
EasyChair Preprint
№ 4665

Teaching Strategies in Software Engineering
Towards Industry Interview Preparedness

William Gregory Johnson, Raj Sunderraman and Anu G. Bourgeois

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 27, 2020

Teaching Strategies in Software Engineering Towards Industry
Interview Preparedness

William Gregory Johnson
wjohnson6@gsu.edu

Georgia State University
Atlanta, GA

Raj Sunderraman
rsunderraman@gsu.edu
Georgia State University

Atlanta, GA

Anu G. Bourgeois
abourgeois@gsu.edu

Georgia State University
Atlanta, GA

Abstract
The Software Engineering (SE) curriculum in undergraduate

computer science (CS) education is designed to train students in the
process of software and systems development. Traditionally, topics
such as software development methodologies, industry nomen-
clatures, and solution analysis are delivered through lectures and
group projects. We propose a novel approach in teaching SE that we
call MACROVR: MAchine learning to select project team members;
Cloud technologies required for project control, code versioning,
and team communications; ROtational schedules in Agile/Scrum
roles; an individual Video of the team project story board; and
Rubrics for all presentations. Our teaching strategy with this ap-
proach utilizes the latest technologies currently employed in indus-
try and corresponds to soft skills commonly assessed in interviews.

The goal of our study is to measure if using the MACROVR
approach contributes to preparedness for a computing job interview.
Most often, this course is taken towards the end of a four–year
CS degree program while students are job hunting or seeking an
internship in the computing industry.We use an anonymous, fifteen
question survey instrument sent to volunteers that indicated they
are seeking a computing job and have successfully completed the SE
course. The sample is comprised of three sections of the SE course
using theMACROVR approach (135 students) and four sections that
did not use all of the required strategies and technologies, which we
call MACROVR–lite (184 students). Our two cohorts, MACROVR
and MACROVR–lite, are each given the same survey questions.
We analyze their Likert scale data responses using non–parametric
methods. Our findings indicate the MACROVR approach better
prepares students with the skills and highly valued qualities for
success in computing industry interviews.

CCS Concepts
• Social and professional topics → Software engineering educa-
tion.

Keywords
Software engineering, CS education, education data mining, agile,
scrum, career readiness

ACM Reference Format:
William Gregory Johnson, Raj Sunderraman, and Anu G. Bourgeois. 2020.
Teaching Strategies in Software Engineering Towards Industry Interview
Preparedness. In Proceedings of Conference (CSERC). ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

CSERC, October 2020, Utrecht, The Netherlands
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
According to a Collabnet/VersionOne1 2019 report, when devel-

oping software systems, 97% of industry uses the Agilemethodology
and of those, 54% employ the Scrum technique. This has been a shift
from the previous waterfall model methodology. Recognizing this
change, we see that many Software Engineering (SE) courses have
adapted their course content focus on a more industry–relevant
Agile methodology. We posit a CS student is better positioned to
enter the workforce with a career in computing when the latest
technologies are utilized in the classroom, in conjunction with
training students to efficiently work in a team environment. In the
case of a SE course, this would be Agile with Scrum, along with
project based learning, using a version control system for team
code sharing, managing the system through a cloud–based project
management system, and incorporating key areas of team expe-
riences in collaboration and communication. Searching through
several career opportunity resources seeking SE positions, such as
GlassDoor2, Indeed3, and ACM Career and Job Center4, we find key
areas like Git, Agile/Scrum, team problem solving, and web services
being advertised as desirable skill sets and knowledge for new hires
in industry. In 2017, Ford et al., concluded that technical interview-
ers care greatly if candidates can demonstrate CS technical skills
with verbal and written clarity [14]. Our approach teaches beyond
technical skills to include team presentations among peers, team
collaboration and communication, and working through group con-
sensus to deliver a software system, thus preparing them for the soft
skills interview areas. Much research has looked at incorporating
one or two of these components in SE courses, but do not analyze
any impact upon a student’s industry readiness [3, 5, 7, 10–12]. We
choose to integrate Agile/Scrum components in combination with
the complementary skills mentioned above and then evaluate if this
approach helps prepare students for a computing job interview.

Undeniably, knowledge and experiences CS students obtain from
courses in their degree program is critical to articulate their skill
and value during a computing job interview. Our teaching strategy
incorporates additional techniques in the SE course to aid in SE
career readiness. In our course, we employ machine learning (ML)
to form teams in project–based learning (PBL), require cloud tech-
nologies for project management, rotational Scrum roles, detailed
rubrics, and individual and student team presentations of their
project. We refer to this new approach as MAchine learning to se-
lect project team members, Cloud technologies required for project,

1https://explore.versionone.com/state-of-agile/13th-annual-state-of-agile-report
2https://www.glassdoor.com/Job/jobs.htm?sc.keyword=software+engineer
3https://www.indeed.com/q-software-engineer-jobs.html
4https://jobs.acm.org/jobs/results/keyword/Entry+Level+Software+Engineer

2020-11-23 16:31. Page 1 of 1–11.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CSERC, October 2020, Utrecht, The Netherlands Johnson, et al.

control management, and team communications, ROtational sched-
ule in Agile/Scrum roles, a final Video of the project story board,
and Rubrics for all presentations; –MACROVR5. By integrating
these teaching strategies and technology requirements into our SE
course, students are exposed to a wide view of current practices of
the computing industry.

Components in the MACROVR approach are chosen based upon
one of our author’s past twenty–three year industry experience as
a software engineer in a major Fortune 500 US corporation and sev-
eral US federal government agencies. They used many Agile/Scrum
techniques in their job, managed software development teams, and
conducted numerous technical and soft skill interviews for new CS
graduates seeking a computing position. We concur and include re-
searched areas and attributes as being important to computing job
interviews and industry skills as found in [1, 12]. Recent, seminal
work from Oguz et al., find the perspectives of industry identify re-
cent graduates with a lack of soft skills, limited use of current tools,
and little exposure to real life projects as important gaps between
SE education and workforce [18]. Again, we use countermeasures in
these areas with our approach through team presentations among
peers, required technology, and instructor vetted projects. The CS
technical skills students acquire from CS program courses like al-
gorithmic computations, object–oriented coding principles, and
system architectures are considered to be utilized by all students in
any SE course, so they are not studied specifically in the MACROVR
approach.

Our motivation is to evaluate if teaching real–world SE expe-
riences through MACROVR contributes to a CS student’s career
readiness. We measure the effect of our strategy through a fifteen
question survey6 using a Likert scale [17]. To guide our research,
we develop the following research question:

RQ1: Does teaching SE using the MACROVR approach better pre-
pare students for a computing job interview?

To answer our research question, our survey asks CS students
that finish the SE course if they feel our teaching strategies help
with career readiness by preparing them for computing job inter-
views. This voluntary, anonymous online survey contains ques-
tions relating to specific MACROVR course components and some
that are common in all SE courses taught at our university. We
form two cohorts where the first is students that successfully com-
plete the SE course requiring all components of the MACROVR
approach be used (three sections, 135 students). The second co-
hort is students that successfully complete the SE course where
the instructors may or may not use all the MACROVR approach
components (four sections, 184 students). We call these cohorts
MACROVR and MACROVR–lite, respectively. All survey responses
result from semesters of fall 2017 through fall 2019 in the SE courses.
We do not include the summer semesters due to the shorter time
for delivery of the course content, only one section being offered,
and typically being taught by a student, graduate teaching assis-
tant. The semesters being surveyed in this work are taught, face–
to–face by faculty instructors, usually three each fall and spring

5/mæk ’roUv@r/
6IRB approval H19266.

semester. All volunteers taking the survey either graduated with
a four–year CS degree and were actively looking for a full–time
computing job through interviews or remained enrolled while ac-
tively interviewing to secure an internship in computing. The same
survey is given to both cohorts to preserve our experimental group
(MACROVR) and the control group (MACROVR–lite). Since the
control group is taught without requirements of all MACROVR
components, the data results indicate which ones may have been
used when comparing to our experimental groups’ results. Our
results show when the experimental group is taught with all com-
ponents of the MACROVR approach, students are better prepared
for a computing job interview.

The remainder of this paper is organized as follows: Section 2
discusses the background and relevant work related to our research
question. Section 3 provides the MACROVR course structure, a
detailed description of its system, the implementation components,
and survey compositions. Section 4 interprets the response data
of the survey using non–parametric methods and discusses the
threats to validity. Lastly, in Section 5, we conclude the paper and
discuss future work.

2 Background and Relevant Work
Much research in SE education relates to learning strategies,

active teaching techniques [19], investigation on gaps between
academia and the software industry [18], and authenticity of the
SE course content [1]. Many report research on the effectiveness
when using Project–based learning (PBL) in SE education [1, 13, 20].
Garcìa-Peñalvo et al. in 2019, research the broader area of active
learning that includes PBL and concludes SE courses using PBL
give students a better understanding of the concepts involved when
used in the classroom [9]. Additionally in 2018, Garcìa-Holgado
et al., found using similar teaching strategies increased student’s
performance in SE courses by 20% [15]. We adopt a similar pedagog-
ical strategy in our research and introduce several new techniques
within PBL and then measure their effect related to our goal: –CS
student preparedness for computing job interviews.

One strategy researched is collaboration in SE teams [8]. Chowd-
hury et al., use the IBM WatsonTM Personality Insights service to
analyze their student teams use of a collaboration platform from
Slack7. They find the participation of a teams’ communications
highly correlate to their self and team evaluations, both good and
bad, as well as their team grade for each Agile/Sprint cycle in the SE
course. We require the use of Slack’s team collaboration platform
for our SE course in the MACROVR approach.

Teaching SE while using a software version control system such
as GitHub8 has been shown to benefit students [12]. Feliciano et al.,
find there are numerous challenges with using GitHub as a learning
platform and its wide use in industry makes it an important part of
the CS student’s SE education. They also expand its use beyond the
team project work, utilizing it to disseminate course assignment
materials and lab content with related discussions. They conclude
the students benefit from using this platform and incorporate their
team content as part of their personal, online presence. Rraslan et
al., find many problems using Git based version control systems in
7https://slack.com/features
8https://github.com/features

2020-11-23 16:31. Page 2 of 1–11.

Teaching Strategies in Software Engineering Towards Industry Interview Preparedness CSERC, October 2020, Utrecht, The Netherlands

teaching SE [11]. They identify seven categories of errors and poor
practices from students using Git. Their research is the most recent
(2020) and comprehensive list of Git usage artifacts in the literature
and gives us a new basis to consider Git as an integral part of SE
education along with measurable instruments. By contrast in the
MACROVR approach, we require Git usage in all project teams and
require the instructor be a member of each to monitor submissions
of a team’s code and documentation, indicating levels of progress.

We find formation of student teams a significant factor for SE
project success as reported by [2, 4, 10, 21]. Dzvonyar et al., develop
and use a hierarchical criteria for team composition and through
a manual selection process by instructors, form the student teams
[10]. Bosnic et al., conducted a 10–year study of matching student
teams to projects and find the ‘first come, first serve’ method or
teaching staff directed were not effective [6]. They realize a system
of student pre–course questionnaires and student’s proposals of
projects based on platform groupings (standalone, web, or mobile)
as a better solution. Conversely, we form teams using several ML
algorithms basing on student skills, CS aptitudes, and semester
course load. We design projects requiring specific component tech-
nologies that all students enrolled in the course should possess, and
teams choose a project using a lottery system. We offer details of
these component technologies in Section 3.2, and sample project
descriptions in Section 3.54.

Soft skills in SE education is considered important for student
preparation and readiness for industry. Abad et al., analyze data
gathered from SE students over three semesters and investigate the
amount of authenticity that can be achieved in PBL courses in SE
education [1]. Their work investigates seven ‘authentic’ activities
with Why?, What?, and How? explored in each activity. Interest-
ingly, their work indicates ‘soft–skills’ like planning, problem un-
derstanding, negotiation, and organizational as the most statistically
significant for CS students to be prepared for industry.

Hogan et al., find CS students presenting their work in front
of peers improve soft skills like communications [16]. We posit
our MACROVR approach supports soft skills and amplifies them
through teaching elements requiring a rotation of Scrum roles:
–Project Manager, Scrum Master, Senior Programmer, Junior Pro-
grammer, QA/Testing, in each Sprint cycle. This encourages stu-
dents to work on different aspects of their project for a period
of time and broaden their understanding of software engineering
principles. We discuss details of these in Sections 3.2 and 3.3.

Through our literature review, we are not able to identify any
other research studies that consider a holistic approach in deliver-
ing the SE course, to better prepare students for the workforce. We
find most research focuses on just one or a few strategies. We incor-
porate into our MACROVR approach numerous teaching strategies,
technical requirements, and communication skills to ready a CS
student for their first real–world experience, namely, a computing
job interview.

3 Course Structure
The SE course using our MACROVR approach has several foun-

dations to enable the project team formation and introduce project
technology requirements. Using a variety of strategies, we organize
the course to simulate a real–world environment where software

engineers face many abstract ideas, must use critical thinking to
understand project team goals, and must integrate/communicate
with a group of unfamiliar individuals. Technology requirements
in our approach include a cloud–based version control system with
bug reporting, an Agile/Scrum management system, and integrated
communication with an instant messaging system.

In the first two weeks using MACROVR, we introduce concepts
of Agile/Scrum in lectures and give three short assessments to build
theMLmodels for project teams formation.We discuss the technical
requirements for projects like web services, a database element,
and using an object oriented programming (OOP) language. The
second week has team formation and team meeting time given at
the end of each class session (usually fifteen or twenty minutes) for
questions with the instructor, to establish meeting times for each
group to interact face–to–face, and give the instructor interactions
with the teams to check their project’s current sprint progress. At
the beginning of each sprint cycle, the instructor gives a rubric for
appropriate preparation time and provides a partial structure to
complete their tasks. Examples of a team end of sprint presentation
rubric is found in Table 4 and an end of semester individual video
of the project story board rubric is found in Table 5.

3.1 Project Team Formation
With the MACROVR approach, we form project teams by rank-

ing the students using several ML models. Based upon a student’s
current course workload and three individual assessment scores
we develop a heuristic for choosing students for a team as shown
in Figure 1. Most class populations are close to a multiple of five,
allowing five or six students per team. Typically, a MACROVR
class size is fifty and we compute the total number of combinations
(n=50, r=5), to form five–person teams as 2,118,760 choices. This
computation formula is:

𝐶(𝑛, 𝑟) = 𝑛!
𝑟 !(𝑛 − 𝑟)!

Figure 1: Assessment Structure for Team Composition

Using ML with these four attributes, we create supervised train-
ing data through ranking some students as one (novice) to five (very
knowledgeable) based on their scores and course workload in con-
trast to [6, 10]. Using five ML classifiers: 1) Gaussian Naive Bayes,

2020-11-23 16:31. Page 3 of 1–11.

CSERC, October 2020, Utrecht, The Netherlands Johnson, et al.

2) K–Nearest Neighbor, 3) Decision Tree, 4) Nearest Centroid, and
5) Linear Discriminant Analysis, we take the arithmetic mean of
these five rankings for grouping into classifications, one to five. We
cross–validate our ML algorithms using the holdout method with a
20 / 80 split. After teams selection, we make a schedule of rotations
with respect to all Scrum roles (project manager, Scrum master,
senior programmer, junior programmer, QA/tester) and give teams
the rubric for their first project presentation. We show a sample of
one team’s rotation schedule in Table 1.

Table 1: Sample Team Rotation Schedule with Scrum Roles

TeamX Sprint1 Sprint2 Sprint3 Sprint4 Sprint5
Person1 Project

Mgr*
Scrum
Master*

Senior
Prog.

Junior
Prog.

Testing
and QA

Person2 Scrum
Master*

Senior
Prog.

Junior
Prog.

Testing
and QA

Project
Mgr*

Person3 Senior
Prog.

Junior
Prog.

Testing
and QA

Project
Mgr*

Scrum
Master*

Person4 Junior
Prog.

Testing
and QA

Project
Mgr*

Scrum
Master*

Senior
Prog.

Person5 Testing
and QA

Project
Mgr*

Scrum
Master*

Senior
Prog.

Junior
Prog.

* indicates a team presenter at end of sprint

3.2 Team Project Requirements
In the second week, the class instructor presents a pool of team

projects with descriptions and recommendations of platforms for
implementation (samples shown in Section 3.4). Each team ran-
domly selects a sealed, envelop with a number forming a lottery
selection from the list of projects. Most are web, but several are
desktop or can be mobile app centric. Each must incorporate at least
one web service API, and a database (SQL or No SQL) to maintain
application and/or user state. The instructor gives a brief project
description, possible associated web service API, and other require-
ments like GUI based interfaces, and recommended OOP languages.
Some script languages like JavaScript are allowed, but cannot not
comprise the majority of the code base.

Technology requirements for projects in our MACROVR ap-
proach include cloud–based version control management (GitHub8),
a group communication systems (Slack7), and the project’s progress
and activity management using Scrum (ZenHub9). End of sprint
cycle’s team presentation incorporates SE course content timed
with teaching progress like: conceptual models, test case scenarios
with test cases, UML activity diagrams, object class diagrams, and
UML state diagrams specific to their project as well as metric re-
porting (burn down and velocity) of their project progress from the
ZenHub system.

The first sprint involves building a Scrum backlog with user sto-
ries mostly comprised of investigation and research for the project’s
technology requirements and setup of the teammembers in GitHub,
ZenHub, and Slack. Additionally, the first sprint requires a global
system concept model review by the instructor before their first
presentation (end of sprint one) to allow constructive feedback.
9https://www.zenhub.com/product

This is important to start each team with a realistic and correct
direction for their system development and implementation in the
lifetime of the course.

Grading from the rubric requires each team to upload their pre-
sentation files into our learning management system (LMS) for
feedback and suggestions to improve soft skills areas for the next
sprint presentation. A rubric for the team presentation is shown
in Table 4. Some research indicates that collaboration, fair coop-
eration, and communication are the most important student skills
and is a problem in teams of PBL, especially in SE education [8].
In order to mitigate some of these negative effects, the MACROVR
strategy uses a sliding scale of grade impact from each end of sprint
presentation. The more active roles (project manager and Scrum
master) carry more responsibility, thus have the majority of earned
points for the grade of a presentation. We weight the project man-
ager at 45%, the Scrum master at 25% and other members equally
at 10% each. Grading with this style of scaled points puts emphasis
on active and passive roles during a sprint. It encourages team
leadership and strong communications from the active roles. Re-
ferring back to Table 1, we ensure each team member will have a
chance to experience all team roles in the Scrum methodology over
the semester time period. The total course grading for a student is
weighted as 50% for presentations with the rotating Agile roles and
50% equally split among exams.

3.3 Survey Questions
Each Likert scale question gives the participant a choice: Strongly

Agree, Agree, Neutral, Disagree, Strongly Disagree, or N/A. We sep-
arate the responses for analysis in two cohorts from students in
MACROVR or MACROVR–lite SE courses taught in Spring 2017,
through Fall 2019. Both cohorts receive the same set of questions
to allow us a statistical comparison in their opinions, interests, or
perceived efficacy as it relates to the RQ1.

From the fifteen survey questions, we show in Table 3, there is a
threat of Type 2 errors in our analysis to use a parametric testing
model with the distribution of student responses being unevenly
distributed. We observe several histogram graphs to verify this
non–normal distribution. We choose a two non–parametric test,
Kruskal–Wallis10 to analyze our data. The general analysis of our
n=319 is shown in Table 2, and in section 4 we interpret the results
of our tests.

Table 2: Survey Data Composition

MACROVR MACROVR–lite
Sent 135 184
Complete 87 29
Incomplete 18 1
Refusal 5 3
Participation 64.4% 15.8%

The percentage of participation from our cohorts, shown in Table
2, indicate instructors of MACROVR–lite sections of the course
may not have encouraged their students to respond to the survey

10https://www.statisticshowto.datasciencecentral.com/kruskal-wallis/

2020-11-23 16:31. Page 4 of 1–11.

Teaching Strategies in Software Engineering Towards Industry Interview Preparedness CSERC, October 2020, Utrecht, The Netherlands

with similar enthusiasm as instructors of the MACROVR sections.
We present the data separately as percentages based upon each
respective cohort’s participation shown in Figures 2 and 3.

Table 3: Survey Questions

No. Survey Question
(1) The use of team projects better prepared me for inter-

views.
(2) The use of Agile and Scrummethodologies in class better

prepared me for interviews.
(3) The single and final project presentation in class better

prepared me for interviews.
(4) The topics covered in class better prepared me for inter-

views.
(5) The single and final project document better prepared

me for interviews.
(6) † The Agile SCRUM team roles being rotated better pre-

pared me for interviews.
(7) † Having end–of–sprint presentations better prepared me

for interviews.
(8) † Using cloud based project and control management tools

better prepared me for interviews.
(9) † The in–class team activities related to Agile and Scrum

better prepared me for interviews.
(10) The in–class team activities related to course topics

(UML, test cases, state models) better prepared me for
interviews.

(11) † Using a web API (remote) better prepared me for inter-
views.

(12) † Incorporating a database system into my project better
prepared me for interviews.

(13) † Incorporating a cloud based system for project team com-
munications better prepared me for interviews.

(14) † Incorporating a GIT / repository system better prepared
me for interviews.

(15) † Creating a video of the project storyboard better prepared
me for interviews.

† MACROVR specific survey question.

3.4 Sample Projects
Several successfully completed applications by student project

teams are given from the instructor list below. We use these and
other projects in the MACROVR approach. Note that some require
multiple teams communicating and coordinating project resources
among two or three teams. This requires a small amount of product
management from the instructor to help with setup and configu-
ration as a ‘monitoring’ member of their Slack, GitHub, and Zen-
Hub systems. Additionally, the instructor helps the multiple team
projects with the abstract concept of a ‘test harness interface’ to
initially connect different applications before full implementation.

Our sample list of team projects include:
• Attend-In:Mobile (Android) application to use geo–location

from student’s mobile device’s IP address for time and atten-
dance in college classrooms. It is designed so an instructor

can setup their classes from a web browser or desktop appli-
cation, class times, and campus buildings. The application
will convert building address to geo–location. The web ser-
vices recommended is IPStack11. This project has two teams
requiring combined work. One for the Android application
built using Android Studio, one for an instructor application
with back end database in a web hosted system like Google
Firebase12.

• Client Care:A desktop or web browser application to help a
non-profit organization with client intake and management
for providing services. One team to build a system to register
a client’s information and show if already registered for an
available service. A second team for back end database and
GUI to manage the services. This non–profit might offer
services to include a food pantry, educational class for: 1)
personal finance, 2)resume writing, 3) job interviewing and
4) MS Office training, and a clothing closet for professional
and business clothing. Recommended web service would be
screen scraping for food banks data13 or interview skills on
Udemy14 to give case workers a resource in the application.

• Baby Buddy:Mobile (Android) application to use near field
communications, (NFC) with a RFID tag to log your baby or
pet as an occupant of your vehicle. It detects movement with
accelerometers once baby registers as ‘checked in’ and when
stopped. If Baby–Buddy is not checked out through the NFC
tag and vehicle is stopped after a time limit, alarms are sent
to registered contacts and 911 at the central system. This is
all potentially hosted from Amazon Web Services. The same
database will be used for check–in and check–out of baby’s
NFC tag. Recommended web services are Google GPS on the
mobile application and Amazon web services for texting and
database. This project has two teams requiring combined
work. One for the Android application using Android Studio
and a second for the back end database and communication
to the web services.

• FoodOasis:Mobile (Android) application to find small popup
or unknown food sources offering quality items in food
deserts and swamps. A good example is at Georgia Food
Oasis in FaceBook, but it requires a FaceBook account and
uses your personal data and computer GPS location data in
undisclosed ways. The design is a small footprint of user
information for finding good, fresh food sources with web
services of Google GPS and Firebase. This project has two
teams requiring combined work. One for mobile app and
a second for the back end database and communication to
the food sources. The back end system will need a GUI to
register and maintain food sources (vendor data).

11https://www.gps-coordinates.net/gps-coordinates-converter
12https://firebase.google.com/docs/hosting
13https://www.feedingamerica.org
14https://www.udemy.com

2020-11-23 16:31. Page 5 of 1–11.

CSERC, October 2020, Utrecht, The Netherlands Johnson, et al.

Table 4: End of Sprint Team Presentation Rubric Used in Our MACROVR Approach

Points Timing Content
Demonstrate
Product
Knowledge

Architecture
and Interfaces

Skill and Look of Presenta-
tion

Level 4
20
points

Effectively use
between 6 and 8
minutes.
PM and SM are
equally present-
ing content.

Discuss These:
••••• Burn down

chart.
• Velocity chart.
• Completed
Scrum stories.
(Not necessary
for support
tasks.)

• Backlog stories
and tasks (If
none, why?).

PM can freely
describe the
overall purpose
of the system
and SM can
do the same
for technology
and/or inte-
gration of the
system.

Architecture Pattern:
••••• Declare why you
choose a particular
pattern.

• Show a clear and de-
tail drawing (by hand)
of your pattern.

Interface Model(s):
• Clear and readable in-

terface objects (drawn
by hand).

• Brief explanation of
where used in the sys-
tem.

•••••••• Clear, concise with an appropri-
ate amount of text.

• Ease of answering questions.
• Honesty of answering ques-
tions or saying you do not
know the answer. (If you do not
know, be honest and say so.)

• You do not look as the screen
when talking. (Talk to audi-
ence.)

• No use of animation.
• No blue or green text.
• Readable photo / screen shots
(Big enough and clear if hand
drawn.)

Level 3
17
points

Use between 6
and 8 minutes.
PM and SM are
NOT equally
presenting
content.

Discuss These:
•••• Burn down
chart. (If none,
why?)

• Velocity chart.
(If none, why?)

• Completed
Scrum stories.
(Not necessary
for support
tasks.)

You can de-
scribe the
overall product
and challenges
without read-
ing the screen
text verbatim.

Architecture Pattern:
••• Show a clear and de-

tail drawing (by hand)
of your pattern.

Interface Model(s):
• Clear and readable in-

terface objects (drawn
by hand).

•••••••• Clear, concise with an appropri-
ate amount of text.

• Ease of answering questions.
• Honesty of answering ques-
tions or saying you do not
know the answer. (If you do not
know, then be honest and say
so.)

• You read text verbatim from the
slides. (Talking to audience.)

• No use of animation.
• No blue or green text.
• Unreadable photo / screen

shots.

Level 2
10
points

Use between 4
and 6 minutes.
PM and SM
ARE equally
presenting
content.

Discuss These:
••••• What is the

product?
• What does it do?
• Is it mobile app

or other?
• Completed
Scrum stories.
(Not necessary
for support
tasks.)

You are read-
ing the screen
text while fac-
ing away from
the audience.

Architecture Pattern:
••• Declare why you
choose a particular
pattern.

• Show a clear and
detailed drawing (by
hand) of your pattern.

•••••••• Slides have too much text.
• Ease of answering questions.
• Looking at the screen when

talking. (Does not apply to writ-
ing on the white board.)

• You read text verbatim from the
slides. (Talking to audience.)

• Use of animation.
• Use of blue or green text.
• Unreadable photo / screen

shots.

Level 1
6 points

Use between 4
and 6 minutes.
PM and SM
ARE NOT
equally present-
ing content.

Discuss These:
••• What is the

product?
• Completed
Scrum stories.
(Not necessary
for support
tasks.)

You appear lost
and not know-
ing what is go-
ing on in your
project.

InterfaceModel(s):
••• Clear and readable
interface objects (by
hand).

• Brief explanation of
where used in the sys-
tem.

•••••• Slides have too much text.
• Looking at the screen when
talking and reading the slides.
(Does not apply to writing on
the white board.)

• Use of animation.
• Using many different colors or

hard to read like blue or green.
• Unreadable photo / screen

shots.

2020-11-23 16:31. Page 6 of 1–11.

Teaching Strategies in Software Engineering Towards Industry Interview Preparedness CSERC, October 2020, Utrecht, The Netherlands

Table 5: End of Semester Video Presentation Rubric for MACROVR Approach

Points Timing Content Demonstrate Product Clearly and Co-
herently

Skill and Look of Demon-
stration Video

Level 4
25
points

Effectively use
between 10
and 15 minutes
presenting your
project and
product.

•••••• What is the product?
• What is the audience
for the product? (Tar-
geted users.)

• What does it do? (Or
supposed to do?)

• What are the technolo-
gies you used to build
the product?

• What makes it worthy
of being built? (Market
importance.)

•••••• You can freely show all the proposed
and completed features of your product.
(Think test scenarios of all the stories that
are completed.)

• The demonstration is uniquely yours.
(Not a voice over with showing someone
else doing the demonstration.)

• The demonstration matches (actions, re-
actions) what you are saying as it is
recorded.

• The quality is such that your picture is
always shown and sized to not block the
screen actions or slides as it is recorded.

• The demonstration is well done where
there are no technical problems with
the product, you don’t REPEATEDLY say
filler words (umh, like you know, as you
see here).

•••••• Clear speaking with showing
high comfort levels using the
software.

• No pauses and no bugs
recorded in the demonstra-
tion.

• One continuous recording,
not segments put together.

• Sound is understandable and
lighting is good.

• Your skill of demonstration is
well rehearsed and you show
confidence in the video.

Level 3
18
points

Effectively use
between 8 and
10 minutes
presenting your
project and
product.

••••• What is the product?
• What is the audience
for the product? (Tar-
geted users.)

• What does it do? (Or
supposed to do?)

• What are the technolo-
gies you used to build
the product?

••••• You can freely show all the proposed
and completed features of your product.
(Think test scenarios of all the stories that
are completed.)

• The demonstration is uniquely yours.
(Not a voice over with showing someone
else doing the demonstration.)

• The demonstration matches (actions, re-
actions) what you are saying as it is
recorded.

• The quality is such that your picture is
always shown and sized to not block the
screen actions or slides as it is recorded.

••••• Clear speaking with showing
high comfort levels using the
software.

• No pauses and no bugs
recorded in the demonstra-
tion.

• One continuous recording,
not segments put together.

• Sound is understandable and
lighting is good.

Level 2
10
points

Effectively
use between 6
and 8 minutes
presenting your
project and
product.

•••• What is the product?
• What is the audience
for the product? (Tar-
geted users.)

• What does it do? (Or
supposed to do?)

•••• You can freely show all the proposed
and completed features of your product.
(Think test scenarios of all the stories that
are completed.)

• The demonstration is uniquely yours.
(Not a voice over with showing someone
else doing the demonstration.)

• The demonstration matches (actions, re-
actions) what you are saying as it is
recorded.

•••• Clear speaking with showing
high comfort levels using the
software.

• No pauses and no bugs
recorded in the demonstra-
tion.

• Sound is understandable and
lighting is good.

Level 1
6 points

Effectively use
between 6.5
and 4.5 minutes
presenting your
project and
product.

••• What is the product?
• What is the audience
for the product? (Tar-
geted users.)

••• You can freely show all the proposed
and completed features of your product.
(Think test scenarios of all the stories that
are completed.)

• The demonstration is uniquely yours.
(Not a voice over with showing someone
else doing the demonstration.)

••• Clear speaking with showing
high comfort levels using the
software.

• No pauses and no bugs
recorded in the demonstra-
tion.

2020-11-23 16:31. Page 7 of 1–11.

CSERC, October 2020, Utrecht, The Netherlands Johnson, et al.

4 Results
In this section, we present our statistical analysis, show our

descriptive and inferential data, and discuss threats to validity. The
composition of data from our cohorts’ responses are shown in Table
2. In Table 6, we present the descriptive analysis of our survey
responses. In Table 7, we present the inferential analysis, indicate
the survey question’s correlation to our RQ1 and show the most
significant indicators. Lastly, we discuss threats to the validity of
our findings, both internal and external.

4.1 Interpretation of Results
The highest mean score, and closest to Strongly Agree response,

are questions 2, 12, and 14; –two requirements in the MACROVR
approach. Question 2 indicates a high mean score and if we look
at its Likert scale scores in Figure 2, the MACROVR cohort shows
there are 0% NA responses and the third highest, 55.4% Strongly
Agree in the entire corpus. The highest Strongly Agree response,
59.3% is in the MACROVR cohort indicating use of a database com-
ponent in the MACROVR approach realizes a benefit in computing
job interviews. This high mean value for question 12, could result
from students taking a database fundamentals course prior to the
SE course being studied. Inferential analysis of question 11, using a
Web API, in both cohorts indicate highly significant (Table 7), but
descriptively, the MACROVR approach shows as a much higher
correlation; –Strongly Agree, 36.4% and Agree, 31.8% in contrast
to MACROVR–lite Strongly Agree, 14.8% and Agree, 22.2% respec-
tively. Simple descriptive analysis supports our RQ1 showing the
MACROVR approach responses (x=87) is three times the amount
of the MACROVR–lite approach responses (x=29).

Table 6: Survey Question Descriptive Statistics

No. Obs Mean Std.Dev. Min Max
(1) 111 3.982 1.206 1 5
(2) 107 4.093 1.178 1 5
(3) 109 3.817 1.270 1 5
(4) 111 3.901 1.206 1 5
(5) 108 3.593 1.215 1 5
(6) † 108 3.796 1.372 1 5
(7) † 108 3.935 1.162 1 5
(8) † 99 3.929 1.197 1 5
(9) † 98 3.755 1.293 1 5
(10) 108 3.954 1.171 1 5
(11) † 98 3.878 1.204 1 5
(12) † 109 4.312 0.959 1 5
(13) † 100 3.890 1.180 1 5
(14) † 109 4.156 1.148 1 5
(15) † 93 3.419 1.362 1 5

† MACROVR specific survey question.

An indicator supporting the use of the video component might
simply be an outlier in the MACROVR–lite cohort. Looking at
the results of survey question 15, as shown in Figure 3, we see
this cohort gives 25.9% of NA choice, the highest over all other
questions. We also see they give 14.8% Disagree and 22.2% Strongly

Disagree for the same question. Compared to the MACROVR co-
hort for the video component question, the NA is 0%, Disagree
is 8.7%, and Strongly Disagree is 4.3%. These responses indicate
the individual video component has a stronger connection to stu-
dents in the MACROVR approach. Another indicator supporting
theMACROVR approach versusMACROVR–lite is question 14. The
support for GIT/repository in both cohorts show the MACROVR
cohort has a combined support (Strongly Agree with Agree) of 72%
versus 55.5% of similar support in the MACROVR–lite cohort. This
indicates both cohorts use GIT/repository, but our control group,
the MACROVR cohort verify it better prepares them for computing
job interviews. Our holistic approach, combining all MACROVR
components, shows advantage over using only some of them. We
normalize all percentages shown in Figures 2 and 3 relative to the
respective cohort’s response sizes.

The Wilcoxon rank–sum (Mann-Whitney) test indicates several
of our survey questions reject the 𝐻0 hypothesis. In Table 7, we
see the same questions: 1, 3, 4, 5 ,6, 7, 8, 9, 10, 11, and 14, reject the
𝐻0 hypothesis. This indicates the findings in our survey responses
for these questions show significant acceptance of the alternative
hypothesis, 𝐻𝑎 , and their Likert data substantiate our RQ1 that the
MACROVR approach is reporting as more effective in preparing
students for computing job interviews.

Table 7: Wilcoxon Rank–Sum (Mann-Whitney) Test

No. MACROVR
Obs

MACROVR–
lite Obs

p-value z score

(1) 85 26 0.0009*** -3.309
(2) 83 24 0.0133* -2.476
(3) 82 27 0.0070** -2.695
(4) 84 27 0.0039** -2.885
(5) 81 27 0.0156* -2.418
(6) † 82 26 0.0001*** -3.824
(7) † 83 25 0.0038** -2.891
(8) † 75 24 0.0002*** -3.782
(9) † 74 24 0.0004*** -3.565
(10) 82 26 0.0356* -2.102
(11) † 74 24 0.0006*** -3.451
(12) † 84 25 0.3305 -0.973
(13) † 76 24 0.0627 -1.862
(14) † 82 27 0.0032** -2.948
(15) † 73 20 0.1090 -1.603

*𝑝 < 0.05, **𝑝 < 0.01, ***𝑝 < 0.001
† MACROVR specific survey question.

4.2 Threats to Validity
Although our data collection is sourced from multiple semesters,

our research treats them as one group. We acknowledge the validity
of new discovery in the MACROVR approach requires maturation
and a longitudinal study as is the case in most research. Revisiting
this survey in future CS student cohorts, refining the components
of MACROVR, without losing the intention and relevance in the
computing industry can mitigate this threat. However, our study is

2020-11-23 16:31. Page 8 of 1–11.

Teaching Strategies in Software Engineering Towards Industry Interview Preparedness CSERC, October 2020, Utrecht, The Netherlands

Figure 2: Percentages of MACROVR Survey Responses by Likert Value

Figure 3: Percentages of MACROVR–lite Survey Responses by Likert Value

2020-11-23 16:31. Page 9 of 1–11.

CSERC, October 2020, Utrecht, The Netherlands Johnson, et al.

to determine if using the MACROVR approach better prepares stu-
dents for interviews, as compared to a MACROVR-lite approach. Es-
tablishing benefits of the MACROVR approach opens investigation
into new methods to optimize the method and delivery. Another
threat is pre–test and post–test analysis. This research conducts
only post–test, as students require exposure to the MACROVR ap-
proach in order to form opinion of its efficacy in preparedness in a
computing job interview. One mitigation ‘pre–test’ would involve
mock interview questions with specific relations to components
of the MACROVR approach, collection of performance data in the
course, and inferential analysis.

Extraneous variables such as the details of the computing job
focus as well as the practical industry conducting the interview is
not in this research. We do not ask specifically in the survey what
are the details and duties of the SE job like building cybersecurity
components versus web UI components. Also we do not ask from
what industry the interview originates like healthcare versus com-
munications versus gaming. Our assumptions that all computing
job interviews relate to SE positions in similar ways threaten the
external validity or our findings. Mitigation of this area would in-
volve future surveys to include groupings of computing job details
and industry as demographic data to be collected and thus, creating
an internal threat to longitudinal research with this original data.

The study of SE education effectiveness in industry is a vast
challenge, but analysis of teaching specifics in the application of
the MACROVR approach shows help in minimizing the scope in
this challenge. This case study supports preparing CS students for
industry by using several techniques and technologies from the
MACROVR approach when teaching SE. We see promise in our
measures to strengthen the validity of our findings by continuing
to refine and compare SE education practice and computing indus-
try readiness. The computing industry and workforce readiness
is a moving target, but with identifying threats to validity, we in-
crease awareness of this change and the need to constantly examine,
collect, and research SE education.

5 Conclusions and Future Work
In this study we analyze a novel approach to teaching Software

Engineering (SE) that integrates numerous researched techniques
for industry readiness in SE education. Specifically, we incorporate
Agile/Scrum, team formation in project–based learning (PBL), Git
version control, and team communication and collaboration. Com-
bining these researched and proven strategies as effective in the
computing workforce with our techniques of AI team formation,
rotation of team roles, rubrics, and video reporting, we present the
MACROVR approach. We report upon Likert scale data responses
from a fifteen question survey and with descriptive and inferen-
tial analysis, positively answer our research question in that the
MACROVR approach better prepares a CS student for a comput-
ing job interview. Our analysis validates this research in eleven
out of fifteen survey questions supporting Agile/Scrum, using ma-
chine learning to form student teams for PBL, project technologies
integrated in the cloud, rotational Scrum roles, rubrics, and stu-
dent video recordings; –the MACROVR approach. Within the CS
student population, we identified two cohorts: 1) students being
taught SE topics and concepts requiring use of all components in

our MACROVR approach and, 2) students being taught SE utilizing
some, but not all components, we call MACROVR–lite. From the
total population of n=316, the responses give us an analysis sample
size of x=116. From this sample size, we investigate the effect of us-
ing real–world SE experiences through CS technical skills and soft
skills. Using teaching strategies from the MACROVR approach is
improving preparedness in students for computing job interviews.

The knowledge gain from our study can translate into action-
able changes to teaching strategies in SE education and other
courses/programs utilizing PBL, forming student teams with ma-
chine learning, and exposing team members to a variety of roles
through rotations. The data shows strong influence of some strate-
gies in the MACROVR approach and it also shows that some strate-
gies need improvement and evaluation to refine the teaching tech-
niques discussed in this paper. We leave these as future work to
improve the SE education for CS programs.

References
[1] Zahra Shakeri Hossein Abad, Muneera Bano, and Didar Zowghi. 2019. Howmuch

authenticity can be achieved in software engineering project based courses?. In
2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering Education and Training (ICSE-SEET). IEEE, 208–219.

[2] Shoaib Akbar, Edward Gehringer, and Zhewei Hu. 2018. Poster: Improving
Formation of Student Teams: A Clustering Approach. In 2018 IEEE/ACM 40th
International Conference on Software Engineering: Companion (ICSE-Companion).
IEEE, 147–148.

[3] Craig Anslow and Frank Maurer. 2015. An experience report at teaching a group
based agile software development project course. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education. 500–505.

[4] Georgine Beranek, Wolfgang Zuser, and Thomas Grechenig. 2005. Functional
group roles in software engineering teams. In Proceedings of the 2005 workshop
on Human and social factors of software engineering. 1–7.

[5] Jürgen Börstler and Thomas B Hilburn. 2015. Team projects in computing
education. ACM Transactions on Computing Education (TOCE) 15, 4 (2015), 1–5.

[6] Ivana Bosnić, Igor Čavrak, Marin Orlić, and Mario Žagar. 2013. Picking the right
project: Assigning student teams in a GSD course. In 2013 26th International
Conference on Software Engineering Education and Training (CSEE&T). IEEE, 149–
158.

[7] Rafael Chanin, JorgeMelegati, Afonso Sales, Mariana Detoni, XiaofengWang, and
Rafael Prikladnicki. 2019. Incorporating real projects into a software engineering
undergraduate curriculum. In 2019 IEEE/ACM 41st International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion). IEEE, 250–251.

[8] Shuddha Chowdhury, Charles Walter, and Rose Gamble. 2018. Toward Increasing
Collaboration Awareness in Software Engineering Teams. In 2018 IEEE Frontiers
in Education Conference (FIE). IEEE, 1–9.

[9] A Dominguez, Hugo Alarcón, and F J Garcia-Peñalvo. 2019. Active learning
experiences in Engineering Education. (2019).

[10] Dora Dzvonyar, Lukas Alperowitz, Dominic Henze, and Bernd Bruegge. 2018.
Team composition in software engineering project courses. In 2018 IEEE/ACM
International Workshop on Software Engineering Education for Millennials (SEEM).
IEEE, 16–23.

[11] Sukru Eraslan, Julio César Cortés Rios, Kamilla Kopec-Harding, Suzanne M
Embury, Caroline Jay, Christopher Page, and Robert Haines. 2020. Errors and
Poor Practices of Software Engineering Students in Using Git. In Proceedings of
the 4th Conference on Computing Education Practice 2020. 1–4.

[12] Joseph Feliciano, Margaret-Anne Storey, and Alexey Zagalsky. 2016. Student
experiences using GitHub in software engineering courses: a case study. In 2016
IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C). IEEE, 422–431.

[13] Maria Lydia Fioravanti, Bruno Sena, Leo Natan Paschoal, La´ R Silva, Ana P
Allian, Elisa Y Nakagawa, Simone R S Souza, Seiji Isotani, and Ellen F Barbosa.
2018. Integrating project based learning and project management for software
engineering teaching: An experience report. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education. 806–811.

[14] Denae Ford, Titus Barik, Leslie Rand-Pickett, and Chris Parnin. 2017. The tech-
talk balance: what technical interviewers expect from technical candidates. In
2017 IEEE/ACM 10th International Workshop on Cooperative and Human Aspects
of Software Engineering (CHASE). IEEE, 43–48.

[15] Alicia Garcia-Holgado, Francisco J Garcia-Peñalvo, and Maria José Rodriguez-
Conde. 2018. Pilot experience applying an active learning methodology in a
Software Engineering classroom. In 2018 IEEE Global Engineering Education

2020-11-23 16:31. Page 10 of 1–11.

Teaching Strategies in Software Engineering Towards Industry Interview Preparedness CSERC, October 2020, Utrecht, The Netherlands

Conference (EDUCON). IEEE, 940–947.
[16] James M Hogan and Richard Thomas. 2005. Developing the software engineering

team. In Proceedings of the 7th Australasian conference on Computing education-
Volume 42. Australian Computer Society, Inc., 203–210.

[17] Saul McLeod. 2008. Likert Scale. https://www.simplypsychology.org/likert-
scale.html

[18] Damla Oguz and Kaya Oguz. 2019. Perspectives on the Gap Between the Software
Industry and the Software Engineering Education. IEEE Access 7 (2019), 117527–
117543.

[19] Williamson Silva, Igor Steinmacher, and Tayana Conte. 2019. Students’ and
instructors’ perceptions of five different active learning strategies used to teach
software modeling. IEEE Access 7 (2019), 184063–184077.

[20] Maur´Souza, Renata Moreira, and Eduardo Figueiredo. 2019. Students Perception
on the use of Project-Based Learning in Software Engineering Education. In
Proceedings of the XXXIII Brazilian Symposium on Software Engineering. 537–546.

[21] Roderick van Cann. 2012. Optimal Team Composition in Distributed Software
Development. In Collaboration in Outsourcing. Springer, 160–182.

2020-11-23 16:31. Page 11 of 1–11.

https://www.simplypsychology.org/likert-scale.html
https://www.simplypsychology.org/likert-scale.html

