
EasyChair Preprint
№ 8178

Reinforcement Learning for Path Generation for
Surgical Robot Maneuver

Junhong Chen, Zeyu Wang, Ruiqi Zhu, Ruiyang Zhang,
Weibang Bai and Benny Lo

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 1, 2022



Reinforcement Learning for Path Generation for Surgical Robot
Maneuver

Junhong Chen1, Zeyu Wang1, Ruiqi Zhu2, Ruiyang Zhang1,
Weibang Bai1, and Benny Lo, Senior Member, IEEE1

1Hamlyn Centre for Robotic Surgery 2King’s College London
junhong.chen16@imperial.ac.uk

INTRODUCTION
In the last decades, surgical robots have been widely
used in Robot-Assisted Minimally Invasive Surgery
(RAMIS), which benefits surgeons by reducing their
burdens and leads to safer operations. However, RAMIS
tasks are still mainly relied on surgeon’s control,
thus the performance of a task mostly depends on
the level and proficiency of a surgeon, and prone to
human errors due to fatigue. However, despite their
extensive experience, operators often make small
mistakes and corrections during the tasks. Therefore,
their kinematics data usually contains small differences
to an ideal trajectory. To make full use of Learning from
Demonstration(LfD) as well as reduce the dependence
on kinematics data, a novel path generation method
based on reinforcement learning(RL) is proposed in this
paper. The da Vinci Research Kit, as the open-source
robotic platform, is used to validate the model. In
addition simulation is used for model training and early
validation.

The contributions in this work: a) a quick path gener-
ation method for transferring tasks via RL; b) a new
training strategy for surgical tasks based on surgeme[1];
c) the validation results of the proposed through trans-
ferring the learnt model from simulation to real robots.

MATERIALS AND METHODS
The overview of the proposed path generation for au-
tomatic transferring is shown in Fig.1. In most surgical
tasks, transferring objects or purely moving tools are
inevitable. Peg transfer is one of the standard tasks that
are suitable for transferring training. In order to train,
develop and test the peg transfer task, Asynchronous
Multi-Body Framework (AMBF)[2] is used as the sim-
ulated environment based on our previous work[3], and
then validate on the da Vinci Robot. Fig.2 shows the
simulation environment (a) and da Vinci Robot (b) used
in validation of the proposed. In Peg transfer task,
the transferring process happens when the gripper is
carrying the peg or moving tools to reach the peg.
Therefore, the transferring would started from a random
pillar with the peg to another random pillar as the target.
The starting and targeting points are defined as:

Fig. 1 Framework of the proposed path generation
method

Fig. 2 Overview of the training environment (a) and the
validation environment (b){

𝑃0 = [𝑥0, 𝑦0, 𝑧0]
𝑃𝑒 = [𝑥𝑒, 𝑦𝑒, 𝑧𝑒]

(1)

The gripper state contains its position as well as its
orientation. Using quaternion to represent its orientation,
and its state in time t is defined as:

𝑆(𝑡) = [𝑝𝑥 (𝑡), 𝑝𝑦 (𝑡), 𝑝𝑧 (𝑡),
𝑜𝑥 (𝑡), 𝑜𝑦 (𝑡), 𝑜𝑧 (𝑡), 𝑜𝑤 (𝑡)]

(2)

Both the points and gripper state are in the global frame
for easier processing. And the boundary for training
depends on the size of pegboard. Here we have: 𝑥 ∈
[−0.72, 0.56], 𝑦 ∈ [−0.72, 12], 𝑧 ∈ [−0.5, 0.5]. For
training, the starting points are randomly picked from the
range[−0.1, 0.1] with equal probability in all x,y,z axes,
while the targeting points are chosen randomly based on
the pillar’s position, a fixed coordinate throughout the
training. Then three targeting points are chosen based
on different distances between starting and targeting
points, from close to far. For practical consideration,
both gripper and peg are objects with volume, therefore,
a round shape with radius 𝑟 = 0.08 is defined as the
peg. After initializing the environment, the action Δ𝑆 is
defined as the variation of state of the gripper measured
in the global frame. The action of the gripper can be
represented as:



TABLE I Metrics in Simulation and Real robot
S-Left S-Mid S-Right R-Left R-Mid R-Right

M(m) 0.636 0.290 1.063 0.0440 0.0298 0.0327
t(s) 0.53 0.2 0.6 1.17 0.87 0.97
A(m/s) 1.200 1.446 1.772 0.0376 0.0342 0.0337

Δ𝑆(𝑡) = 𝑆(𝑡) − 𝑆(𝑡 − 1) (3)
This action will be the output command from the
training model to control the gripper. Since the output
control command is a vector with continuous values,
thus the training policy is designed with the algorithm,
Deep Deterministic Policy Gradients (DDPG)[4], which
is widely used for continuous control[5]. The rewards
are defined as:

𝑅 =


−1.0 if over boundary

− 𝑑
𝐷
+ 𝑘 if moving away from the target

− 𝑑
𝐷

if moving close to the target
1.0 if reaching the target

(4)

where 𝑑 is the distance between the current gripper
position and the targeting point using Euclidean norm.
𝐷 and 𝑘 are constant for adjusting the rewards. The
value of 𝐷 is chosen empirically, otherwise, the gripper
may collide or reach the boundary, and 𝑘 must be a
small negative, together with 𝐷 to control the gripper.
In our model, 𝐷 = 18 and 𝑘 = −0.2. Also, when 𝑡

reaches maximum time steps, 𝑅 = −1.0. Unlike other
reward functions, like [5], except the success or failure
cases, the other two rewards aim to guide the agent
following the way of approaching the target, which
efficiently increases the training and path generation.

During the training, success happens when the gripper
reaches the targeting point without collision or out-of-
bounds. Once the simulation consecutively succeeds
100 times, the model stops training and records the
trajectory in the simulation. These trajectories are
treated as demonstrations, each one of them indicates
one path to the target. To extract their features and
generate the final path, Gaussian Process Regression
(GPR) is used. With uncertainty of the training results,
GPR will compute the final path as required and reduce
errors. After that, further processing can ensure the
endpoint will reach the close proximity to the targeting
point. Through this method, the path generation of
other tasks, like needle passing and pattern cutting
could follow the training strategy. From the framework
view, the only difference would be the Step 1 model
analysis. For example, needle passing could be divided
into several targets while pattern cutting could adjust
the rewards to follow the cutting curve.

RESULTS
The training curve is shown with average reward
curve in Fig.3(a). The final success rate is close to
100%, while the average reward increases to its highest
possible value. The final generated path is shown in
Fig.3(b). In the figure, Red line indicates the final path,
circle represents the size of a peg and all blue points
are point path before GPR process. The generated path
will certainly reach the allowing range of targeting
point. Fig.4 shows the frames of gripper approaching

Fig. 3 a) Training and Reward curve, b) Generated path

Fig. 4 a) Simulation validation frames, b) da Vinci
validation frames
the target based on the similar generated path in this
framework. In the real-world validation, the initial
position of end-effector tools are randomized. Fig.4
shows the frames of gripper approaching the target
pillar when tested with the real da Vinci robot. Table.I
shows the metrics: i)path-length (M-m); ii) completion
time (t-s); iii) average speed (A-m/s) during validations
in both environments, simulation(S) and real(R).

DISCUSSION
In this paper, we present a novel method for path
generation to conduct automatic transferring of pegs.
The results of the generated path and their validation
verified that the proposed path generation method could
automate this repetitive surgical task. Unlike other re-
search like [5], the method used after RL part aims for
combining the strength of both LfD and RL. If integrated
this work with our previous work on shared control[3],
a surgeon will only need to pinpoint a few locations, the
robot can then complete the whole peg transfer task.
REFERENCES
[1] H. C. Lin, I. Shafran, D. Yuh, and G. D. Hager, “Towards

automatic skill evaluation: Detection and segmentation of robot-
assisted surgical motions,” Computer Aided Surgery, vol. 11, no. 5,
pp. 220–230, 2006.

[2] A. Munawar, Y. Wang, R. Gondokaryono, and G. S. Fischer, “A
real-time dynamic simulator and an associated front-end represen-
tation format for simulating complex robots and environments,”
in 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Nov 2019, pp. 1875–1882.

[3] J. Chen, D. Zhang, A. Munawar, R. Zhu, B. Lo, G. S. Fischer, and
G.-Z. Yang, “Supervised semi-autonomous control for surgical
robot based on banoian optimization,” in 2020 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS),
2020, pp. 2943–2949.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with
deep reinforcement learning.” in ICLR (Poster), 2016. [Online].
Available: http://arxiv.org/abs/1509.02971

[5] Z. Chiu, F. Richter, E. K. Funk, R. K. Orosco, and M. C. Yip,
“Bimanual regrasping for suture needles using reinforcement
learning for rapid motion planning,” CoRR, vol. abs/2011.04813,
2020. [Online]. Available: https://arxiv.org/abs/2011.04813


