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Abstract— With the advancement of technology, people are 

curious to know how much energy they are going to use in the 

next hour and how much it will cost them. Many accurate 

prices and load forecasting algorithms are already working 

but ignore the convergence rate. In the case of STF when an 

algorithm takes too much time in results formulation, it 

becomes useless for end users and utilities. We incorporated 

deep learning techniques as they process a large amount of 

data quickly and can predict accurate results with a fast 

computational time. The proposed solution LSTM-BiGRU is 

formed in combination of LSTM and GRU layers, both are 

RNN variations and capable of forecasting the best results.  

LSTM and GRU are combined in the best possible way to 

achieve maximum accuracy with a fair computational time. 

The proposed solution is showing MAPE in load forecasting 

from 3.12% to 7.42% in different scenarios. Similarly, MAE 

for price forecasting is calculated between 2.35 to 3.02, and the 

computational time of the proposed solution in different 

scenarios is recorded <1 min. So, a fair tradeoff is maintained 

between forecasting results and computational time.  In the 

future, the proposed method can be improved by optimization 

of proposed hybrid algorithms with evolutionary algorithms, 

and the use of GPUs and TPU can further decrease the 

computational time.   

Keywords—LSTM, GRU, Load forecasting, price forecasting, 

short term forecasting   

I. INTRODUCTION 

Energy crises are always present in this world. Many different 

sources are incorporated together to fulfill the energy demand 

[1]. Smart Grid replaces the traditional grids by providing 

communication between users/consumers, utilities, and 

manufacturers [2]. It helps in managing the resources efficiently, 

in the management of demand and supply, enhancing reliability, 

trading, and cost management [3]. It provides bidirectional 

communication between power generators, transmitters, 

distributors, and consumers [4].  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

An accurate energy forecast is very important for producers, 

consumers, and utilities. In this paper, we focus on both VSTF 

and STF. Very Short-term forecasting (VSTF) is forecasting for 

an hour, while short-term forecasting (STF) is for a day to a week 

[5,6]. For an accurate energy and price forecast, many deep 

learning neural networks are working very successfully. We 

have observed two types of convergence rates in different papers 

i.e., slow convergence and fast convergence [7].  Slow 

computations occur when the designed model is complex, the 

data wasn’t preprocessed earlier, and the forecast algorithm is 

time taking [8]. Usually, slow computations range from 2 mins 

and more. While fast computations are how fast or robust an 

algorithm reaches to its local optimal point. It is usually a minute 

or less than it [9,10]. There are many factors on which 

computational time depends including overfitting, complex 

models, models with slow training times, data preprocessing, 

coding style, and optimizers [11]. Some of the algorithms work 

on increasing the accuracy of their results, for this, they have 

undergone exhaustive training of their data which is later causing 

overfitting. So, we need to design the best fit model. 

The best fitting model produces accurate results, it will undergo 

fast computations and help in managing the demand side 

management [12]. This model helps utilities to manage the 

energy demand on time. This will help the end users to manage 

the electricity usage according to the price in that hour at the last 

moment. 

Figure 1: Conceptual Diagram of Smart Grid 



II. RELATED WORK 

Artificial Neural Network (ANN) based Day Ahead Load 

Forecasting model is proposed [13] to forecast load and achieved 

98.76% accurate results in 102 seconds. In [14], an ANN-based 

forecaster is used for forecasting electricity load and price, 

however, they used Q learning algorithm for finding the 

maximum benefit value for consumers and service providers.  

[15] used Deep Long Short-Term Memory (DLSTM), based 

forecaster, on a big dataset of ISO NE and NYISO. This DLSTM 

is a backpropagation of NN in which weights can be readjusted 

to increase the accuracy of the results. To overcome the 

limitations of optimizers and to keep intact the whole forecasting 

procedure, block models are being used. In [16], a hybrid 

forecast model is purposed to predict load and price accurately. 

This hybrid model comprises of DTCWT (Dual-Tree Complex 

Wavelet Transform) and Multi-Stage Forecast Engine (MSFE). 

The proposed solution in comparison with benchmarks 

Autoregressive Integrated Moving Average (ARIMA), Wavelet 

Transform (WT) +ARIMA, and MR-MI +NN) performed better. 

In [17], Enhanced Neural Networks (ENN) based forecast 

engine is used, and error minimization is performed by 

optimization of Enhanced Shark Smell Optimization (ESSO). In 

[18], two different NNs are implemented ridgelet and Elman 

NNs.  With the passage of time, these neural networks are 

enhanced, and CNN is one of those modified and better-

performance networks. A different number of the max-pooling 

layers can be adjusted to get accurate results. In [19], two models 

are implemented with CNN NN- Genetic Algorithm (GA) and 

NN-Particle Swarm Optimization (PSO). Results showed that 

NN-GA works better for STF. In [20] ECNN forecaster is used, 

and a very low MAPE of 0.297 is achieved for load forecasting. 

In [21], two different models are used ECNN and ESVR.  ECNN 

and ESVR performed well with threshold values 0.08 and 0.15 

achieving 2% and 1 % accuracy respectively. In [22], ECNN and 

Efficient kth neighbor neural network (EKNN) is used, while MI 

for feature selection. Simulation results showed the accuracy of 

92% and 93% by ECNN and EKNN. In [23], Enhanced Linear 

Regression (ELR) and Enhanced Recurrent Extreme Learning 

Machine (ERELM) two different forecasters are proposed and 

tested on two different datasets. Results showed that ELR works 

well with UMASS Electric Dataset whereas ERELM works well 

for UCI Datasets. However, for ERELM there is a tradeoff 

between convergence time and accuracy. Similar to CNN, there 

are many RNN-modified forecasters that exist, some are 

discussed here. In [24], a Self-Recurrent Wavelength Neural 

Network (SRWNN) is used. LM trains the data to SRWNN in 

less than 35sec for one-day STF. Results showed that SRWNN 

can cope with non-smooth and volatile time series data and 

generate more accurate forecast results than WNN. There are 

three approaches designed in [25], Seasonal ARIMAX 

(SARIMAX), Gated Recurrent Neural Network (GRNN), and 

Gated Convolutional Neural Network (GCNN). The results of 

prediction accuracy showed that the SARIMAX model shows 

better results than GRNN as its accuracy decreases by 22.6% due 

to weather covariance. The computational accuracy of GCNN 

increased by 8% as compared to the SARIMAX model. While 

generally the performance of GRNN, and GCNN is less than that 

of the SARIMAX model. For time series forecasting, function 

approximation, and system control the NN are extended with 

radial base function to produce accurate results. In load and time 

forecasting, RBF is being used to increase the accuracy of 

results. In [26], two types of neural networks are fussed together 

i.e., Radial Base function (RBF) and Adaptive Neuro-Fuzzy 

Interface System (ANFIS). Results showed improvements when 

compared with non-hybrid models. This [27] finds out that there 

is no need to train the classifier recursively, but data selection 

for training should be selected wisely. GRNN-based forecaster 

is used and performed better in accuracy and computational time 

when compared with NN.  

Table 1: Performance Analysis of Different Forecasters 
Forecasters Main Component   Accuracy  Convergence 

Rate   
Remarks  

ANN Based forecasters  

[13-15] 

High Slow to 

Moderate  

Convergence 

rate need 

improvement 

Block Model Based  

[16-18] 

High  Slow  Convergence 

rate need 

improvement 

CNN based forecasters 

[19-23] 

High Slow Overfitting 

can be 

avoided   

RNN based forecasters 

[24-25] 

Moderate  Slow to Fast Accuracy can 

be increased 

further  

RBF NN based forecasters 
[26-27] 

High Slow Overfitting 
can be 

avoided   

Least square support vector 
machine-based forecasters 

[28-29] 

High Very Slow High 
algorithmic 

complexity 

causing very 
slow 

convergence  

 

Hybrid Greedy Wolf and 
Differential Evolution based 

forecaster  

[30] 

High  Slow Convergence 
rate need 

improvement  

Dynamic Mode 

Decomposition based 

forecaster [31] 

Low Fast  Early 

convergence. 

Accuracy can 
be increased 

Rf-based forecaster  

[32] 

High Fast Very limited 

scope of 
predictions.  
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Table [1] compares different algorithms with reference to 

their main forecaster, some of them are hybrid while some have 

data preprocessing section. We discuss comparing a list on the 

base of their cumulative accuracy and convergence rate.    

III. PROPOSED SOLUTION 

The proposed solution considers all the factors discussed 

above. It is divided into 4 phases. 

1. Phase 1: Data Preprocessing  

2. Phase 2: Data Determination 

3. Phase 3: Forecast Engine  

4. Phase 4: Evaluation 

Consider the block diagram of the proposed multilayer 

solution to understand all these phases.  

The dataset is input in the data preprocessing phase. Here we 

removed the correlated features and performed feature selection 

techniques. We performed MI and SFS algorithms, to select the 

common features from them. The selected features are used as 

input in the Data Determination phase, here we undergo data 

scaling and splitting in train-test-validate datasets. We used a 

separate dataset for testing. The split data enters the 

multilayered LSTM-BiGRU forecasting engine. Here model 

training and validation are done. Now we test the trained model 

on test data and calculate the error matrices.  Let’s discuss each 

phase in detail    

1) Phase 1: Data Preprocessing  

Correlated features are the features that measure strength 

between multiple features. We removed the correlated features 

because the features that are showing strong correlation 

between them are the features that are providing almost the 

same information for the forecast [33].  So having the same 

information repeatedly may not always increase the accuracy of 

forecasting but can decrease it. We utilized eq (1) for this.   

 

𝑀𝐼(𝑥, 𝑦) = ∑∑𝑝(𝑥, 𝑦)𝑙𝑜𝑔2 (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑦𝑥

 (2) 

In correlation, we measure the linear relationships between 

variables while in Mutual Information (MI) eq (2) we measure 

the nonlinear relationships between variables. MI considers 

dependencies between variables that are not detected by 

covariance [34]. Sequential Feature Selection (SFS) belongs to 

the family of greedy search algorithms. SFS reduces the initial 

d-dimensional features to k<d. SFS helps in automatically 

selecting the best features from the pool of features. By 

removing the irrelevant features or noise, SFS helps in the 

reduction of generalization error. Also, it is computational 

active [35]. We select the common features which came out as 

output from these two mentioned algorithms, these were 3 in 

number. We have designed the whole data preprocessing 

technique to get the best features. If we have the best features 

selected only then we can make accurate forecasting results. 

2) Phase 2: Data Determination 

Data determination is basically data preparation. In this phase, 

we prepare the data to enter the next phase (forecast engine) as 

deep neural networks require data in specified format and shape 

[36]. For this, we scale the data using MinMax scaling and 

bounds the values in a certain range 0 and 1 [37]. We performed 

MinMax Scaling as follows:  

𝑦 =
(𝑥 − min⁡(𝑥))

(max⁡(𝑥) − min⁡(𝑥))
 (3) 

We split the dataset in a 7:3 ratio. We used 70% data in training 

and 30% in validation of that training model. Whereas we used 

separate data for testing purposes. 

3) Phase 3: Forecast Engine  

The proposed forecast engine is designed in Python using 

Keras. It’s a multilayered model utilizing different LSTM and 

GRU layers. Let’s discuss LSTM and GRU briefly:  

Both LSTM and GRU are variations of RNN. RNN is the state-

of-the-art algorithm for sequential or time series data. They 

were created in the 1980s [38]. But they have vanishing 

gradients or long short-term memory problems. To solve this 

problem, LSTM, GRU, and many other RNN variations were 

seen.  

a) Long Short-Term Memory (LSTM) 

 LSTM is a refined variation of RNN, addressing the problem 

of vanishing gradient. It was introduced by Hochreiter and 

Schmidhuber in 1997. It works on the backpropagation 

principle as it must calculate gradients for the process 

optimization. It changes weight according to the error rate it 

calculates at each cell level. LSTM is capable enough to learn 

long-term dependencies for a long time using its memory unit 

[39].  

The key component of the LSTM is the cell state. It runs straight 

down the entire time steps with only minor but important 

interactions. LSTM can add or remove information from the 

cell state using several gates. Each gate is made of a sigmoid 

neural network layer. These sigmoid layers produce output 

numbers between 0 and 1, which represents how much 

information each component should be let through. 0 means 

nothing through the layers whereas 1 represents letting 

everything through 3 layers out of the four are used to control 

the cell state tanh.   

Consider the following diagram to understand the LSTM 

architecture. LSTM consists of three functions of gate 

controllers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑐𝑜𝑟𝑟 =
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

√∑  (𝑥𝑖 − �̅�)2∑(𝑦𝑖 − �̅�)2
 (1) 

Figure 3: Long Short-Term Memory (LSTM) 



•Forget gate ft decides which part of long-term state Ct should 

be omitted. 

• Input gate it controls which part of Ct should be added to long-

term state ct  

• Output gate Ot determines which part of Ct should be read and 

 Outputs to ht and Ot. 

In the above figure, xt is the input into the LSTM cell, ht-1 is 

the output of the previous cell and ct-1 is the cell state that is 

received by the current cell. It helps in the prediction of the 

current cell. First gate is the forget gate, the equation is below:  

𝑓𝑡 = 𝜎(𝑊𝑓 .  [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓) (4) 

 The sigmoid of the multiplication of the input added with the 

bias value happened here. This layer helps in returning 0 and 1, 

whether we need this information in prediction or not.  

The next gate is input gate, consider the below mentioned 

equation.  

𝑖𝑡 =  𝜎(𝑊𝑖 .  [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖) (5) 

�̃�𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝐶 .  [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝐶) (6) 

𝐶𝑡 =  𝑓𝑡 ∗ 𝐶𝑡−1 +  𝑖𝑡 ∗  �̃�𝑡 (7) 

The first part of the input layer equation is like the equation of 

forget gate, except by the weight and bias. It undergoes a 

sigmoid function. In the next two equations, it controls which 

part to add as cell state using tanh function.   

The mechanism of LSTM can be broken down into 3 stages. 

First of which is the decision of what information is to be 

extracted from the cell state. This is done by the sigmoid layer 

also known as the ft forget gate. It observes ht-1 and xt from the 

last step performed, to produce an output range between 0 and 

1. The next stage of this process is to what information will be 

stored in the cell state. The sigmoid layer named as output gate 

Ot determines the values that needs updating. Afterwards, a new 

vector of the proposed values is created by tanh layer. These 

values are termed as Ct and are added to cell state. Then old cell 

state Ct-1 needs to be updated into the new cell state Ct. The 

last stage is to determine what values are system is going to 

provide as the output. The output depends on the cell state yet 

a sifted edition of it. First the sigmoid layer chooses what parts 

of the cell state will be introduced as output. Then, at that point 

the cell state is put through the tanh function to change over the 

qualities between - 1 and 1, the resultant of which is them 

multiplied with sigmoid layers output to get the result [39]. The 

mathematical equations for this stage are: 

𝑜𝑡 =  𝜎(𝑊𝑜.  [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑜) (8) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (9) 

So that’s how LSTM works, as discussed above, we use GRU 

in combination with LSTM. Let’s discuss GRU in detail:  

 

b) Gated Recurrent Unit (GRU) 

 

Gated Recurrent Units become the most promising algorithm 

and were introduced in 2014 by Cho et al. It solves the problem 

of vanishing gradient. GRU is considered as the variation of 

LSTM. Both these algorithms provide the best results in certain 

scenarios.  

To understand the architecture of GRU [40], consider the 

following figure. It consists of three sigmoid layers, namely: 

update gate, reset gate, and tanh layer. Consider the attached 

diagram to better understand the equations. GRU uses the 

update gate and reset gate for vanishing gradient problems and 

these help in deciding the output as well. Let us discuss each 

gate below:  

The initial point of this algorithm is update gate. First, the 

following formula calculates the update gate zt at time interval 

t: 

𝑧𝑡 = 𝜎(𝑊(𝑧)𝑥𝑡 +  ℎ𝑡−1) (10) 

Where xt is added to product h(t-1) and its weight. Afterwards, 

a sigmoid function normalizes the resultant between 0 and 1. 

This determines the required amount of past information to pass 

along for the future time step with the help of update gate. 

The following equation computes the reset gate rt, at time step 

t: 

𝑟𝑡 = 𝜎(𝑊(𝑟)𝑥𝑡 +  ℎ𝑡−1) (11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calculation starts when xt is added to product h(t-1) and its 

weight. Then, at that point a sigmoid function is utilized to 

change over the output between the worth 0 and 1. Reset gate 

assists the model with deciding the amount of the past data 

should be neglected. 

This is engaged with the reset gate. This begins with 

presenting another memory content that will utilize the reset 

gate and store the important data from an earlier time. The 

numerical condition is as per the following:  

ℎ𝑡
′ = tanh⁡(𝑊𝑥𝑡 + 𝑟𝑡⨀ℎ𝑡−1) (12) 

The estimation begins with the augmentation of the information 

xt with its weight. Then the element-wise multiplication is done 

to the reset gate rt and the preview output ht-1. This permits us 

to just pass the significant past data. Then, at that point both 

determined outcomes are added together, and a tanh function is 

applied. 

Lastly, the unit needs to figure the ht vector which holds data 

for the current unit, and it will pass the data further down to 

the network. The update gate zt assumes a critical part in this. 

The numerical equation for this is: 

ℎ𝑡 = 𝑧𝑡  ⨀  ℎ𝑡−1 + (1 − 𝑧𝑡) ⨀ ℎ𝑡
′  (13) 

From the computation, if the vector zt is near 0, a major piece 

of the current substance will be disregarded since it is 

unimportant for the forecast. Simultaneously, since zt will be 

near 0 right now step, 1-zt will be near 1, permitting most of the 

past data to be kept [40]. 

Figure 4: Gated Recurrent Unit (GRU) 



c) LSTM-BiGRU Architecture  

Consider the model from left to right. The model consists of 

layers of LSTM and GRU considering feed-forward and 

bidirectional layers to better train and accurate forecasting the 

electrical load and price values. Input normalized features feed 

to the first layer is the LSTM layer, and its training input 

features in a feed-forward manner. GRU layer applied in the 

bidirectional layer. First, it undergoes training in a feed-forward 

manner than in a feed backward manner. The hybrid layer 

containing layers of both LSTM and GRU in a specified manner 

is enhancing the accuracy of predictions of the forecasting 

model, respectively. The LSTM Layer is followed by a dropout 

layer to avoid overfitting, followed by a bidirectional GRU 

layer. The dense layer at the end is receiving the output from all 

the input neurons and is connected deeply.  

The model training is evaluated on the MSE calculated at each 

iteration. This decrease in MSE is stopped after a certain 

number of iterations and then it becomes constant, with no 

further decrease. This is the point when our model is fully 

trained with the training dataset. To stop further iterations to 

occur, we have used the EarlyStopping criterion [41]. 

EarlyStopping is basically used to stop iterations when the MSE 

error further stops decreasing. So instead of executing a fixed 

number of iterations model usually stops training after a certain 

number of iterations or when the error stops decreasing. This 

helps in decreasing the training time, and the composition of the 

hybrid model helps in better training and thus more accurate 

predictions. 

Accuracy and convergence rate are inversely proportional to 

each other. In order of increasing accuracy, we usually observe 

the convergence rate very slow. But in predicting electricity 

load and price value the convergence rate and computational 

time are very crucial. We must maintain a balance between 

accuracy and convergence rate, so we proposed this method. 

The multiple layered and directional training and early stopping 

both are satisfying to solve the problem statement.        

After forecasting the load and price values, the next step is to 

calculate the error between the actual and predicted values. This 

error calculation will help us in validating the model.  

4) Phase 4: Evaluation 

For evaluation of the proposed solution, we calculated RMSE, 

MAE, MAPE and computational time. All these evaluation 

metrices [42] are calculated by using the below mentioned 

equations.  

𝑅𝑀𝑆𝐸 = √∑
(𝑦�̂� −  𝑦𝑖)

2

𝑛

𝑛

𝑖=1

 (14) 

𝑀𝐴𝑃𝐸 =
100%

𝑁
∑|

𝑦𝑖 − �̂�𝑖
𝑦𝑖

|

𝑁

𝑖=1

 (15) 

𝑀𝐴𝐸 =∑
(𝑦�̂� −  𝑦𝑖)

2

𝑛

𝑁

𝑖=1

 (16) 

𝑠𝑡𝑎𝑟𝑡 =  𝑡𝑖𝑚𝑒𝑟. 𝑠𝑡𝑎𝑟𝑡⁡() (17) 

𝑒𝑛𝑑 =  𝑡𝑖𝑚𝑒𝑟. 𝑒𝑛𝑑⁡() (18) 

𝑇𝑖𝑚𝑒⁡𝐸𝑙𝑎𝑝𝑠𝑒𝑑(𝑠) = 𝑒𝑛𝑑⁡– ⁡𝑠𝑡𝑎𝑟𝑡 (19) 

 

For computing the computational time, we used python 

library. We imported default_timer from timeit library  

IV. RESULTS AND DISCUSSION 

The dataset is taken from ISO-NE CA [43]. We have 

considered 2016-2018 data for training the model and tested it 

on the 2019 dataset. The dataset contains both the target 

variable i.e Load and Price values along with many other 

features.  

We have selected first 5 features with highest MI and SFS 

values and then take a common of those. They were 3 in 

number. These are as follows   

'DA_LMP', 'System_Load', 'Dew_Point' 

The proposed model LSTM-BiGRU is trained with below 

mentioned parameters.  
Table 2: List of Optimized Hyper Parameters Selected during model 

building 

 

The attached training loss graph is based on MSE. It can be seen 

in the graph that the training MSE has decreased from 0.20 to 

below 0.04 and then it became stable. Similarly, on validation 

set the MSE value decreases from 0.11 to below 0.03.  

 

 

 

 

 

 

 

 

 

 

Both the cures are seen very near to each other that means 

error values are least at that time. The use of EarlyStopping 

criterion that makes the model to stop further training after 25 

iterations. This helps us in decreasing the training time and 

composition of the model helps in robust and more precise 

forecasting.  

Consider the following graph, solid black graph representing 

the actual forecast values while green is representing the 

Training Batch Size 70% (24,544 rows) 

Validation Batch Size  30% (10,519 cols) 

Batch size 1024 

Activation Function ReLU  

Optimizer Adam 

Loss  0.18 to 0.01 

Dropout   0.2 

Number of LSTM Units  100 

Number of Bidirectional GRU  50 

Figure 5:Training Loss graph for Load Forecasting 



proposed LSTM-BiGRU model forecast. We have compared 

our proposed solution with benchmark solutions including 

LSTM, GRU and SVR. The LSTM ad GRU composition is 

multilayered and similar to the proposed solution. In both the 

graphs it is clearly seen that the proposed LSTM-BiGRU is 

performing better fig (6) than the comparison benchmark 

solution.  

 

  
 

 

 

 

 

 

 

 

 

 

The results of proposed solution have an accuracy of 96.8% in 

January graph for 1 day forecasting Table 3, respectively.  

Table 3: 2nd January 2019 Load Forecast Error Metrics 

 

Similarly, for 1 day January forecast the MAE and RMSE 

calculated 355.38 and 419.49 that’s lowest of comparison 

models.   
 

 

 

 

 

 

 

 

 

 

For weekly forecast of January Table 4, the MAE and RMSE 
calculated lowest 585.57 and 711.422 than the comparison 

model.  Figure 7 demonstrating 1 week energy forecast, and it is 
clearly seen that the proposed solution is performing better than 
the comparison models.  Consider Table 4 for evaluation 
metrics:  

Table 4:1st Week January 2019 Load Forecast Error Metrics 

1st Week January 2019 Load Forecast Error Metrics 

Model Hours MAPE MAE($/MWH) RMSE 

($/MWH) 

LSTM 1-168 6.15% 910.65 1029.53 

GRU 1-168 5.58% 829.72 983.23 

SVR 1-168 7.04% 1062.81 1238.55 

LSTM-

BiGRU 

1-168 4.07% 585.57 711.422 

 

The second scenario is summers forecast. For this we 
forecasted July one day and one week energy. Please consider 
Figure 8 for one day July forecast.   

 

 

 

 

 

 

 

 

 

 

 

The proposed solution showing 98.2% accurate results. 
Consider Table 5 for comparison values. Proposed solution’s 
MAE and RMSE achieved lowest of all models, i.e., 231.72 and 
299.23, respectively.  

Table 5: 2nd July 2019 Load Forecast Error Metrics 

 

 

 

 

For summers weekly forecast considers figure 9. The error 
matrices calculated below:  

2nd January 2019 Load Forecast Error Metrics 

Model Hours MAPE MAE($/MWH) RMSE 

($/MWH) 

LSTM 1-24 6.74% 739.48 829.52 

GRU 1-24 7.53% 853.47 1003.32 

SVR 1-24 5.94% 677.01 795.90 

LSTM-

BiGRU 

1-24 3.12% 355.38 419.49 

2nd July 2019 Load Forecast Error Metrics 

Model Hours MAPE MAE($/MWH) RMSE 

($/MWH) 

LSTM 1-24 3.58% 456.93 617.64 

GRU 1-24 12.15% 1848.52 2000.17 

SVR 1-24 16.19% 2694.62 3143.06 

LSTM-

BiGRU 

1-24 1.76% 231.72 299.26 

Figure 6: Comparison graph for Load Forecast 2nd January,2019. 

LSTM-BiGRU is performing better than all the comparison models 

Figure 7: Comparison graph for Load Forecast 1st Week January 

2019. At some hours comparison algorithms seems working good, 

however LSTM BiGRU achieve overall better results. 

Figure 8: Comparison graph for Load Forecast 2nd July 2019 

LSTM-BiGRU is performing better than all the comparison models 

 



 

 

 

 

 

 

 

 

 

 

 

 

The results for July weekly forecasts 92.5% accurate results are 

recorded. MAE and RMSE values are lowest of all the 

comparison models as seen in the table 6. 

 
Table 6: 1st Week July 2019 Load Forecast Error Metrics 

 

Considering figure 10 in both the scenarios i.e., January and 

July forecast for both one day and one week the computational 

values recorded are 40.7 and 52.2 secs. The recorded 

computational time is lesser than the comparison graphs.  
 

 

 

 

 

 

 

 

 

 

 

 

Moreover, this computational time is calculated by including 

all the four phases discussed above, for all scenarios and 

comparison models. 

So, for load forecasting, we performed forecasting on two 
scenarios i.e. winters and summers forecasting for daily and 
weekly. And the proposed solution achieved best MAPE 3.12%, 
4.07%, 1.76% and 7.42% in only 40.7 and 52.2 seconds.  

  For price forecasting, the dataset showed a lot of noise and 

fluctuations. For price forecasting, we performed the feature 

engineering similar to load forecasting. 

We select features from both section methods described above. 

We select common features from the feature selecting methods. 

These are as follows   

“DA_LMP, RT_EC, RT_MLC” 
Where DA_LMP is day ahead locational marginal price, 

RT_EC is energy component of the real time price and 
RT_MLC is Marginal loss component of the real time price.  We 
have trained the proposed model with same hyper parameters. 
The training loss is calculated on MSE and that decreased from 
0.025 to below 0.004.  

We performed price forecasting for the same scenarios as for 

load forecasting. We performed price forecasting for winters 

and summers. For winters, we used 2nd January and 1st week of 

January for forecast and for summers we selected 2nd July and 

1st week of July from 2019 or test dataset as discussed.  

Consider the figure 11, the black line represents the actual price 

values and green one represents the forecasted values. The 

proposed solution works better than the comparison model with 

too much fluctuating data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The error metrics calculated in Table 7 as follows:    

Table 7: 2nd January 2019 Price Forecast Error Metrics 

 

 

 

 

 

 

The 

proposed solution for 1 week January forecast is represented 

1st Week July 2019 Load Forecast Error Metrics 

Model Hours MAPE MAE 

($/MWH) 

RMSE($/MWH) 

LSTM 1-168 9.02% 1353.5 1574.06 

GRU 1-168 9.85% 1605.21 1843.82 

SVR 1-168 14.73% 2573.35 3067.18 

LSTM-

BiGRU 

1-168 7.42% 1110.89 1400.11 

2nd January 2019 Price Forecast Error Metrics 

Model Hours MAE($/MWH) RMSE 

($/MWH) 

LSTM 1-24 17.07  23.12  

GRU 1-24 15.91 21.38 

SVR 1-24 16.14 20.2 

LSTM-BiGRU 1-24 2.35 16.85 

Figure 9: Comparison graph for Load Forecast 1st Week July 2019.  

LSTM BiGRU achieves better results in accuracy in almost 6 days of 

the week in comparison to the other models 

Figure 10: Model Computational Time for Load Forecasting 

Figure 11: Comparison graph for Price Forecast 2nd January,2019. 

LSTM-BiGRU is performing better than all the comparison models 
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(Figure 12) with green line and achieves the better accuracy as 

compared the other comparison models.  

 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The performance metrics Table 8 is below:  

 
Table 8: 1st Week January 2019 Price Forecast Error Metrics 

 

 

So here we have calculated MAE and RMSE only. And it is 

seen that the calculated values for MAE and RMSE is lowest 

than the comparison model 22.63 and 30.76. These are 168hr 

price forecast in winter season. LSTM-BiGRU calculated 

lowest MAE and RMSE value, respectively.  

  Let’s consider the final price forecast graphs for summers 

season. One day summer price forecast is as follows: 

Multilayered GRU produced the closest forecast to the LSTM-

BiGRU forecast. 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, the proposed solution shows slight accuracy and 

lesser computational time. MAE and RMSE calculated 3.02 

which is very less than the rest.    

 

Table 9: 2nd July 2019 Price Forecast Error Metrics 

 

 Price forecasting for 1 week in July graph is attached figure 14. 

The simulation results showed better accuracy of the proposed 

model. The calculated evaluation metrices showed that the 

proposed solution has MAE and RMSE is 9.60 and 15.40 and 

that is better performing than the comparison model  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The performance matrices Table 10 is below  

 
Table 10: 1st Week July 2019 Price Forecast Error Metrics 

 

 

The computational time graph for price forecasting is attached 

figure 15. Due to multilayered model composition and 

Stopping criterion, we managed to present the best accurate 

results in minimum possible time. 

2nd July 2019 Price Forecast Error Metrics 

Model Hours MAE 

($/MWH) 

RMSE 

($/MWH) 

LSTM 1-24 3.89  4.55  

GRU 1-24 3.11 3.84 

SVR 1-24 3.04 4.06 

LSTM-BiGRU 1-24 3.02 3.02 

1st Week January 2019 Price Forecast Error Metrics 

Model Hours MAE($/MWH) RMSE ($/MWH) 

LSTM 1-168 29.47 37.68  

GRU 1-168 29.58 37.78 

SVR 1-168 30.04 38.20 

LSTM-BiGRU 1-168 22.63 30.79 

1st Week July 2019 Price Forecast Error Metrics 

Model Hours MAE 

($/MWH) 

RMSE  

($/MWH) 

LSTM 1-168 11.14  17.54  

GRU 1-168 10.13 16.04 

SVR 1-168 10.22 16.12 

LSTM-

BiGRU 

1-168 9.60 15.40 

Figure 12: Comparison graph for Price Forecast 1st Week January 2019. 

LSTM-BiGRU is performing better than all the comparison models. All 

other comparison models forecasted very close values 

Figure 13: Comparison graph for Price Forecast 2nd July 2019. 

Multilayered GRU and SVR forecast are very close to the actual 

values. However, LSTM-BiGRU is performing better in accuracy 

slightly than the comparison models 

Figure 14: Comparison graph for Price Forecast 1st Week July 2019. 

Multilayered GRU and SVR forecast are very close to the actual values. 

However, LSTM-BiGRU is performing better in accuracy slightly than the 

comparison models 



 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

  

As seen in the graph attached, the proposed solution took very 

little time i.e., less than a minute. 

The proposed solution outperformed all the comparison model, 

without creating a tradeoff in accuracy and computational time. 

The green bar represents the proposed solution predicting 

accurate results in both scenarios of summer and winter forecast 

in 407 and 52.8secs only.        

V. CONCLUSION AND FUTURE WORK 

In SGs, STLF and STPF is very important as they have direct 

impact on the planning schedules of utilities. These forecasting 

have strong effect on the energy market.  

In this work, the importance of short-term load forecasting is 

discussed and analyzed for maintaining the stability between 

generation, transmission, and consumer end. As discussed in 

Chapter 5, due to high volatility in the historical load curves, 

STLF/STLP in SGs become more challenging when it comes to 

forecast for a longer time duration/ time series. Only electricity 

load and price values are not sufficient in accurate forecasting, 

we must consider other features too. We have discussed the 

details of all features in Chapter 5. We have designed the 

Feature selection module separately so that we can only get the 

best feature out of the pool, as all features are not adding any 

significant part in forecasting and sometimes, they only 

decrease the accuracy and enhances the computation time. 

Considering limitations of LSTM, including LSTMs require 

more memory to train, easy to over fit, and LSTMs are sensitive 

to different random weight initializations. We consider all these 

when implementing our hybrid model. For memory issues, we 

have not jumped on the larger dataset, we have used a small to 

medium sized dataset and from adjusting weights in the dropout 

layer we made LSTM to not undergo over fitting in discussed 

cases. We do consider limitations of GRU, their slow 

convergence and low learning efficiency. We mitigate the 

limitation of low learning efficiency using its bidirectional layer 

in combination with LSTM, and slow convergence using 

EarlyStopping criterion. The proposed model significantly 

reduced the execution time and enhanced the forecast accuracy 

as discussed. Moreover, ReLU activation function enable the 

forecast strategy to capture non-linearity’s in the time series. 

Tests are conducted on ISO NE CA dataset that contains hourly 

load and price values besides other 18 features. Results show 

that the proposed model achieves relatively better forecast 

accuracy (96.9%) in comparison to other models i.e., LSTM, 

GRU and SVR. Moreover, improvement in forecast accuracy is 

achieved while not paying the cost of slow convergence rate 

[13]. Thus, the trade-off between convergence rate and forecast 

is not created. Finally, from application perspective, the 

proposed model can be used by utilities to launch better offers 

in the electricity market. The proposed solution is showing 

MAPE in January 2019 load forecasting from 3.12% to 4.07%. 

The MAE is 355.28 that is very less than the comparison 

models. Similarly, in July the MAPE error calculated in load 

forecasting is 1.76% and the MAE is 231.72, and these are 

again the best results achieved than the comparison solution. 

This means that the utilities can save significant amount of 

money due to better adjustment of their generation and demand 

schedules simply because of high accuracy of the proposed 

model. The proposed solution is showing MAE in January 2019 

price forecasting from 2.28 to 2.35. The MAE calculated is very 

less than the comparison models. Similarly, in July the MAE 

calculated is 0.87 to 1.10, and these are again the best results 

achieved than the comparison solution. The objective of this 

research is to predict the future short term electricity demand 

and price values on hourly basis. We achieved this goal using 

historical data set of 3 years. This forecasted values not only 

helps power companies but on the other hand help users to use 

electricity according to the hourly price predicted and thus can 

manage their high load consumption activities accordingly.  

In future the proposed method can be improved by other 

techniques i.e., block chains or more powerful neural networks. 

Optimization of proposed hybrid algorithms can help in better 

results. There are many evolutionary algorithms that can predict 

better results. We can increase the scope from STLF/STPF to 

at least MTLF/MTPF. With the use of GPUs and TPUs we can 

decrease the computational time or by designing a simple 

network can also help in reduction of computational time 

further.   
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