12 2 11 1 12 2 13 3

11 1 12 2 13 3

2 21 1 22 2 21 1 22 2 23 3

21 1 22 2 23 3

1 31 1 32 2 31 1 32 2 33 3

31 1 32 2 33 3

2 41 1 42 2 41 1 42 2 43 3

41 1

,

,

,

e e e u u u

v v v

e e e u u u

v v v

u e e u u u

v v v

u e e u u u

v

     

  

     

  

     

  

     



= + + + + +

+ + +

= + + + + +

+ + +

= + + + + +

+ + +

= + + + + +

+ +

( )

( )

( )

( )

42 2 43 3

3 51 1 52 2 51 1 52 2 53 3

51 1 52 2 53 3

1 61 1 62 2 61 1 62 2 63 3

61 1 62 2 63 3

2 71 1 72 2 71 1 72 2 73 3

71 1 72 2 73 3

3 81 1 82 2 81 1 82 2

,

,

,

,

v v

u e e u u u

v v v

v e e u u u

v v v

v e e u u u

v v v

v e e u u

 

     

  

     

  

     

  

     

+

= + + + + +

+ + +

= + + + + +

+ + +

= + + + + +

+ + +

= + + + + 83 3

81 1 82 2 83 3.

u

v v v  

+

+ + +

   

We obtain the equalities below by applying  the 

identities: 

1 1 2 1 3 2 2 1 2 3 2 2, , ,e e e v u e v u e v u e= = − = − = −  

(All relations between the coefficients of the basis 

vectors below are obtained due to the uniqueness of 

the representation of a vector ( )x  in the basis

 1 2 1 2 3 1 2 3, , , , , , ,e e u u u v v v ). 



.

( ) ( ) ((

) (

))

( )( )

2 1 1 11 1 12 2 11 1 12 2

13 3 11 1 12 2 13 3 1 1 11 1 12 2 11 1

12 2 13 3 11 1 12 2 13 3

11 2 11 2 12 13 3 12 2

1

2

1
2

2

e e e e e u u

u v v v e e e e u

u u v v v

e u u v

     

      

    

    

= = + + + +

+ + + + + + + +

+ + + + + =

= − − + −

 

21 22 11 21 13

22 11 23 12 21 12

22 13 23

1
0, , ,

2

1 1 1
, , ,

2 2 2

1
, 0.

2

    

     

  

= = = −

= − = − = −

= − =

 (2) 

( ) ( ) ((

) (

))

( )(

)

2 1 3 61 1 62 2 61 1 62 2

63 3 61 1 62 2 63 3 3 1 51 1 52 2

51 1 52 2 53 3 51 1 52 2 53 3

53 61 2 51 1 62 2 52 3

62 1 52 2 63 3

1

2

1

2

.

e v u e e u u

u v v v u v e e

u u u v v v

e u u u

v v v

     

     

     

    

  

= − = − + + + +

+ + + + + + +

+ + + + + + =

= − − + + − − −

− − +

 

( )22 53 61 21 51

22 62 22 52 23 52

21 62 23 63

1 1
, ,

2 2

1 1 1
, , ,

2 2 2

1 1
, .

2 2

    

     

   

= + = −

= = =

= =

 (3) 

( ) ( ) ((

) (

))

( )(

)

2 2 1 71 1 72 2 71 1 72 2

73 3 71 1 72 2 73 3 1 2 31 1 32 2

31 1 32 2 33 3 31 1 32 2 33 3

31 72 2 33 1 32 2 72 3

71 1 73 2 32 3

1

2

1

2

.

e v u e e u u

u v v v u v e e

u u u v v v

e u u u

v v v

     

     

     

    

  

= − = − + + + +

+ + + + + + +

+ + + + + + =

= − − + + + − +

+ − −

 

( )22 31 72 21 33

22 32 22 73 23 72

21 71 23 32

1 1
, ,

2 2

1 1 1
, , ,

2 2 2

1 1
, .

2 2

    

     

   

= + =

= − = =

= − =

 (4) 

( ) ( ) ((

) (

))

( )(

)

2 3 2 81 1 82 2 81 1 82 2

83 3 81 1 82 2 83 3 2 3 41 1 42 2

41 1 42 2 43 3 41 1 42 2 43 3

42 83 2 82 1 41 2 42 1

82 2 81 3 43 3

1

2

1

2

.

e v u e e u u

u v v v u v e e

u u u v v v

e u u v

v v u

     

     

     

    

  

= − = − + + + +

+ + + + + + +

+ + + + + + =

= − − + − − − +

+ − +

 

( )22 42 83 21 82

22 41 22 82 23 43

21 42 23 81

1 1
, ,

2 2

1 1 1
, , ,

2 2 2

1 1
, .

2 2

    

     

   

= + =

= = − = −

= =

 (5) 

Now applying   on identities:

2 2 1 1 3 1 2 1 1 3 2 1, , ,e e e u v e u v e u v e= = − = − = − . 

 

( ) ( ) ( )(

) (

))

( )

1 2 2 21 1 22 2 21 1 22 2 23 3

21 1 22 2 23 3 2 1 21 1 22 2 21 1 22 2

23 3 21 1 22 2 23 3

22 1 22 1 23 2 21 3 23 1 21 2 22 3

1

2

1
2 .

2

e e e e e u u u

v v v e e e e u u

u v v v

e u u u v v v

      

      

   

      

= = + + + + +

+ + + + + + + +

+ + + + =

= − − − − − −

 

11 22 12 11 22

12 23 13 21 11 23

12 21 13 22

1
, 0, ,

2

1 1 1
, , ,

2 2 2

1 1
, .

2 2

    

     

   

= = = −

= − = − = −

= − = −

 (6) 

( ) ( ) ((

) (

)) ( )(

)

1 1 3 31 1 32 2 31 1 32 2 33 3

31 1 32 2 33 3 3 1 81 1 82 2 81 1 82 2

83 3 81 1 82 2 83 3 31 83 1 32 1

81 2 33 3 81 1 31 2 82 3

1

2

1

2

.

e u v e e u u u

v v v v u e e u u

u v v v e u

u u v v v

      

      

      

    

= − = − + + + + +

+ + + + + + + +

+ + + + = − − + − −

− + + − −

 

( )11 31 83 12 11 32

12 81 13 33 11 81

12 31 13 82

1 1
, 0, ,

2 2

1 1 1
, , ,

2 2 2

1 1
, .

2 2

     

     

   

= + = =

= = = −

= =

 (7) 

( ) ( ) ((

) (

)) ( )(

)

1 2 1 41 1 42 2 41 1 42 2 43 3

41 1 42 2 43 3 1 2 61 1 62 2 61 1 62 2

63 3 61 1 62 2 63 3 42 62 2 41 1

43 2 63 1 62 2 41 3 61 3

1

2

1

2

e u v e e u u u

v v v v u e e u u

u v v v e u

u v v v u

      

      

      

    

= − = − + + + + +

+ + + + + + + +

+ + + + = − − + + −

− − + − −

 

( )11 42 61 12 43 12

11 63 11 41 13 61

12 62 13 41

1 1
, , 0,

2 2

1 1 1
, , ,

2 2 2

1 1
, .

2 2

     

     

   

= + = =

= = − =

= − =

 (8) 



( ) ( ) ((

) (

))

( )(

)

1 3 2 51 1 52 2 51 1 52 2

53 3 51 1 52 2 53 3 2 3 71 1 72 2

71 1 72 2 73 3 71 1 72 2 73 3

53 72 1 71 1 52 2

51 1 71 2 73 3 51 3

1

2

1

2

.

e u v e e u u

u v v v v u e e

u u u v v v

e u u

v v v u

     

     

     

   

   

= − = − + + + +

+ + + + + + +

+ + + + + + =

= − − + − + −

− − + −

 

( )11 53 72 12 52

12 11 71 13 51

11 51 13 73

1 1
, ,

2 2

1 1
0, , ,

2 2

1 1
, .

2 2

    

    

   

= + = −

= = =

= = −

 (9) 

from the relations (2)- (9) we obtain: 

21 22 11

61 72 83

53 42 31

21 13 51 33 82

22 11 62 32 41

23 12 52 72 43

21 12 62 71 42

22 13 52 73 82

23 63 32 81 11

81 43 62 63 61

31 32

0, ,

,

,

0,

0,

0,

0,

0,

0,

0,

  

  

  

    

    

    

    

    

    

    

 

= =

= =

= =

= = = = =

= = = = =

= = = = =

= = = = =

= = = = =

= = = = =

= = = = =

= = 41 51 71 0.  = = =

 

By using these relations, we write: 

( ) ( )

( )

( )

1 11 1 2 11 2

1 31 1 32 2 33 3 31 1

2 41 1 42 2 43 3 42 2

, ,

,

.

e e e e

u u u u v

u u u u v

   

    

    

= =

= + + +

= + + +

 

Next, we will obtain equalities below by applying   

on identities: 

1 1 1 2 2 1 2 2

2 2 1 3 2 3 1 1 1 1

1 1 1 2 1 3 2

0, 0, 0, 0,

, 0, , 0,

, 0, 0.

e u u e u u u e

e u u u e u e u v u

v v u v v v v

= = = =

= − = = − =

= = =

 

( ) ( )( )

( )

1 1 11 1 1 1 31 1 32 2 33 3 31 1

31 3

1

2

1
0

2

e u e u e u u u v

v

     



= + + + + =

= − =

 

( ) ( )( )1 2 31 1 32 2 33 3 31 1 2 11 1 2

31 1

1

2

1
0

2

u e u u u v e u e

v

     



= + + + + =

= − =

 

( ) ( )(

( ))

( )

2 1 41 1 42 2 43 3 42 2 1

2 31 1 32 2 33 3 31 1

41 1 43 2 42 2 32 2 33 1 31 1

1

2

1
0

2

u u u u u v u

u u u u v

v v e v v e

    

   

     

= + + + +

+ + + + =

= − − + − − =

 

( ) ( )( )

( ) ( )

2 2 11 2 2 2 41 1 42 2 43 3 42 2

11 1 41 3 42 1 43 2 1

1

2

1

2

e u e u e u u u v

u u u u u

     

    

= + + + + =

= − − − − = −

 

( ) ( )( )3 2 51 1 52 2 53 3 53 3 2 11 3 2

53 1

1

2

1
0

2

u e u u u v e u e

v

     



= + + + + =

= − =

 

( ) ( )( )

( ) ( )

3 1 51 1 52 2 53 3 53 3 1 11 3 1

51 2 52 3 53 1 11 1 1

1

2

1

2

u e u u u v e u e

u u u u u

     

    

= + + + + =

− − − − = −

 

( ) ( )( )

( )

1 1 61 1 61 1 62 2 63 3 1 11 1 1

61 1 62 2

1

2

1
0

2

v u u v v v u v u

v e

     

 

= + + + + =

= − =

 

( ) ( ) ( )( )

( ) ( )

1 1 61 1 63 3 1 1 61 1 63 3

61 1 63 2 1

1

2

1
2

2

v v v v v v v v

u u u

    

  

= + + + =

= − =

 

( ) ( )( )

( )

2 1 72 2 71 1 11 2 73 3 1 11 2 1

72 1 71 1 73 2

1

2

1
0

2

v v u v v v v v v

e u u

     

  

= + + + + =

= − + − =

 

( ) ( )( )

( )

3 2 83 3 81 1 82 2 11 3 2 11 3 2

83 1 81 3 82 2

1

2

1
0

2

v v u v v v v v v

e u u

     

  

= + + + + =

= − − + =

 

From the equalities above, we derive the following 

relations: 

52 51 61 62 61 11

63 72 71 73

0, 0, ,

0, 0.

     

   

= = = = =

= = = =
 

( )31 41 33 32 43 42 31 11 42

42 11 83 81 82 32 43 33 41

33 41 32 43 53 52 51 53 11

1
0, , , 0, ,

2

1 1
, 0, , ,

2 2

0 , 0, 0, .

a

        

       

        

= = = = = +

= = = = = =

= = = = = = = =

 

Taking into account these relations, we write the 

following: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 11 1 2 11 2 1 11 1

2 11 2 3 11 3 1 11 1

2 11 2 3 11 3

, , ,

, , ,

, .

e e e e u u

u u u u v v

v v v v

     

     

   

= = =

= = =

= =

 

We complete the proof of theorem. 

In this work, we present the following result 

obtained for local and 2-local 1

2
-derivations of the 

octonion and Okubo algebras. 

Theorem[18]. Let be an algebra, whose all 
1

2
-derivations are trivial. Then any local and 2-local 

1

2
-derivation of  is a trivial 1

2
-derivation. 

 

 

 



 

From the theorem [18], we have following corollary: 

Corollary. Let  Octonion and  are 

Okubo algebras over a field of characteristic zero. 

Then any local and 2-local 1

2
-derivation of the 

Octonion and Okubo a is a trivial 1

2
-derivation. 

III. CONCLUSION 

In this article, it is shown that the local and 2-local 
1

2
-derivation of Octonion and Okubo algebras are 

trivial 1

2
-derivations, and general forms of                      

1

2
-derivations Octonion and Okubo algebras are 

presented. 
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