ﬁ EasyChair Preprint

Ne 2121

Enhancing Reasoning with the Extension Rule in
CDCL SAT Solvers

Rodrigue Konan Tchinda and Clémentin Tayou Djamegni

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 8, 2019

Enhancing Reasoning with the Extension Rule
in CDCL SAT Solvers

Rodrigue Konan Tchinda and Clémentin Tayou Djamegni

Department of Mathematics and Computer Science
University of Dschang

Dschang

Cameroon

{rodriguekonanktr, dtayou } @gmail.com

ABSTRACT. The extension rule first introduced by G. TSEITIN is a simple but powerful rule that,
when added to resolution, leads to an exponentially stronger proof system known as extended reso-
lution(ER). Despite the outstanding theoretical results obtained with ER, its exploitation in practice to
improve SAT solvers’ efficiency still poses some challenging issues. There have been several attempts
in the literature aiming at integrating the extension rule within CDCL SAT solvers but the results are
in general not as promising as in theory. An important remark that can be made on these attempts is
that most of them focus on reducing the sizes of the proofs using the extended variables introduced in
the solver. We adopt in this work a different view. We see extended variables as a means to enhance
reasoning in solvers and therefore to give them the ability of reasoning on various semantic aspects
of variables. Experiments carried out on the 2018 SAT competition’s benchmarks show the use of
the extension rule in CDCL SAT solvers to be practically useful for both satisfiable and unsatisfiable
instances.

RESUME. La régle d’extension introduite pour la premiére fois par G. TSEITIN est une régle simple
mais puissante qui, ajoutée a la résolution, conduit a un systéme de preuves plus puissant appelé
résolution étendue (ER). Malgré les résultats théoriques remarquables obtenus avec ER, son exploita-
tion pratique pour améliorer I'efficacité des solveurs SAT pose encore quelques problemes. Plusieurs
tentatives visant a intégrer la régle d’extension aux solveurs CDCL SAT existent dans la littérature,
mais les résultats ne sont en général pas aussi prometteurs qu’en théorie. Une remarque importante
a faire sur ces tentatives est qu’elles se concentrent pour la plupart sur la réduction de la taille des
preuves & l'aide des variables étendues introduites dans le solveur. Nous adoptons dans ce travail
un point de vue différent. Nous considérons les variables étendues comme un moyen d’améliorer le
raisonnement dans les solveurs et donc de leur donner la capacité de raisonner sur différents aspects
sémantiques des variables. Les expérimentations réalisées sur les instances tirées de la compétition
SAT 2018 montrent que I'utilisation de la régle d’extension dans les solveurs CDCL est utile aussi
bien pour les instances satisfiables que celles insatisfiables.

KEYWORDS : SAT, CDCL, extension rule
MOTS-CLES : SAT, CDCL, régle d’extension

1. Introduction

The Boolean satisfiability problem (SAT) consists in deciding whether a given propo-
sitional logic formula — generally expressed in conjunctive normal form or CNF — ad-
mits a model or not. There have been tremendous advances in its resolution during the last
two decades and nowadays, SAT solvers are used in industry to solve several challeng-
ing problems. The key of this great success lies in a very subtle combination of several
features within the so-called CDCL (Conflict-Driven Clause Learning) [10, 18, 19, 5]
SAT solvers. The latter include conflicts analysis with clause learning, efficient unit
propagation through watched literals, dynamic branching/polarity heuristics and sporadic
restarts. SAT has also attracted theoreticians since it was the first problem proved to be
NP-complete [3]. Hence, the existence or non-existence of an efficient algorithm for SAT
will definitely give the answer to the question P =7 NP which is one of the seven mil-
lennium prize problems stated by the Clay Mathematics Institute for which an award of 1
Million USD is given to anyone solving one of them.

Despite their current great efficiency, there are still some instances that are out of the
reach of current CDCL SAT solvers. The increasing quest of efficiency is achieved by
equipping solvers with new techniques and heuristics but the latter are limited from a
theoretical perspective. Indeed, CDCL SAT solvers can be formalized as proof systems
and it has been shown that the resulting proof system is p-equivalent to general resolution
[2, 14] which is known to have an exponential lower bound [7]. This means that CDCL
SAT solvers cannot do better than what can be done with general resolution and in par-
ticular, that exponential lower bounds known for resolution hold for CDCL SAT solvers
as well. To overcome this limitation, a promising research direction is to equip solvers
with proof systems that are stronger than resolution. One such proof system is extended
resolution (ER) which makes use of the extension rule.

Several work aiming at integrating the extension rule within CDCL SAT solvers exist
in the literature [8, 1]. Most of them focus on the use of the extension rule as a means
to reduce the size of the proofs produced by solvers using extended variables introduced
in the latter. Seen like that, it might appear that the extension rule is only beneficial for
unsatisfiable formulas. However, extended variables introduced in the solver can be seen
as a means to increase the level of abstraction and hence enhance reasoning in the solver
so that it helps improve the resolution of both satisfiable and unsatisfiable formulas.

We are interested in this work in designing a new integration scheme of the extension
rule within CDCL SAT solvers in order to enhance their reasoning capabilities by the use
of the extension rule.

The main contributions of this paper are the following: (1) we design a new integration
scheme of the extension rule within CDCL SAT solvers called Extended CDCL (ECDCL
in short) aiming at enhancing solvers’ reasoning. (2) We prove that the substitution of
extended literals performed on an asserting clause does not alter its asserting characteristic
nor its asserting level. (3) We implemented ECDCL on top of a state-of-the-art SAT solver
and conducted an empirical evaluation.

The rest of this paper is organized as follows: Section 2 presents the necessary back-
ground for understanding the contribution. In Section 3 we review some related work.
Our contribution is given in section 4 and empirically evaluated in Section 5. We finally
conclude our work in Section 6 while outlining some future research directions.

2. Background

A Boolean variable is one that domain is {true, false}. A literal is either a Boolean
variable x or its negation —x. A clause c is a finite disjunction of literals (¢ = 11 V... V)
and a CNF formula F is a finite conjunction of clauses (F = ¢; A -+ A ¢,). A CNF
formula can be also seen as a set of clauses where each clause is thought of as a set
of literals. In this way, we can use set operators on CNF formulas and clauses. An
interpretation Z of a CNF formula F is a function that maps each variable in F to a
truth value in {true, false}. A clause is said to be satisfied under an interpretation 7
if at least one of its literals is satisfied under Z. A CNF formula is said to be satisfied
under an interpretation Z if all its clauses are satisfied under Z. A CNF formula F is
satisfiable if there can be found an interpretation under which it is satisfied; otherwise it
is unsatisfiable. The Boolean satisfiability problem (SAT) consists in deciding whether
a given CNF formula is satisfiable or not. The latter definition, which considers only
formulas in the CNF representation, is not a restriction since every propositional logic
formula can be efficiently translated into an equisatisfiable CNF formula [17].

The most widespread algorithm today for solving SAT is known as CDCL (Conflict-
Driven Clause Learning) [10, 18, 19, 5]. The principle of CDCL can be summarized
as follows: the algorithm performs a sequence of unit propagations until a fixed point
is reached (i.e. no further unit propagation can be made) or a conflict is found (i.e. a
clause is falsified). If no conflict was found, the algorithm proceeds by making a decision
and subsequently increases the decision level. Each assigned variable is associated to a
decision level and a literal [is said to be of level k if it is the kth decision literal or is
deduced by unit propagation after setting the kth decision literal. If a conflict is found,
then procedure analyze is invoked to examine it in order to produce an asserting clause
(i.e. a clause that is falsified under the interpretation being constructed and that contains
only one literal of the conflicting decision level) as well as the decision level at which
the solver must backtrack in order to continue the search. Afterward, the solver learns
the asserting clause and backtracks accordingly. From time to time, the algorithm per-
forms restarts which consist in backtracking at decision level zero and begin a new search
while keeping some information of the previous round (such as learned clauses, variable
activities, etc.) which might help speed up the new search.

We formally characterize the state of a CDCL SAT solver by the tuple (F, A, §) where
F is the formula being solved, A the learned clause database and ¢ the partial interpreta-
tion being constructed by the solver. We denote the level of a literal/variable x relatively
to a solver state S by level(z). Given an asserting clause ¢ w.r.t. a state .S, its asserting
literal is the literal with the highest decision level and its asserting level is the second
highest decision level of literals in c. In this paper, the state should be clear from the
context when not explicitly specified.

A propositional proof system is a polynomial time algorithm V, such that for every
propositional formulas F, F is unsatisfiable iff there exists a string P (a proof of unsat-
isfiability or refutation of F) such that V' accepts the input (F, P). In the rest of this
paper, we omit the word propositional and refer to propositional proof system simply
as proof system. Given two proof systems V; and Vs, V; p-simulates V5 iff there ex-
ists a polynomial-time computable function f such that V5 accepts (F, P) iff V; accepts
(F, f(P)). Two proof systems are p-equivalent if they p-simulate each other. A well-
known proof system is resolution (also referred to as general resolution) which makes

use of the resolution rule [15] as inference rule. The strength of resolution can be further
increased by adding the extension rule.

The extension rule first introduced by TSEITIN [17] allows the use of literals as ab-
breviation for longer formulas. Concretely, let F be a CNF formula, {x, [, >} be a set of
literals such that neither = nor —x appears in F. The extension rule allows to introduce
definitions of the form = < [y V Iy by adding the clauses -z V 1 V lo; x V =l and
x V =l to F. This rule when added to resolution, turns it to an exponentially stronger
proof system known as extended resolution (ER). A typical example of formulas that are
hard for resolution are pigeonhole formulas which do not admit any short (i.e. polyno-
mial size) resolution proof [7]. However, short proofs of pigeonhole formulas exist when
using the extension rule [4]. The challenge when using the extension rule is to determine
which variables to choose for extension so as to produce short proofs. Even with the right
variable choices, the resolution steps that should be performed to achieve this goal still
constitute an important issue.

3. Related Work

There have been several work attempting to integrate the extension rule within CDCL
SAT solvers. AUDEMARD et al. [1] argued that significant advances in SAT solving must
come from implementation of stronger proof systems since exponential lower bounds
are known for resolution [7, 11]. They used a restriction of ER called Local Extended
Resolution (LER) by introducing the extension z <> [; V [y if there exists previously
derived clauses in the form —/; V a and =l V 8 where « and § are disjunction of literals
such that I € o« = —l ¢ (. A clear limitation of this approach is that it uses clauses
of particular form that might seldom appear in the set of derived clauses. In addition,
looking for such clauses can be difficult and costly. For the latter reasons, the authors
in their implementation restricted this lookup to a small window of recent clauses, only
looking for those of the form —l; V a and —l5 V a.

HUANG [8] proposed Extended Clause Learning (ECL), a general scheme which is
a modification of the CDCL algorithm where decisions to use the extension rule might
be made (guided by a heuristic) when the number of assigned literals is greater than 2.
Besides ECL, they proposed a concrete heuristic where the extension rule was used after
learning clauses y of size greater than 2. Concretely, if the decision to make an extension
is taken, then ~ is split into « VV 8 such that |«| > 2 and |8| > 0 and the solver learns
the clauses x V 3, x <> « where z is a fresh variable. A restart is performed after each
extension introduced in the solver. The drawback of this is that it alters the restart strategy
of the solver. Hence, if the heuristic used to decide the time to make extensions is not well
designed, it might compromise the completeness of the CDCL SAT solver. For instance,
if we decide to make an extension after each conflict, the solver will never reach more
than one conflict and the search will hardly progress in this situation.

In [9], JABBOUR et al. proposed a method that mimics the principle behind extended
resolution by detecting hidden Boolean functions introduced in the CNF during the en-
coding phase [13, 6] and by using them to shorten learned clauses through substitution.
This approach however does not use fresh variables at all and substitution is restricted to
only literals which are the input arguments of a detected Boolean function.

4. Extended CDCL

The extension rule in combination with resolution has been theoretically shown to be
useful for shortening the proof size of unsatisfiable formulas. The work mentioned in the
literature try to reproduce this result in practice but the outcome of most of them turns
to be limited as it seldom matches the expectations. When looking at the extension rule
as a means to reduce the size of the proof, it might seem that it will be useful only for
unsatisfiable formulas. We adopt here a different view. Extensions are introduced within
a solver in order to increase its reasoning capabilities with the ultimate goal of enhancing
solving times. When solving a CNF formula, current CDCL SAT solvers proceed by
assuming a selected variable to be frue or false and by evaluating the consequences of
this assumption on the formula being solved. Proceeding this way limits reasoning to a
single semantic aspect of variables, notably their truth values. We want the solver to be
able to carry out reasoning on other semantic aspects of formulas’ variables. That is, we
want the solver in addition to make other types of assumptions such as assuming that two
or more variables are equivalent, simultaneously true or false, one variable implies the
other etc. To achieve this without modifying the way solvers proceed, we are going to use
extensions to encapsulate these semantic aspects. Hence, the algorithm of the solver will
not change since it will still continue to carry out reasoning as usual; that is, assigning
true/false values to variables. The difference however will be that when this reasoning is
performed on an extended variable, it will denote other semantic aspects. For instance,
suppose the extension x <+ [; < l3 has been made in the solver. When the solver picks
the extended variable = and assigns it value true, this means that it is assuming /; and 5
to be equivalent. Hence, after setting x to true, anytime in the search where one of the
variables in {l, I} will be given a value, then the other will also be given the same value
via unit propagation. In this way, we could expect an improvement of reasoning in the
solver.

In order to integrate the extension rule in the CDCL framework, we should answer the
following questions: which variables should be chosen for extension and when should we
perform these extensions?

We propose to use extensions at restarts and to choose for each extension, two vari-
ables from two different decision levels (in our implementation, we chose the most active
decision variables i.e. the ones with the highest VSIDS scores [12]). At this level, exten-
sions can be performed using any binary connective; for instance z <> l1 Vi, & <> 11 Ala,
T &l = la, x & 1} & s etc. The solver can then make assumptions on the extended
variables resulting in an implicit meaning on variables on which extension is performed
(for instance, they are/are not equivalent, one implies/does not imply the other, they are
both false/true, etc.) and evaluates the consequences on the other variables of the for-
mula being solved. By choosing variables of different decision levels instead of any two
variables, we aim to give the solver the ability to carry out reasoning on variables that ap-
parently seem not to be dependent and avoid some useless extensions such as extensions
where the value of one literal is already known or extensions where the extended variable
is immediately forced to a given value. We further provide a substitution mechanism that
can be cheaply performed in order to favor the use of extended variables within the solver.
This substitution consists in replacing any pair {l1, l2} of literals in a clause ¢ by the literal
[provided that the extension [<+ [1 V l5 has been made in the solver. This substitution
has as effect the shortening of the clause as well as the increase of its propagation power.
In fact, as illustrated in [1], if we consider the clause ¢ = I V s V « and the extension

l <> Iy V o, then the clause ¢’ = [VV « obtained from c by replacing I, V I with [unlike
the clause c itself will become unit once all literals in « are set to false. The substitu-
tion mechanism is performed on each asserting clause derived after conflict analysis and
Proposition 4.1 ensures that after substitution, the resulting clause will remain asserting
and the asserting level will be kept.

Proposition 4.1. Let S = (F, A, §) be the state of a solver and ¢ = a V « an asserting
clause w.r.t. S where a is the asserting literal. Let x < l1 V ly be an extension such that
{l1,12} C o Then, the clause ¢ = aV x V S where § = o\ {l1,12} is asserting w.rt. S.
Furthermore, the asserting levels of ¢ and ¢’ are identical.

The proof of Proposition 4.1 uses the following lemma:

Lemma4.1. Let x <> [1 Vs be an extension introduced in a solver. If literals x, 1y and l5
are all assigned, with x set to false, then the decision level of x is the maximum decision
level of 11 and l5.

Proof. Since x = false and x <> [1 Vo, then [; and I5 are set to false as well. If x is first
set to false by the solver or set to false after setting either of I; or Iy to false (no matter
the decision level), then the values of [; and/or Iy will immediately be deduced by unit
propagation through the clauses x VV —l; and x VV —ls. In this case, the decision levels of =
and [; or x and [5 will be identical. If [; and [5 are first set to false, then z = false will
be inferred by unit propagation via the clause —x V [V l5. This occurs as soon as the last
literal of {l1,l2} is assigned. In either of the previous cases, the level of x is the same as
that of the most recently assigned literal of {l1,l5}, that is level(x) is the maximum of
level(ly) and level(ls). O

Proof of Prop. 4.1. ¢ = a V « is an asserting clause, hence all its literals are false. Since
x 4> I3 Via is an extension introduced in the solver and {l1, 2} C ¢, then z is false as well.
By Lemma 4.1, level(z) = mazx(level(ly), level(lz)). In addition, level(l;) < level(a)
and level(lz) < level(a), hence, level(z) < level(a) which means that a still has the
highest decision level in ¢ = a V 2 V 8 where 8 = o\ {l1,l2}. ¢ therefore remains
asserting. Furthermore, the second highest decision level of literals in ¢’ remains the same
as in ¢ since maz({level(y),y € a}) = mazx({level(y),y € (BU {z})}). O

The resulting scheme that we call Extended CDCL (ECDL in short) is described in
Algorithm 1. All in this algorithm are as in CDCL except that we introduce extensions
at restarts (lines 14—17) and substitution of literals with extended literals for asserting
clauses derived from conflicts (line 8). At line 17, the extension operator o can be any
binary connective and in this paper we take o € {V, A, =;<}. Note that an extension
is not systematically added at each restart but only when the solver finds it necessary
(through an heuristic) and when the maximum number of extensions (introduced as a
parameter of the algorithm) is not yet reached. Function substituteExtendedLits which
carries out substitution is described in Algorithm 2. In order to perform substitution,
all extensions are converted so that they use the connective V. Hence, the extensions
l < l1Als and [<> [; = [are respectively converted to =l <> —lyV—ls and | > =l Vis.
As far as the extension [<> 1 < [y is concerned, we use two auxiliary variables {l’, 1"}
for its conversion which lead to the extensions =l <+ =’ vV =", I’ + =l V Iy and
I + 1y V =ly. Tt is worth mentioning that substitution here is not performed on unary
or binary clauses since it requires that the clause contains at least two literals in addition
to the asserting literal. Notice that function substitute ExtendedLits will return the clause

Algorithm 1: Extended CDCL

17

18

19
20

Input: A CNF formula F
Result: SAT or UNSAT

begin
dl < 0;

else

A+ 0

while true do
conf < unitPropagation(F U A);
if conf # null then

if dl = 0 then return UNSAT;

(¢, btLevel) < analyze(conf); /* return an asserting clause and
the backtracking level */

¢ <+ substituteExtendedLits(c);

A — AU{c} /* learn clause c */

backtrack to bt Level;

if all variables are assigned then return SAT;
if time to restart then
if extension needed and not reached max number of extensions then
let 6 be the current interpretation;
choose a fresh variable x and a not yet extended pair {l1, l2} from §
such that level(l1) > 0,level(l2) > 0,level(ly) # level(l2) ;
F + FUclauses(z <> l1 0l2); /* encode the extension as
clauses and add to the formula */

B restart();

pick an unassigned variable and assign it a value;
dl +dl + 1,

Algorithm 2: substituteExtendedLits

Input: An asserting clause ¢
Result: a clause

begin

c<+c\

c «c

a < the asserting literal of ¢ ;
c + {a};

{a};

while 3{l1, 12} C c such that the extension l <> 11 \V lz is present in the solver do

L cc\{l,l};

d+du{l};

Uc;

return c’;

as is if called with an unary or a binary clause or even when no extension has yet been
introduced in the solver. Another thing to point out in Algorithm 1 is that extensions are
made with only two literals. This does not mean that reasoning in solvers is limited to at
most two literals at a time. In fact, in Algorithm 1, extensions can be made using other
extended literals as well. Hence, extensions with more literals such asl <> [oly0---0l,
can be represented by a sequence of two-literal extensions. The drawback here is that
several fresh variables need to be introduced in the solver for that.

Unlike Extended Clause Learning (ECL) which performs a restart after each extension
made after conflicts analysis, ECDCL does not alter the restart policy of the CDCL solver
and hence eliminates the completeness issue related to an uncontrolled restart strategy.
Furthermore, since we limit the number of extensions that can be used, ECDCL remains
complete.

5. Experimental Results

In order to evaluate ECDCL, we conducted experiments on the 400 application bench-
marks ! drawn from the 2018 SAT competition 2. For these experiments, we implemented
ECDCL on top of the state-of-the-art CDCL SAT solver Glucose3.03. Glucose3.0 was
chosen because it is one of the most used today as a base for many CDCL SAT solvers.
We distinguished several different versions obtained by varying the type of extension and
the maximum number of extended variables allowed in the solver: We designated by
Glucose3.0_exT_o_maxExtVars_K the version of our solver where the extension operator
is o with o € {V, A, =; <} and the maximum number of extended variables allowed set
to K € {100;500; 1000}. When performing and extension [<> I o l5, we set the VSIDS
score of [to the sum of the scores of [; and l5 so that when making a decision in the
solver, the extended variable [is prioritized overs [y and ls. It is worth mentioning that
in our modified solvers, all the other parameters of Glucose3.0 were left unchanged. The
base solver, referred to as Glucose_3.0_default was used with its default configuration.

All our experiments were carried out on the StarExec 4[16] cluster infrastructure run-
ning Red Hat Enterprise Linux Server version 7.2 (Maipo). Each node of this infrastruc-
ture has 128 GB of memory and two Intel processors with 4 cores (2.4 GHz) each. For
each solver, we set a time limit of 1800 seconds and a memory limit of 24GB for the
resolution of each benchmark.

The results obtained at the end of these experiments are summarized in Table 1. The
table indicates for each extension type and maximum number of extended variables al-
lowed, the number of satisfiable instances solved (#S), the number of unsatisfiable in-
stances (#U), the total number of instances solved (#T) as well as the PAR-2 score. The
PAR-2 score is defined as the sum of all runtimes for solved instances + 2 X timeout
for unsolved instances. The line default in the table represents the performance of Glu-
cose3.0_default which are repeated for every limit on the number of extended variables to
ease the comparisons. We see in this table that all our solvers outperformed the original
solver on the total number of instances solved (up to 14 additional instances solved for our
best performing solver). The second remark is that our solvers are very efficient on sat-
isfiable instances (our best performing solver on satisfiable instances solved 12 more sat-

1. http://sat2018.forsyte.tuwien.ac.at’/benchmarks/Main.zip

2. http://www.satcompetition.org/

3. https://www.labri.fr/perso/lsimon/downloads/softwares/glucose-3.0.tgz
4. https://www.starexec.org/

isfiable instances than the original solver) meaning that the extension rule greatly helped
improve the resolution of satisfiable instances.

Number of extended vars < 100 Number of extended vars < 500 Number of extended vars < 1000
#S #U #T PAR-2 #S #U #T PAR-2 #S #U #T PAR-2

exT_V 83 71 154 2436,36 82 69 151 2454,71 76 69 145 2499,94
exT_A 73 71 144 251547 78 70 148 2472,11 75 68 143 2518,84
exT_= 80 70 150 2455,51 79 70 149 2484,04 75 67 142 2521,33
exT_& 74 67 141 2531,56 75 68 143 2505,41 84 68 152 2456,92
default 72 68 140 2526,22 72 68 140 2526,22 72 68 140 2526,22

Table 1. Results, #S, #U and #T are respectively the number of satisfiable, the number of
unsatisfiable and the total number of instances solved

This table also shows that the number of solved instances generally decreases as the
limit on the number of extended variables increases. There is however an exception for
the extension operator < where the performance increased with the limit on the number
of extended variables.

When considering another performance metric, notably the average PAR-2 score
currently used for ranking solvers at SAT competitions, we also notice that all our solvers
outperformed the original solver except for Glucose3.0_exT_<_maxExtVars_100.

T T T T T T T
exT_1_maxExtVars_1000 ——

1800 - exT_1_maxExtVars_100 — . DALt b
exT_1_maxExtVars_500 o [
exT_2_maxExtVars_1000
1600 exT_2_maxExtVars_100
exT_2_maxExtVars_500 ——
exT_3_maxExtVars_1000 —=
exT_3_maxExtVars_100 —— y #
1400 [exT_3_maxExtVars_500 —+— 0L 1
exT_4_maxExtVars_1000 -
exT_4_maxExtVars_100
exT_4_maxExtVars_500

1200 - glucose-3.0_default]

1000 -

Time in seconds

600 -

400

200 -

0 - L L L L L L L
0 20 40 60 80 100 120 140 160

Number of solved instances

Figure 1. Cactus plots, for the extension type, 1=V, 2=A,83==,4=&

Fig. 1 shows the cactus plots of all the solvers on the 400 application benchmarks of
the 2018 SAT competition. It clearly appears on these plots that the use of the extension
rule in the solver was beneficial for our solvers since they still outperformed the original
solver Glucose_3.0_default for various solving time limits in term of number of instances
solved.

5. Solvers with the lowest scores are the best performing

6. Conclusion and Future Work

We presented in this paper a new integration scheme of the extension rule within
CDCL called extended CDCL (ECDCL) which, unlike the state-of-the-art integrations,
uses extensions to enhance reasoning in solvers. ECDCL also allows to substitute literals
in asserting clauses with extended literals while preserving their asserting nature as well
as the asserting levels. We showed experimentally that the extension rules helps improve
the resolution of both satisfiable and unsatisfiable instances.

This work opens doors to many other investigations. For instance, an interesting re-
search direction is to determine if our algorithm seen as a proof system is theoretically
strictly more powerful than general resolution. Additionally, it might be interesting to see
whether the proof system implemented in our algorithm p-simulates ER. Some extensions
introduced in the solver might already exist in the original formula in the form of Boolean
function [9]. So it would be interesting to detect and use them instead of making new
extensions with fresh variables which unnecessarily increase the formula size.

Acknowledgments

The authors wish to thank the anonymous reviewers for their insightful comments and
valuable suggestions on a previous version of this paper.

References

[1] Gilles Audemard, George Katsirelos, and Laurent Simon. A restriction of extended
resolution for clause learning sat solvers. In Twenty-Fourth AAAI Conference on
Artificial Intelligence, 2010.

[2] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and har-
nessing the potential of clause learning. Journal of Artificial Intelligence Research,
22:319-351, 2004.

[3] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM symposium on Theory of computing, pages 151-158. ACM,
1971.

[4] Stephen A. Cook. A short proof of the pigeon hole principle using extended resolu-
tion. SIGACT News, 8(4):28-32, October 1976.

[5] Carla P Gomes, Bart Selman, Henry Kautz, et al. Boosting combinatorial search
through randomization. AAAI/IAAI, 98:431-437, 1998.

[6] Eric Grégoire, Richard Ostrowski, Bertrand Mazure, and Lakhdar Sais. Automatic
extraction of functional dependencies. In International Conference on Theory and
Applications of Satisfiability Testing, pages 122—132. Springer, 2004.

[7] Armin Haken. The intractability of resolution. Theoretical Computer Science,
39:297 — 308, 1985. Third Conference on Foundations of Software Technology
and Theoretical Computer Science.

[8] Jinbo Huang. Extended clause learning. Artif. Intell., 174(15):1277-1284, October
2010.

[9] Said Jabbour, Jerry Lonlac, and Lakhdar Sais. Extending resolution by dynamic
substitution of boolean functions. In 2012 IEEE 24th International Conference on
Tools with Artificial Intelligence, volume 1, pages 1029-1034. IEEE, 2012.

[10] JP Marques-Silva and KA Sakallah. Grasp-a new search algorithm for satisfiability.
iccad, 1996.

[11] Mladen Miksa and Jakob Nordstrom. Long proofs of (seemingly) simple formulas.
In International Conference on Theory and Applications of Satisfiability Testing,
pages 121-137. Springer, 2014.

[12] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient sat solver. In Proceedings of the 38th annual
Design Automation Conference, pages 530-535. ACM, 2001.

[13] Richard Ostrowski, Eric Grégoire, Bertrand Mazure, and Lakhdar Sais. Recovering
and exploiting structural knowledge from cnf formulas. In Pascal Van Hentenryck,
editor, Principles and Practice of Constraint Programming - CP 2002, pages 185—
199, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[14] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning sat
solvers as resolution engines. Artificial Intelligence, 175(2):512-525, 2011.

[15] John Alan Robinson et al. A machine-oriented logic based on the resolution princi-
ple. Journal of the ACM, 12(1):23-41, 1965.

[16] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. Starexec: a cross-community
infrastructure for logic solving. In International Joint Conference on Automated
Reasoning, pages 367-373. Springer, 2014.

[17] G Tseitin. On the complexity ofderivation in propositional calculus. Studies in
Constrained Mathematics and Mathematical Logic, 1968.

[18] Hantao Zhang. Sato: An efficient prepositional prover. In Automated Deduction-
CADE-14, pages 272-275. Springer, 1997.

[19] Lintao Zhang, Conor F Madigan, Matthew H Moskewicz, and Sharad Malik. Effi-
cient conflict driven learning in a boolean satisfiability solver. In Proceedings of the

2001 IEEE/ACM international conference on Computer-aided design, pages 279—
285. IEEE Press, 2001.

