
EasyChair Preprint
№ 13958

Time-Sensitive Shared Caches interferences
Analysis in Multi-Core Architectures for WCET

Yixuan Zhu, Wenqi Lou, Xianglan Chen, Chao Wang and Xi Li

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 15, 2024

Time-sensitive Shared Caches Interferences
Analysis in Multi-Core Architectures for WCET

Yixuan Zhu, Wenqi Lou, Xianglan Chen, Chao Wang, and Xi Li(�)

University of Science and Technology of China, Hefei 230026, China
zhuyixuan@mail.ustc.edu.cn, {louwenqi,xlanchen,cswang,llxx}@ustc.edu.cn

Abstract. Shared last-level caches in multicore architectures cause mem-
ory accesses to interfere with others, resulting in additional access la-
tency. So computing the worst-case execution time (WCET) of a program
necessitates an analysis of the inter-core interference, which requires de-
termining when the accesses occur. Current approaches directly use the
execution time of a program as the life cycle of its internal accesses for
scalability, which can lead to a significant overestimation of the interfer-
ences. In this paper, we propose a time-sensitive shared cache interfer-
ence analysis method. It estimates the execution time of a basic block
relative to the start of the program based on the execution path of the
program and combines it with an approximation model as the life cycle
of the accesses within the block, which can effectively exclude impossible
interferences and averagely tighten the WCET estimation by 14.5%.

Keywords: WCET Analysis · Shared Cache · Multi-Core · Real Time.

1 INTRODUCTION
Competition for resources by concurrent execution tasks in a multicore system
can interfere with others [3, 5], making WCET analysis difficult [4]. For shared
caches, it can evict data that was originally located in the shared cache, gen-
erating additional access latency. Therefore, interference needs to be analyzed,
focusing on whether memory accesses on different cores will map to the same
cache set at the same time period. Typically, we should capture the request time
of memory accesses (i.e., the inter-core context) and then compute the number
of interferences. However, the uncertainty of program inputs leads to multiple
possibilities for the execution time of the access. The current work [1, 2] assumes
that if the execution times of two programs located in different cores overlap,
respectively, the accesses from these two programs will interfere as long as they
are mapped to the same cache set, and there is no judgment on whether or not
they will be executed at the same time, which can lead to over-estimation of the
interferences.

In this paper, we propose a time-sensitive shared cache interference analy-
sis. It utilizes the execution time of a basic block as the fine-grained time when
its internal accesses occur, which can effectively exclude impossible interference
from time. Treating loops as virtual nodes, we hierarchically process control flow
from inner to outer loops and construct an approximate model describing the ex-
ecution time of basic blocks within loops to avoid exhaustive path searching. For

2 Y. Zhu et al.

interference judgment, we use the base time and offset time in a two-stage ap-
proach to sequentially determine whether the accesses will occur simultaneously
and then if they will be mapped to the same cache set.

2 METHODOLOGY

Core1
P1

preprocessing Get Inter-
core Context

Overlapping
Judgment

Interference
Computa�on

CHMC
Revision

Post-
Analysis WCET

Core1
P2

Core2
P2Core3

P2Corei
P2Coren

Pn

 can iterative execution

Fig. 1. Overview of our analysis framework

Our framework inputs binaries of multiple programs and hardware features
that output the WCETs. It mainly consists of preprocessing, getting the inter-
core context, interference judgment, shared cache revision, and post-processing.
The preprocessing does not consider resource sharing and directly uses a single-
core multilevel cache analysis to obtain the cache hit/miss classification (CHMC)
of accesses. Then, the estimate of the best execution cost BC for basic blocks
assumes that the access shared caches are all hits; for the worst cost WC assumes
all non-hits. Get the context by the execution cost and use it to compute the
number of interferences. Then, revise the CHMC of the shared cache. For shared
cache access m whose CHMC is AH or PS, its CHMC is corrected to NC if
its interference quantity |Mc(m)| satisfies N − age(m) < |Mc(m)|. N is the
correlation and age(m) is the max age of LRU strategy. Post-processing utilizes
the interference analysis results to obtain the WCET using existing techniques.

2.1 Get Inter-core Context

Obtaining the inter-core context is equivalent to computing the execution time
of a basic block relative to the start of the system (BRSTime), described using
the ideas of offset time and base time. As shown in Fig. 2(a), for basic blocks
outside loops, like A10, their BRPTime is directly represented using an interval
consisting of their earliest start time and latest end time. For basic blocks inside
loops, like A2, A6, etc., their BRPTime is a sequence of intervals, which is
derived based on their offset time BBOTime relative to the loop directly in and
the relative time of the loop k relative to its parent loop LPBTime Eqn. 1.

LPBTime(k) =

{
[BBESOT(k),BBLEOT(k)], k is not OutestLoop

LPBtime(k) × BBOTime(k), otherwise
(1)

The time of the loop is described by the interval sequences, which are repre-
sented by an iteration-dependent approximation model. The ith element of the
sequence is the interval consisting of the earliest start and the latest execution
end of the ith iteration of the loop, as shown in the Eqn. 2. Where SCY (k) and
LCY (k) denote the min and max execution cost from the head node to node
k, and when k is t, represent the tail node. This way only one iteration of the
computation needs to deduce all other iterations.

TSCIA 3

�me for X rela�ve to Y(c)

t tt

 Loop(L) transform to VNode(VN)
Outset Loop's VN: VN1, VN3

Get Time
Global parallel slove: VN3, VN1
VN1 serial solve: L2 L1
VN3 serial solve: L3

(b)

t X Yt

VN2
VN1

L1

VN3

A3

A6

A7

A9

A2

A1

A8

A10(a)

L2

L3

Fig. 2. Loops transformed into virtual nodes and analysis flows for the entire program

[(i− 1) ∗ SCY (t) + SCY (k), (i− 1) ∗ LCY (t) + LCY (k) +WCk], i ∈ [1, nY − 1] (2)
The main function can be viewed as a loop containing only one iteration to

obtain SC and LC in a unified way when calculating. As shown in Fig. 2(b),
inverse loop nesting and inverse program order are required for processing. The
shortest path algorithm is used to calculate the longest time cost from the head
node of each loop to each other node, and similarly, the shortest time cost. A loop
is treated as a virtual node after being processed. So, for a program containing
P loops (each loop has V basic blocks and E edges), the time complexity is
O(PEV lgV), and the space complexity is O(PV).

2.2 Interference Judgement

To minimize repeated computations, we predetermine the overlap of basic blocks.
Whenever two intervals from two separate interval sequences of the basic block
are executed overlappingly, it is assumed that the two basic blocks will be ex-
ecuted overlappingly. For two sequences with m and n intervals, we design an
algorithm with a time complexity of O(m+n) to determine if they will overlap,
which first merges the overlapping intervals in a sequence and then determines
if there exists a pair of overlapping intervals by the upper and lower bounds.

The BRPTime derived from the recursive may contain many intervals, which
take much time as direct input to the above algorithm. We use the following
two-stage approach for overlap determination. First, we use the BRPTime of
the virtual node corresponding to the outermost loop (non-main) of the basic
block. Then, we get its absolute BRPTime using the recursive formula for the
judgment, and the granularity of the expansion will depend on the number of
nested layers of the loop and the number of iterations. Record the basic blocks
that may overlap the execution of each basic block. All accesses in basic blocks
that overlap execution with the basic block where the access behavior m is
located, if they are mapped to the same cache set as m, the |Mc(m)| is added.

3 EVALUATION

To evaluate our method, we integrate it into the WCET analysis framework
Chronos and compare it with the All-Interference (All-INTERF) method [2]. A
system with two cores is used for the experiments, which share an L2 instruction
cache (4-KB size, 4-way associate, 32 bytes block size, hit requires 6 cycles).

4 Y. Zhu et al.

Each core has a private L1 instruction cache (2-way with block size 32 bytes;
hit requires 1 cycle), and the experiments were conducted using 512B and 256B
sizes, respectively. Memory access requires 30 cycles. We used the Mälardalen
WCET benchmark suite for testing. The relative WCET is used as an evaluation
metric, which refers to the ratio of the WCET obtained by our method to the
All-INTERF method, i.e., WCETOur/WCETAll.

60
65
70
75
80
85
90
95

100

Re
la

tiv
e

W
CE

T
(%

)

Benchmarks

L1-512B L1-256B

Fig. 3. Relative WCET for L1 cache with 512B and 256B size

From Fig. 2, we can see that average relative WCET is 87%(L1 512B) and
84%(L1 256B), which shows that our method can reduce the estimation of
WCET. This is because we reduce the overestimation of the interferences; for
example, when the benchmark ndes is interfered with edn, we estimate 217 fewer
interferences. statement, ludcmp, etc., have little improvement because they have
a small probability of accessing shared caches or hits, which inherently have less
room for improvement. And the average analysis time of our method increases
by only 130% compared to All-INTERF method due to interference judgement.

4 CONCLUSION

In this paper, we propose a novel interference analysis method for shared caches,
which utilize the fine-grained time information to reduce the overestimation of
the interference. The result shows that it can reduce the average WCET by
14.5% relative to the standard analysis method for the instruction cache.

Acknowledgments. This work was supported in part by the National Key R&D
Program of China under Grants 2022YFB4501600 and 2022YFB4501603.

References
1. Fischer, T.L., Falk, H.: Analysis of shared cache interference in multi-core systems

using event-arrival curves. In: Proc. of RTNS (2023)
2. Hardy, D., et al.: Using bypass to tighten wcet estimates for multi-core processors

with shared instruction caches. In: Proc. of RTSS. IEEE (2009)
3. Lou, W., et al.: Unleashing network/accelerator co-exploration potential on fpgas:

A deeper joint search. TCAD (2024)
4. Maiza, C., et al.: A survey of timing verification techniques for multi-core real-time

systems. ACM Computing Survey (2019)
5. Wang, C., et al.: Wookong: A ubiquitous accelerator for recommendation algorithms

with custom instruction sets on fpga. TC (2020)

