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Abstract—Scene Graph is a data structure, which is mainly used to describe the objects, attributes and object relationships in a scene.
Scene Graph is a deep representation of a scene, and is very conducive to many visual tasks, such as image retrieval, image/video
captions, VQA, and even to image generation and specific relationship detection. At present, numbers of research works about scene
graph are proposed, including the scene graph generation methods and the related applications. These proposed methods based on
scene graph have great improvements in relative performances compared with the corresponding traditional methods, which also proves
the effectiveness of scene graph in the visual understanding of a scene. Therefore, In this paper, we provide a systematic review of the
existing techniques of scene graph generation and application, including not only the state-of-the arts but also those with latest trends.
Particularly, we discuss the scene graph generation methods according to the inference models for visual relationship detection, and the
applications of scene graph are stated according to the specific visual tasks. Finally, we point out several problems in the current scene
graph generation methods, related applications and the future research directions of scene graph.

Index Terms—Scene Graph, Object Detection, Visual feature extraction, Prior Information, Visual Relationship Recognition.

1 INTRODUCTION

Scene graph is first proposed as a data structure that de-
A scribes the object instances in a scene and the relationships
between the objects [1]. As shown in Fig.1, a complete scene
graph can represent the detailed semantics of a dataset of scenes,
but not a singe image or a video; and it has powerful represen-
tations that encode 2D/3D images [1l, [2] and videos [3], [4]
into their abstract semantic elements without any restriction on
the types and attributes of objects and the relationships between
objects. Fig. 1 (b) shows an example of a scene graph, and we
can see that a scene graph G is a data structure of directed
graph, which can be defined to be a tuple G = (O, E), where
O = Oy, ..., O, is a set of objects, which can be people (“girl”),
places (“tennis court”), things (“shirt™), or parts of other objects
(“arm™). Each object has the form o; = (c¢;, 4;), where ¢; is
the category of the object and A; are the attributes of the object.
Attributes can describe color (“cone is orange”), shape (“logo is
round”), and pose (“arm is bent”). While £ C O x R x O is a
set of directed edges, which are the relationships between objects,
such as geometry (“fence behind girl”), actions (“girl swinging
racket”), and object parts (“racket has handle”). A scene graph is
commonly associated to an image dataset, but not to an image; So
it merely describes a scene that could be depicted by an image.
However, a part of scene graph may be grounded to an image
by associating each object instance to a region in an image, as
shown in Fig. 1 (b). Scene graph has a powerful representations
for semantic features about the scene, and is beneficial for a wide
range of visual tasks.

There are some similarities of scene graphs with the com-
monsense knowledge graph, such as their graphical structures and
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constituent elements. However, scene graph is a different type
of knowledge graph, which is mainly reflected in the following
aspects: (a) Each node in scene graph is associated with an image
region, and these nodes come in pairs, namely a subject and
an object; while each node in knowledge graph is the general
concept of its semantic label. (b) The directed edges represent
the relationships between the pairs of objects in a scene graph;
while in knowledge graph, each edge (directed or undirected edge)
encodes a relational fact involving a pair of concepts [3].

The idea of using the visual features of different objects in
the image and the relationships between them have been proposed
for achieving the visual tasks of action recognition [6], image
captioning [7] and other relevant tasks [8]] as early as 2015. Then,
Johnson et al. proposed the concpt f scene graph [1]], and gave
the correspondin g notation representations. In [1], scene graph
is generated manually from a dataset of real-world scene graphs,
so as to capture the detailed semantics of a scene. Since then,
the research on scene graph has received extensive attentions.
Subsequently, several scene graph datasets are introduced [9],
[10], [11], [12]. Based on these datasets, many scene graph
generation (SGG) methods are proposed, and these methods can be
divided SGG methods with facts alone as well as introducing prior
information. At present, these SGG methods pay more attention
to the methods with fact alone, including CRF-based (conditional
random field) SGG [1]], [13]], [14], VTransE-based (visual transla-
tion embedding) SGG [135], [16l], [17], Faster RCNN-based SGG
[L8], [19], [20], RNN/LSTM-based SGG [21]], [22], [23]], GNN
241, [25], [26l], and other SGG methods with fact alone [27],
[28], [29]. In addition, different types of prior information are
introduced for SGG, such as Language Priors [9],visual contextual
information [30]], [22], Knowledge priors [31], [32], visual cue
[33], and so on. Scene graph has the powerful representations
for the semantic features of a scene, thus, it has widely applied
to related visual tasks, such as image retrieval [1]], [34], image
generation [35]], [36], specific relationship recognition [37], [38]],
[39], image/video captioning [40], [41]], [42], VQA [43], [44],
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Fig. 1: An example of a scene graph (bottom) and a grounding (top).
The scene graph encodes objects (“girl”), attributes, (“girl is blonde™),
and relationships (“girl holding racket”). The grounding associates
each object of the scene graph to a region of an image.
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Fig. 2: Classification and statistics of the researches on scene graph
from 2015 to 2020.

and so on. Therefore, we can see that scene graph has become
a hot research topic in computer vision, and it will still receive
continuous attention in the future.

Since the concept of Scene graph was proposed in 2015
and first applied to image retrieval, then the relevant researches
on Scene graph have increased significantly, especially in 2019
(As shown in figure 2). In these research results, we mainly
focus on the scene graph generation (SGG) methods and the
applications of scene graph. Fig.3 (a) shows the relevant works
on SGG, and it can be seen that more researches are focused
on SGG by using GNN models and introducing relevant prior
information. While the applications of Scene graph mainly refer
to image generation, image/video captioning and image semantic
understanding and reasoning, etc. as shown in Fig.3 (b). There also
are a few applications on VQA and image retrieval. In addition,
several works utilized 3D scene graph for 3D object detection
and recognition. With the increasing researches on scene graph,
the scene graph databases related to specific tasks are constantly
updated and established, which enable reliable data for the further
researches on scene graph in the future.

At present, the researches on scene graph mainly try to solve
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the following three problems:(1) How to generate a more accurate
and complete scene graph ;(2) How to simplify the computational
complexity of SGG;(3) How to apply scene graph to more tasks
in a more appropriate and extensive way. Although there have
been many related methods proposed for solving these problems,
there still need deep researches on the solution of these problems.
Moreover, there are still other problems that need to be further
solved. For example, the unbiased scene graph data has always
been a problem in scene graph generation, and will be a problem to
be solved in the later research. In addition, the descriptions of the
relationships between objects in datasets are rough and inaccurate.
Therefore, we need to further optimize the annotations in related
scene graph datasets.

In this paper, we mainly discusses the generation and appli-
cation of scene graph relevant to computer vision in this paper.
In section 2, we first introduce several existing datasets that are
commonly used for scene graph, as well as the performance
evaluation of scene graph generation models. Section 3 briefly
introduces basic notations of scene graph, and then provide a
thorough review of current available scene graph generation tech-
niques, including those work with facts alone, as well as using
different types of prior information. Meanwhile, We describe the
overall frameworks of models, model training, as well as pros
and cons of such techniques. In section 4, we further explores
the applications of scene graph to a wide variety of computer
vision tasks. Furthermore, Section 4 f Section 5 will discuss the
main problems in the generation and application of scene graph
at present and the future researches of scene graph. Finally, we
present our concluding remarks in Section 6.

2 DATASETS FOR SCENE GRAPHS

A long-standing goal of computer vision is to develop models
that can understand the visual information in scenes, and fur-
ther reason some unseen visual events from the current scenes.
While in terms of current Al technologies, the performance of
the relevant network models is still largely dependent on the
knowledge learned from the existing datasets. If these models
are transferred from their original datasets to other datasets with
relatively unfamiliar scenes, the performance of the models is
likely to decline dramatically or even fail to work. Therefore, large
scale visual datasets for specific tasks are critical to the computer
vision network models. In this section, We discuss several existing
datasets that have been released for scene graph generation and
applications of relevant downstream tasks. We briefly state the
basic data structure of these main scene graph datasets, and make
a further comparative analysis on these data sets.



Real-World Scene Graphs Dataset. In 2015, Johnson pro-
posed the notion of scene graph, as well as Real-World Scene
Graphs Dataset (RW-SGD) [1]], which may be the first dataset ex-
plicitly created for scene graph generation and application (image
retrieval). Real-World Scene Graphs Dataset is built by manually
selecting 5,000 images from the intersection of the YFCC100m
[45]] and Microsoft COCO datasets [46]. For each of these selected
images, Amazon’s Mechanical Turk (AMT) is used to produce a
human-generated scene graph. Finally, Real-World Scene Graphs
Dataset contains over 93,832 object instances, 110,021 attribute
instances, and 112,707 relationship instances.

Visual Relationship Dataset (VRD) [9] is designed for visual
relationship prediction. In total, VRD has 5000 images with 100
object classes and 70 predicates, and also contains 37,993 relation-
ships with 6,672 relationship types and 24.25 predicates per object
category. However, the distribution of the visual relationships
highlights the long tail of infrequent relationships.

Visual Genome Dataset (VGD) [10] is a large scale visual
dataset, and consists the components of region descriptions, ob-
jects, attributes, relationships, region graphs, scene graphs, and
question answer pairs. VGD has widely used for scene graph
generations and applications, this dataset contains over 100K
images, and has average of 21 objects, 18 attributes, and 18
pairwise relationships between objects in each image. In addi-
tion, Visually-Relevant Relationships Dataset (VIR-VG) [19] is
constructed based on Visual Genome dataset.

UnRel Dataset (UnRel-D) is a new challenging dataset of unusual
relations [11]], it is designed to address the problem of missing
annotations, UnRel-D contains more than 1000 images queried
with 76 triplet queries.

HCVRD Dataset [12] has 52,855 images with 1,824 object cate-
gories and 927 predicates. In addition, HCVRD contains 256,550
relationships instances with 28,323 relationships types. There are
an average of 10.63 predicates per object category. The distribution
of relationships in HCVRD also highlights the long-tail effect of
infrequent relationships.

3 SCENE GRAPHS GENERATION

The concept of scene graph is first proposed by Johnson in [1]],
and manually established the corresponding scene graph on a real-
time World scene Graph dataset. A scene graph is a topological
representation of a scene, which mainly encodes object and their
relationships. The task of scene graph generation (SGG) is to
construct a graph structure that best associates its nodes and edges
with the objects and their relationships in a scene. While the
key challenge task is to detect/recognize the relationships of the
objects.

Currently, there are two main scene graph generation ap-
proaches [25]. The first approach has the two stages, that is object
detection and pair-wise relationship recognition [13[], [49], [9],
[50]. The other approach is to jointly infer the objects and their
relationships [20]], [24], [48]. The subsequent SGG methods are
proposed to generate a complete scene graph with facts alone
or by introducing additional prior information. In this section,
we will review the SGG methods using only facts observed in
the given images/videos; and further discusses the techniques that
incorporate other priors.

3.1 Scene Graphs Generation with Facts Alone
3.1.1 CRF-based SGG

Johnson et al. proposed the concept of scene graph, and give the
corresponding formulations. While they used Amazon’s Mechan-
ical Turk (AMT) to produce a human-generated scene graph on
their dataset (Real-world scene datasets) [1l]. Furthermore, condi-
tional random field (CRF) is construct for image retrieval using the
generated scene graph.However, it takes much cost for generating
a scene graph manually, and it has the influence of subjective
factors of understanding a scene. subsequently, Schuster et al.
[I8] proposed a method of scene graph generation automatically
using two parsers: a rule-based parser and a classifier-based parser,
which map dependency syntax representations to scene graphs.
Based on the constructed scene graph, they also achieved the
image retrieval task via CRF. These may be the two early methods
that involved the construction and applications of scene graph.

Formally, given a scene graph G = (O, E) and an image I,
there are many possible ways of grounding the scene graph to
the image. At the high level, the inference tasks are to classify
objects, predict the objects’ coordinates, and detect/recognize
pairwise relationship predicates between objects [S1]. Therefore,
the first stage of identifying the categories and attributes of the
detected objects is achieved mainly using RPN or Faster RCNN
[52]]. Furthermore, most of the works focus on the key challenge
of reasoning the visual relationship. In [13]], the CRF model of
secne graph also has two unary potentials that associate individual
objects with their appearance and the relationship predicates.
While, for relational modeling, Deep Relational Network (DR-
Net) are explored to detect the relationships.

In [14], SG-CREF is proposed for SGG. Semantic Compatibility
Network (SCN) are used to learn the semantic compatibility of
nodes in the scene graph, and improve the accuracy of scene
graph generation.The SCN approximates scene graph inference
by mean-field approximation algorithm, which can be expressed
as Q' = MeanField(1,, L., Q'~1).Then the pairwise potential
1, of each node is calculated based on the label word embeddings
of its 1-hop neighbors. Finally,The output Q7 of last mean-
field iteration is the likelihood distribution of each node in a
scene graph. Let I denote the given input image and SG denote
the output scene graph. Then the objective for SG-CRF can be
formulated as maximizing the following probability function [14]:

P(SG|I) =
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The term P(o0;, 0*°|I) in Eq. 1 is a unary potential modeling
how well the appearance of the box obb“ agrees with the known
object class and attributes of the object 0,. CRFs for scene graph
can be formulated as finding the optimal x* = argmaz,P(X)
in the form of Gibbs distribution:

P(X) =

S

Similar to Eq.1, the unary potential v, (x;) measures the cost
of assigning 4-th node x;, and pairwise potential p(z;; ;) mea-
sures the cost of assigning x; to i-th node given label assignment
x; of j-th node.
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Dataset images/videos  Obj. instances ~ Obj. classes  Att. instances ~ Att. types  Rel. Instances ~ Rel. types  Pre. per Obj. Category  Pre.

COCO [46] 124,828 886,284 80 - - - - - -

YFCC100m [45] -845735 534,309 200 - - - - - -

RW-SGD[1] 5000 93,832 6745 110,021 3743 112,707 1310 33 -

VRD [9] 5000 - 100 - - 37,993 6,672 24.25 -

VGD [10] 100k 33,877 3,843,636 - - - 40,480 -

UnRel [L1] 1000 - - - - 76 - - -
HCVRD [12] 52,855 - 1824 - - 256,550 28,323 10.63 927
VIR-VG [19] 58,983 282,460 1600 - - 203,375 117 -

Visual Phrase [47]] 2,769 3,271 8 2040 13 120 -

VG150[48] 87,670 738,945 150 - - 413,269 50 - -

TABLE 1: Aggregate statistics for scene graph datasets.

3.1.2 SGG based on Visual Translation Embedding

There are similarities between scene graph and knowledge graph
in terms of object relationship reasoning. Therefore, inspired by
the advances in relational representation learning of knowledge
bases and object detection networks, methods based on Translation
Embedding network (TransE) are explored for visual relation
detection [15]], [16], [17], [51]. These TransE-based SGG methods
place objects in a low-dimensional relation space where a relation
can be modeled as a simple vector translation.

VTransE [15] extends TransE [53] for modeling visual re-
lations by mapping subjects and objects into a low dimensional
relation space, and modeling the predicate as a translation vector
between the subject and object. Similar to other SGG methods,
object detection need to carry out first, and VTransE can be
married to any object detection network such as Faster-RCNN
[52]], SSD [54] and YOLO [55], which are composed of a region
proposal network (RPN) and a classification layer.

TransE represents any valid relation (subject-predicate-object)
in vectors s, p and o respectively. If the relation holds,the relation
can be represented as a translation in the embedding space:
s+ p = o, otherwise s + p! 0. Besides learning a relation
translation vector ¢, € R"as in TransE, VTransE learns two
projection matrices W, W, by s = Wsxs and 0 = W,x,:

~
~

Wsxs +t, = Wz, 3)

Where z,,x, are the features of subjects and objects, re-
spectively. Furthermore, a prediction loss is proposed to solve
the problem of problematic sampling negative triplets due to the
incomplete relation annotation:

lpe; = Z —logsoftmax(tZ(Woxo) —Wszs)) @

(s,p,0)€ER

Finally, the score for relation detection is the sum of the
subject/object detection score and the relation predicate prediction
score in Eq.4.

UVTransE [16] is proposed to improve generalization to rare
or unseen relations based on VTransE. There are lots of obvious
object relations in scenes, but also exist many unseen relations.
Therefore, the relation detection models also need to recognize
the hidden relations. Inspired by VTransE [15]], UVtransE intro-
duces the union of subject and object, and a context-augmented
translation embedding model is proposed to capture both common
and rare relations in scenes. Similar to [[15], UVtransE needs to

learn three projection matrices Wy, W, and W, by minimizing
the multi-class cross-entropy loss function:

Lvis = Z

(s,p,0)€T

g p(p D)
ZqEP exp(q—rﬁ)

HIWeslly = s+ [[Wasll5 - 1))
5)

Where, T and P are the set of all relationship triplets and the
set of all predicate labels. p = W,u — Wss — Wyo, [z]4
maz(0,z). C is a hyper-parameter, which is used to determine
the importance of the soft constraints. Eq.(5) is different from
VTransE [15]] in terms of the introduced contextual union feature.
Finally, the score of the entire triplet is the sum of the scores of the
subject/object detection score and the predicate score, similarly to
[L15].

MATransE (Multimodal Attentional Translation Embeddings)
[17]] is proposed to satisfy s + p = o by guiding the features’
projection with attention and Deep Supervision. Similar to [15],
MATransE needs to learn the projection matrices Wi, Wp, and
W, by employing a Spatio-Linguistic Attention module (SLA-M)
[L3]. As shown in Eq.(3), a two-branch architecture is designed
in MATransE: one branch is to drive the predicate features into
scores t, = Wy, (P-branch), and another branch is used to
classify the object-subject features W,x, — Wsxs (OS-branch).

Finally, P-branch and OS-branches’ scores are fused into a
single vector, which is used to train a meta-classifier to obtain the
predicate classes. Thus, with W = (W, W,,, W,,), the total loss:

+ C([[IWysll5 — 1]+

LW) =X Ly(W) + X\pLpy(Wy) 4+ AosLos(Wo, Ws)

where A is to balance each term’s importances.

RLSYV [56] is proposed to solve the problem of the incom-
plete scene graph, and the formulation of RLSV is to predicte
the missing relations between the objects. RLSV is staged by
three modules: visual feature extraction, hierarchical projection
and train objective module. By combining location and visual
information of entities, the visual feature extraction model embeds
the inputting image as visual projection vectors vp,, , Vp,., Up, for
head h, relation r and tail ¢ respectively. Based on Upp»> Up,.» Up,»
the hierarchical projection module projects a given visual triple
(h,r,t) onto attribute space, relation space and visual space,
resulting in a new presentation (h,7),t, ). Then followed by
TransE, the score function can be defined as:

(6)

E[(h,T,t): HhJ_"f‘TJ__tJ-HLl/Lz Q)



Finally, a max-margin function with negative sampling is
formulated as the training objective:

L=> > 2

IET (h,rt) €Tt (W, t)ET]

[Er(h,r,t) — Er (W, 7" t') + 7]+

®)
where + is a marginal hyperparameter, 7; is the negative
sampled visual triple set generated from positive visual triple set

Tr.

3.1.3 CNN-based SGG

DR-Net [13]] is a framework which formulated the prediction
output as a triplet in the form of (subject, predicate, object) and
jointly predicted their class labels by exploiting spatial configura-
tion and statistical dependency among them. The overall pipeline
of this framework had three stages: object detection, pair filtering
and joint recognition. In the object detection stage, Fast RCNN
was used to locate a set of candidate objects of which each came
with a bounding box and an appearance feature. The next step
filtered out a set of pairs from detected objects by a low-cost neural
network based on spatial configuration and object categories. Each
retained pair of objects then would be fed to the joint recognition
module by considering appearance feature of each object, spatial
configurations between any two paired objects, strong statistical
dependency between the relationship predicate r and the object
categories s and o. To represent the spatial configurations, dual
spatial masks derived from the bounding boxes and may overlap
with each other were designed. To exploit the statistical relations,
DR-Net was developed to incorporate statistical relational model-
ing into a deep neural network framework. The joint recognition
module would produce a triplet as the output.

SIN (Structure Inference Network) [57] is a detector which
is designed to infer object category label by improving Faster
R-CNN with a graphical model. SIN not only considers object
visual appearance, but also takes scene contextual information and
object relationships within a single image into account, which was
demenstrated that the performance of object detection was truly
improved. The framework of SIN is as follows. ROIs are derived
from an input image. Each ROI is pooled into a fixed-size feature
map f; and mapped to a feature vector which is considered as
a node in graph modeling. Meanwhile, a scene of an image is
generated from its global feature f° in the same way. The scenes
and nodes are put into the SIN as Scene GRUs. Afterwards, both
the spatial feature and visual feature of node v; and v; are jointly
combined to form a directed edge e;_,; from v; to v;, which
represents the influence of v; on v;. All edges will be passed into
SIN as Edge GRUs. In SIN, the state of each GRU is updated
iteratively and the final integrated node representations are used to
predict object category and bounding box offsets.

Rel-PN [18]. Relationship Proposal Networks (Rel-PN) first
detect all meaningful proposals of object, subject and relationship
by running 3-branch RPN in Faster RCNN [52] respectively.
Although the object instances and subject instances belong to the
same category space, their distribution is inconsistent, so they are
extracted separately.

The relationship branch is to reduce the number of the pairs
of objects, otherwise there would have object x subject pairs of
relations. In [18]], 9 kinds of relationship proposals are selected
according to several conditions. Then two branches of visual
compatibility and spatial compatibility modules are used to output
the visual and spatial scores. For visual compatibility module,
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three visual features are connected to obtain a (5x5x512) vector,
and then the module output visual score s,. Moreover, three
groups of spatial difference features are connected to obtain a
(64x64) vector, and then output spatial score sg. Finally, p, and
ps are integrated into a final score.

p=ap, + (1 —a)ps ©)

where, « is the ratio of visual compatibility.

Based on the model in [18], the model in [58]] considers three
types of features: visual, spatial and semantic features using three
corresponding models, and these features are then fused for the
final relationship identification. Different from [18]], the model in
[58]] used an additional semantic module to learn the semantic
features, and achieved better performances.

ViP-CNN [20] has the capable of jointly learning specific
visual features for the interaction and considering the visual
interdependency, and has four branches for triplet proposal and
phrase recognition. Likely to other SGG models, Faster R-CNN
with VGG-Net [59] as backbone is used to detect the object
bounding boxes, so as to provide the triplet proposals. For the
triplet proposal branches, the extracted CNN features by VGG-Net
are used for proposing regions of interest (ROIs), and then triplet
proposals are obtained by grouping these ROIs. Furthermore,
triplet non-maximum suppression (triplet NMS) is proposed to
solve the problem of the sparsity of relationship annotations, so as
to reduce the redundancy, and The remaining triplets are used for
the phrase recognition branch.

BAR-Net[60] uses the standard object detection methods to
detect pair-wise relationships, which is achieved by decomposing
the relation detection task into two tasks of retentive object
detection. In BAR-Net, one detector (Such as faster RCNN) is
used to detect all objects in the image, and then the other detector
was used to detect the objects, which have interactions with each
object. The bounding boxes obtained by the first detector are used
as the inputs for the second detector, and the the joint probability
can be represent by simpler conditional probabilities:

pro(s,p,o|I) = pro(s|I)pro(p,ols, I) (10)

The second probability iterm pro(p,0—s,I) models the proba-
bility that an object presented in the image is related to the subject
S, which is called Box Attention.

LinkNet [51] is proposed to improve scene graph generation
by explicitly modeling inter-dependency among all related objects,
rather than an object in isolation. Linknet mainly has three
modules:1).A relational embedding module is used to classify the
objects and their relationships. Given an image, objects’ proposals
and labels are extracted by a object detection method, such as
Faster R-CNN [52].2).A global context encoding module is used
to extract global information, which contains as much as possible
all proposal information in the image, and is used to assist the
classification of object relations. 3).A geometrical layout encoding
module is used to assist in the classification of object relations
using the spatial information between the object proposals. Finally,
the two categories can be used to generate the scene graph, and
the loss function of whole network is the weighted sum of the
losses for predicting object bounding boxes, object categories, and
relationship categories.



3.1.4 RNN/LSTM-based SGG

Iterative Message Passing [48]. As many previous works focued
on doing local predictions to generate a visually-grounded scene
graph from an image, surrounding context in the image is ignored
whereas joint reasoning with contextual information could often
resolve ambiguity due to local predictions in isolation. Motivated
by this observation, Xu et.al. proposed a novel end-toend model
that learns to generate image-grounded scene graphs.

Given an image as input, their model first produces a set
of object proposals using a Region Proposal Network (RPN),
and then passes the extracted features of the object regions to
a graph inference formulation that iteratively refines its prediction
by passing contextual messages along the topological structure of
a scene graph.

The contribution of this paper is that instead of inferring
each component of a scene graph in isolation, the model passes
messages containing contextual information between a pair of
bipartite sub-graphs of the scene graph, and iteratively refines its
predictions using RNNs. Besides, since inference on a densely
connected graph is very expensive, the authors used mean field to
perform approximate inference where a unique bipartite structure
of a scene graph was leveraged to improve the inference efficiency
by iteratively passing messages between node GRU sub-graph
and edge GRU sub-graph instead of through a densely connected
graph.

PANet[21]]. Many previous works focus on the contexts among
objects and scene infromation for relationship classification, which
ignors the internal associations among predicates. Therefore, this
paper proposed a two-stage framework named predicate associ-
ation network (PANet) to properly extract contexts and model
predicate association.

PANet is a two-stage network to capture contexts of the image
and modeling predicate association. In the first stage, Faster-
RCNN is used to generate object proposals, of which each b;
is represented by three kinds of object related features: class
embedding (Ey,i), spatial information (Sp,) and visual feature
(Fp,)-

Vbi = U(Wb(Ebi o Fbi, o Sb,) + bb) (11

Based on these object proposals, instance-level context is extracted
using a RNN and combined with scene-level context. For each
object pair < s;,0; >, their categorical probability P(s;|I) and
P(0;|I) are computed by applying the combined contexts.

In the second stage, the associations of predicates are ex-
plored via another RNN with alignment technique and attention
mechanism. For each predicate label p;, it is represented as a
word embedding E,, . For each pair of objects < s,o0 >,
their corresponding combination context of instance-level and
scenelevel contexts are < G, G, >. Feature maps of their union
bounding box (denoted as Fj ,) are used to demonstrate visual
state of the union region. Fj , is then fed into a fully connected
layer for dimension reducing. The fused feature vector U ,, of the
two objects is:

Us,o = (Gs * Go) o O-(WuF&o + bu) (12)

where G * G, is used to compute contexts of the object pair.

Alignment feature is extracted by aligning predicate label I,
with P , from the previous step. Then these features R, are feed
into a RNN module to extract predicate association 'ys) of the i-th
predicate:

2K = RNN Ry 2

e (13)
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where, 2> is the hidden state of RNN in the time step 4, and
is contextual information of predicate p;. Then the final weighted

contexts v, are computed for an object pair < s,0 > as:

m
Yarr = D wiyiDs.t.0 <w; <1 (14)
=1

Then, the predicate label can be assigned with highest probability:

P(piuv Sj5 Oj) = mal‘f(Wr'Yatt + br) (15)

where W,. and b, are weights and bias for predicate classifier.

CMNs . [61]. Two issues exist in previous works on referential
expressions, where one is that referential expressions were treated
holistically, thus failing to model explicit correspondence between
textual components and visual entities in the image, the other
is that most previous works rely on a fixed set of entity and
relationship categories.

To solver these two problem, this paper focus on referential
expressions involving inter-object relationships that can be rep-
resented as a triplet (subject-relationship-object) and proposed
Compositional Modular Networks (CMNSs), an end-to-end trained
model that explicitly modeled the compositional linguistic struc-
ture of referential expressions and their groundings, but which
nonetheless supports interpretation of arbitrary language.

CMNss differentiably parses the referential expression into a
subject, relationship and object with three soft attention maps, and
aligns the extracted textual representations with image regions us-
ing a modular neural architecture. There are two types of modules
in CMNs, one used for localizing specific textual components by
outputting unary scores over regions for that component, and one
for determining the relationship between two pairs of bounding
boxes by outputting pairwise scores over region-region pairs.
LSTM is used for expression parsing with attention in CMNss.

VCTREE |[23]]. Prior layout structures, like chain, fully con-
nected graphs, are reliable for visual context encoding. Such prior
layout structures are not perfect for the following two reasons.
First, chains are oversimplified and may only capture simple
spatial information or co-occurrence bias; though fullyconnected
graphs are complete, they lack the discrimination between hierar-
chical relations and dense connections could also lead to message
passing saturation in the subsequent context encoding. Second,
object layouts should vary from content to content, question to
question. Therefore, fixed chains and graphs are incompatible with
the dynamic nature of visual contexts.

In this paper, a model named VCTREE, composing dynamic
tree structures for encoding object-level visual context for high-
level visual reasoning tasks is proposed. VCTREE model can be
summarized into the following four steps. 1) Faster-RCNN is used
to detect object proposals. The visual feature of each proposal ¢ is
presented as x;, concatenating a RoIAlign feature v; € R?%4® and
spatial feature b; € RS, where 8 elements indicate the bounding
box coordinates (1, Y1, T2, y2), center (L1522 M1H2) ‘and size
(xo — 21, Y2 — Y1), respectively. Note that the visual feature z; is
not limited to bounding box; segment feature from instance seg-
mentations or panoptic segmentations could also be alternatives.
2) A learnable matrix will be introduced to construct VCTREE.
Moreover, since the VCTREE construction is discrete in nature
and the score matrix is non-differentiable from the loss of end-
task, a hybrid learning strategy is developed. 3) Bidirectional Tree
LSTM is employed (Bi-TreeLSTM) to encode the contextual cues



using the constructed VCTREE. 4) The encoded contexts will be
decoded for each specific end-task.

AHRNN. [62] Most exisiting approaches to generate scene
graphs suffer from two limitations that prevent them from
generating a sound and effective scene graph. First, object-
detection—based approaches will result in the generation of useless
object bounding boxes or meaningless relationship pairs. Second,
these methods rely on a ranking of probability for outputting
relationships, which will result in semantically redundant re-
lationships. Motivated by these two observations, the authors
proposed an architecture that satisfied two demands: directly
paying attention to and recognizing regions of interest in images
without extra object detection; automatically ranking the sequence
of relationships to output based on the learned features.

The overall architecture consists of a CNN model for extract-
ing convolutional features, an AHRNN for generating a sequence
of relationship pairs, and an algorithm for scene graph construction
based on entity localization. Following the mainstream “encoder-
decoder” framework, a CNN model is employed to extract a set of
feature vectors that represent a global visual description of an input
image. Then, an Attention-based Hierarchical RNN (AHRNN)
is responsible for dynamically mapping the feature vectors into
the target relationship triplets. The AHRNN is composed of two
models, an Attention-based Triplet RNN (ATRNN) to receive
the image features and sequentially produce a topic vector by
roughly attending to parts of the image features composing each
relationship triplet, and an Attention-based Word RNN (AWRNN)
to recognize each target word in the (subject-predicate-object)
triplet under the guidance of the topic vector. Finally, with the
predicted relationship triplets, entity localization is performed
to determine the final components in the scene graph and an
algorithm is designed for automatic scene graph construction.

MOTIFNET.[22] Elements of visual scenes have strong struc-
tural regularities. Based on this motivation, the authors examined
some structural repetitions in scene graphs ( called as motifs ),
using the Visual Genome dataset, which provides annotated scene
graphs for 100k images from COCO, consisting of over 1M
instances of objects and 600k relations. Their analysis leads to two
key findings. First, there are strong regularities in the local graph
structure such that the distribution of the relations is highly skewed
once the corresponding object categories are given, but not vice
versa. Second, structural patterns exist even in larger subgraphs
and over half of images contain previously regularly appearing
substructures in scene graphs ( called as motifs ). Based on the
above analysis, a baseline is introduced: given object detections,
predict the most frequent relation between object pairs with the
given labels. The baseline improves over prior state-of-the-art by
1.4 mean recall points which suggests that an effective scene graph
model must capture both the asymmetric dependence between
objects and their relations, along with larger contextual patterns.

Thereafter, a neural network architecture called Stacked Motif
Network (MOTIFNET) is proposed. The architecture breaks scene
graph parsing into stages predicting bounding regions, labels for
regions, and then relationships. Between each stage, global context
is computed using bidirectional LSTMs and is then used for
subsequent stages. In the first stage, a detector proposes bounding
regions and then contextual information among bounding regions
is computed and propagated (object context). The global context
is used to predict labels for bounding boxes. Given bounding
boxes and labels, the model constructs a new representation (edge
context) that gives global context for edge predictions. Finally,
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edges are assigned labels by combining contextualized head, tail,
and union bounding region information with an outer product. The
method can be trained end-to-end. MSDN. [24] The authors ex-
plored the possibility in understanding the image through a single
neural network model from three levels together, namely, object
detection, scene graph generation and image caption. Since the
features for these three tasks are highly correlated and can be the
complementary information of each other, the authors proposed
an end-to-end Multi-level Scene Description Network (MSDN)
to simultaneously detect objects, recognize their relationships
and predict captions at salient image regions, which effectively
leveraged the rich annotations at three semantic levels and their
connections for image understanding.

The entire process of MSDN is summarized as below: 1)
Region proposal. To generate ROIs for objects, phases and, re-
gion captions. 2) Feature specialization. Given ROIs, to obtain
specialized features that will be used for different semantic tasks.
3) Dynamic graph construction. Dynamically construct a graph to
model the connections among feature nodes of different branches
based on the semantic and spatial relationships of corresponding
ROIs. 4) Feature refining. To jointly refine the features for different
tasks by passing messages of different semantic levels along the
graph. 5) Final prediction. Using the refined features to classify
objects, predicates and generate captions. The scene graph is
generated from detected objects and their recognized relationships.

The key procedure of MSDN is dynamic graph construction
which realizes that regioin features, phrase features and object
features are extracted from the orinal features seperately and
delivered for image caption, phrase detection and object detection
respectively after feature refining. Given the region features, a
LSTM-based language model is used to generate natural sentences
to describe the region.

3.1.5 GNN-based SGG

Currently, there are two polpular frameworks to generate scene
graphs. One detects the objects first and then recognizes their
pair-wise relationships, the other is to jointly infer the objects
and their relationships based on the object region proposals. Both
frameworks would generate a quadratic number of objects, which
is time-consuming.

To improve the efficiency of scene graph generation, a
subgraph-based connection graph is proposed to concisely repre-
sent the scene graph during the inference. A bottom-up clustering
method is used to factorize the entire graph into subgraphs, where
each subgraph contains several objects and a subset of their rela-
tionships. By replacing the numerous relationship representations
of the scene graph with fewer subgraph and object features, the
computation in the intermediate stage is significantly reduced.

Factorizable Net [25]. The bject region proposals are detected
by RPN first, and then they are grouped into pairs to build up a
fully-connected graph, where every two objects are connected with
two directed edges. Thereafter, a more concise connection graph is
generated by merging edges which refer to similar union regions
into subgraphs. Based on the obtained obejects and subgraphs, the
corresponding features (2-D feature maps for subgraph and feature
vectors for objects) are generated. These features are refined
through Spatial-weighted Message Passing (SMP) structure and
the refined features would passed to Spatial-sensitive Relation
Inference (SRI) module for predicate recognition. Here, SMP, a
GNN approach, is used for better feature representation.



Predicate Prior Model[63]. Simlar to the idea that generating
a scene graph by us ing language prior of relationship triples
[9], Hwang et.al. generated it by joiontly combining the prior of
predicate distribution [63]. The framework of [63] is similar to
that of [48]]. The framework first extracts visual features of nodes
and edges from a set of object proposals. Then, mean field is used
to perform approximate inference by using an iterative message
passing scheme modeled with Gated Recurrent Units (GRU),
which is to classify objects, predict their bounding box offsets, and
classify relationship predicates between each pair of objects. The
difference between [63] and [48] is that a pre-trained tensor-based
relational module was added as a dense relational prior in [63]
to refine the relationship estimation during the iterative messgae
passing period, which is also a fine-tuning of the learning process
of the scene graph module [48]. Here, a iterative message passing
scheme with GRUs is uesed as a GNN way to improve the scene
graph generation performance with better feature repesentation.

Graph R-CNN [64] is factorized into three logical stages: 1)
object node extraction, 2) relationship edge pruning, and 3) graph
context integration. In the object node extraction stage, a standard
object detection pipeline is utilized to obtain a set of localized
object regions. Then two novelties in the rest of the pipeline are
used to incorporate the real-world regularities in object relation-
ships. The first is a relation proposal network (RePN) that learns
to efficiently compute relatedness scores between object pairs
which are used to intelligently prune unlikely scene graph connec-
tions. Second, given the resulting sparsely connected scene graph
candidate, an attentional graph convolution network (AGCN) is
implemented to propagate higher-order context throughout the
graph - updating each object and relationship representation based
on its neighbors. These two mechanisms can effectively leverage
object-relationship regularities to intelligently sparsify and reason
over candidate scene graphs for scene graph generation.

PISP (Permutation-Invariant Structured Prediction model)
[65)]. A scene graph predictor should capture this dependence
in order to improve prediction accuracy through uncovering the
inter-dependency between objects and relations. Motivated by this
observation, this paper denmenstrated that the architechture of
a nueral network should stay invariant to a particular type of
input permutation. Formally, a framework or a function F should
produce the same result when given the same features, up to a
permutation of the input. For example, consider a label space
with three variables y1, y2, y3, and assume that F takes as input
2 = (21,22, 23, 212, 213, 223) = (f1, f2, f3, fi2, f13, f23), and
outputs a label y = (y7,y5, y35). When F is given an input that is
permuted in a consistent way, say, z’ = (fa2, f1, f3, f21, f23, f13),
the output should still be y = (v, y3,y3).

The authors proved this property according to the fact that
such architechture or framework can aggregate information from
the entire graph in a permutation invariant manner. Based this
property, they suggested several common architectural structures
like attention nueral networks and RNNs, which was used in their
scene graph module.

Attention Graph model [66]. An Attention Graph mechanism
is proposed to produce a scene graph structure that can be lifted
directly from the top layer of a pre-trained Transformer model.
This Transformer model with additional layers enables us to obtain
graph node connectivity and class information directly.

The OpenAl Transformer Language Model was used as the
foundation of the phrase parsing model, and the Language Model’s
final layer outputs were then fed in to a customised “Attention
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Graph” layer. The Attention Graph mechanism is trained using the
sum of two cross-entropy loss terms against the respective target
node types and parent node indices, weighted by a factor chosen
to approximately equalise the contributions to the total loss of the
classification and Attention Graph losses. The overall structure
allows our graph elements to be created ‘holistically’, since the
nodes are output in a parallel fashion, rather than through stepwise
transition-based parsing.

Few-Shot Scene Graph Prediction [67]. The long-tailed
distribution of relationships can be an obstacle for traditional
approaches since they can only be trained on a small set of
predicates that carry sufficient labels. Based on this observation,
the authors introduce a scene graph prediction model that supports
few-shot learning of predicates, enabling scene graph approaches
to generalize to a set of new predicates.

The pipeline of Few-Shot Learning is a s follows. 1) Fully train
Graph Convolution model and spatial and semantic shift functions
on relationships with abundant data. 2) Define shift functions
for new rare relationships with few examples using fully trained
shift functions. 3) Fine-tune new shift functions with few training
examples

The novelty of their module is that predicates are defined as
functions, resulting in a scene graph model where object repre-
sentations can be used for few-shot predicate prediction. Instead
of using the object representations to predict predicates, this paper
instead treats predicates as two individual functions: a forward
function that transforms the subject representation into the object,
and an inverse function that transforms the object representation
back into the subject.

ARN [26] is manily propsoed to address the following two
problems. One is that most of the existing works neglect the
semantic relationship between the visual features and linguistic
knowledge, and the intra-triplet connections. The other is that
most revious works follow a stepby-step manner to capture the
representation of nodes and edges, leading to neglect the global
structure and information in whole image.

The proposed Attentive Relational Network (ARN) mainly
consists of four parts: (1) Object Detection Module: capturing the
visual feature and the location of each entity bounding box with
their pair-wise relation bounding boxes. Then a softmax function
is employed to obtain initial classification scores for each entity
and relation; (2) Semantic Transformation Module: producing the
semantic embedded representations by transforming label word
embeddings and visual features into a common semantic space; (3)
Graph Self-Attention Module: leveraging a self-attention mecha-
nism to embed entities via constructing an adjacency matrix based
on the space position of nodes; (4) Relation Inference Module:
creating the joint global graph representation and predicting entity
and relationship labels as the final scene graph result.

ReIDN [68]. Since a subject or object is related to one of
many instances of the same class, most models fail to distinguish
between the target instance and the others. Besides, the model
fails to identify the correct pairing as the image contains multiple
subject-object pairs interacting in the same way. These two ob-
stacles result in two types of errors respectively, Entity Instance
Confusion and Proximal Relationship Ambiguity.

In this paper a set of Graphical Contrastive Losses are pro-
posed to tackle these issues. The losses use the form of the margin-
based triplet loss, but are specifically designed to address the
two aforementioned errors. It adds additional supervision in the



form of hard negatives specific to Entity Instance Confusion and
Proximal Relationship Ambiguity

The proposed Relationship Detection Network (RelDN),
which has two stages. The first stage of the ReIDN exhaustively
returns bounding box regions containing every pair. In the second
stage, it computes three types of features for each relationship
proposal: semantic, visual, and spatial. Each feature is used to
output a set of class logits, which we combine via element wise
addition, and apply softmax normalization to attain a probability
distribution over predicate classes.

CMAT [69]. The coherency of the visual context is not
captured effectively by existing SGG methods due to the main
reason: the cross-entropy (XE) based training objective is not
graph-coherent which means the detected objects and relationships
should be contextually consistent but not independent, and the
training objective of SGG should be local-sensitive which implies
the training objective is sensitive to the change of a single node.

This paper proposes a novel training paradigm: Counterfactual
critic Multi-Agent Training (CMAT), to simultaneously meet the
graph-coherent and local-sensitive requirements. Its framework is
as follows. Given an image, the model uses RPN to propose object
regions. Then, each object (agent) communicates with others to
encode visual context. After agent communication, the model
predicts class confidence for all objects. Based on the confidence,
it selects (random or greedily sampling) object labels and infers
visual relationship of object pairs. Finally, it generates the scene
graph. In the training stage, a counterfactual critic is used to
calculate the individual contribution.

Objects are viewed as cooperative agents to maximize the
quality of the generated scene graph in the communicative multi-
agent model . The action of each agent is to predict its object
class labels, and each agent can communicate with others using
pairwise visual features. The communication retains the rich visual
context in SGG. After several rounds of agent communication, a
visual relationship model triggers the overall graph-level reward
by comparing the generated scene graph with the ground-truth.

DSG [70]. Given an image and a triplet query (subject,
relation, object), this paper attempts to find the bounding boxes
of the subject and object that participate in the relation. This
work designs Differentiable Scene-Graphs (DSG) to address the
above challenges of which the architecture is as follows. The
input consists of an image and a relationship query triplet subject,
relation, object. A detector produces a set of bounding box
proposals. An RoiAlign layer extracts object features from the
backbone using the boxes. In parallel, every pair of box proposals
is used for computing a union box, and pairwise features extracted
in the same way as object features. These features are used as
inputs to a Differentiable Scene-Graph Generator Module which
outputs the Differential Scene Graph, a new and improved set
of node and edge features. The DSG is used for both refining
the original box proposals, as well as a Referring Relationships
Classifier, which classifies each bounding box proposal as either
Subject, Object, Other or Background. The ground-truth label of a
proposal box will be Other if this proposal is involved in another
query relationship over this image. Otherwise the ground truth
label will be Background.

DSGs are an intermediate representation trained end-to-end
from the supervision for a downstream reasoning task. The key
idea is to relax the discrete properties of scene graphs such that
each entity and relation is described with a dense differentiable
descriptor.
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Triplet-Aware Scene Graph Embeddings [71]. This paper
attempts to solve the layout prediction problem which predict
scene layout masks and object localization (bounding boxes),
based upon the structure of the scene graph. A layout prediction
network is proposed as follows. A GCNN first processes an input
scene graph to produce embeddings corresponding to object nodes
in the graph. Singleton object embeddings are passed to the next
stage of the layout prediction network to form a set of triplet
embeddings where each is composed of a (subject, predicate,
object ) embedding. These are passed via a triplet mask prediction
network. Rather than just learn individual class labels, the network
learns to label objects as either subject or object, enforcing both an
ordering and relationship between objects. Triplet embeddings are
also passed through a triplet superbox regression network, where
the network is trained to do joint localization over subject and
object bounding boxes. Ultimately, all of the outputs of the second
stage of the layout prediction model are used to compose a scene
layout mask with object localization.

In their work, several new supervisory signals that are condi-
tioned upon triplet embeddings are introduced to train scene layout
prediction models. Besides, data augmentation is applied by using
heuristic-based relationships to maximize the number of triplets
during training. The goal is to learn a triplet-aware scene graph
embedding with the hypothesis additional supervision and data
augmentation will enriched the embedding representation.

3.1.6 Other SGG methods with facts alone

SG-GAN [27]. Most of previous SGG methods use detectors to
detect all the objects, and then generate the whole scene graph.
Therefore, these methods have limitations of bounding boxes
being available and without using the objects’ attributes. The
method first generates small sub-graphs, which can describe a
specific region of the input image about a scene. Then, all of
the generated sub-graphs are used to construct the complete scene
graph. In this method, the images and noise information are first
fed to a generator, then a CNN is used to extract the image
features, and a dynamic image representation and attention vector
are obtained using an attention mechanism. Finally, the image
representations are used to produces triples by LSTM. Inspired
by GAN, the triple generator is trained adversarially. While the
trained triple Generator would resolve all the triples into a graph.

VRL [29] may be the first SGG method by using reinforce-
ment learning [72]. This method is to gradually generate the scene
graph, and the relationships between subjects and objects are
generated in each step, so that the final complete scene graph will
be gradually formed like a tree. For the whole model framework,
the input states of reinforcement learning is parts of state features,
including image features, subject features, object features and
history phrase information. Then there are three branches of output
actions, which are to determine the properties of the subjects,
the relationships between the current subjects and objects and the
categories of the next objects. Variation-structured reinforcement
learning actually refers to that the action space of the model varies
according to the state in each step, so as to reduce the action
selecting space and improve the accuracy. To this end, Directed
Semantic Action Graph is constructed by the training set, which
is actually the statistical information of relations and attributes in
the data set relative to the object categories. Finally, three reward
functions is defined to reflect the detection accuracy of taking
action in a specific state.



CMAT [69]. To improve the quality of scene graph, the most
important thing is to improve the performances of relationship
recognition. Therefore, CMAT combines objects recognition and
relation recognition to effectively improve the quality of scene
graph, and each object in the images is regarded as an agent.
The existing algorithms use the cross entropy as the loss function
of object detection and recognition, but there is a problem that
the importance of each object is different. To this end, graph-
level metrics (such as Recall @k [9] and SPICE [73]]) are used
to evaluate the detection results, and used as a supervisory signal
for model training. Then, The final multi-agent policy-gradient is
used to maximize the graph-level metrics.

Analogies Transfer [[74]. During generating the scene graph,
there are many unseen relationships of the individual entities in
the dataset.In order to generate a complete scene graph, Peyre et
al. proposed to use analogy transformations to detect the unseen
relationships that involve similar objects for the model. The whole
network model has two stages. In the first stage, all the subjects
and objects are detected, and the module of visual phrase embed-
ding is to learn the features of subject, object, predicate and visual
phrase by optimizing the joint 10ss L;oint = Lg~+ Lo+ Lp+ Lyp.
Then if we need to identify a unseen triplet, the model can
utilize analogy transformation to compute the similarity between
the unseen triplet and its similar triplets to estimate this unseen
relationship.

GB-NET [5]. Due to a unified formulation of the two con-
structs of Knowledge Graph and Scene Graph, Graph Bridging
Network (GB-NET) is proposed to incorporate the rich combi-
nation of visual and commonsense information. The scene graph
and entity bridges are initialized using Faster R-CNN first. Then a
variant of GGNN [[75] is used to propagate messages throughout
the graph to update node representations. which establishes a
bridge between instance-level, visual knowledge and common-
sense knowledge, and a scene graph can be generated.

In addition, A simple and effective SSG method was proposed
in [76] by jointly embedding the images and scene graphs. This
method try to generate a scene graph from images by investigating
several existing methods based on bag-of-words, sub-path repre-
sentations, as well as graph neural networks.

3.2 SGG by introducing additional information

To generate a scene graph faster and more accurately, scene graph
generation models pay more attention to introducing multiple
types of prior information, such as language priors, visual priors,
knowledge priors, contexts, and so on. In this section, we discuss
the related works of SGG by introducing additional information.

Phrase Cues [33]. Plummer proposes a model framework for
localization or grounding of phrases in image by using a large
collection of linguistic and visual cues, which is obtained from
the captions. Then the single phrase cues (SPCs) and the phrase
pair cues (PPCs) are used to combine with Canonical Correlation
Analysis (CCA) [77] to detect visual relationships. Therefore, in
[33], the introduced priors are a list of the cues with corresponding
phrases from the sentence, and these cues are extracted from the
captions.

Language Prior Model. [9] Given a set of fully supervised
images with relationship annotations where the objects are local-
ized as bounding boxes and labelled as 01, p, 02, Lu et.al. trained a
visual appearance module and a language module individually and
later combined them together through a objective function to im-
prove the final performance. Compared to Visual Phrase designed
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a separate detector for every single relationship, Language Prior
Model learned the individual appearances of its comprising objects
and predicate with the visual appearance module. Given N objects
and K predicates, Visual Phrases would need to train O(N?K)
unique detectors while only O(N + K) detectors needed trough
visual appearance module. For SGG, the language module is very
novel to project relationships into a word embedding space where
similar relationships are optimized to be close together based on a
semantic prior of relationships. In this way, rare relationships can
be predicted despite the long tail of infrequent relationships.

LK Distillation [50]. In most previous SGG methods, the
visual relationship between two entities are generated. While in
[SO, Yu et al. try to model the three entities in a scene jointly,
which can more accurately reflect these entities’ relationships
compared to modeling them independently. However, to reduce
the complexities of model learning, the knowledge of linguistic
statistics is used to regularize visual model learning. The use-
ful linguistic knowledge can be extracted by mining from both
training annotations (internal knowledge) and lots of publicly
information, such as Wikipedia. The distilled linguistic knowledge
is used in a teacher-student knowledge distillation framework [78]]
to predict the predicate by combing the visual features.

CDDN [30]). Cui et al. proposed a context-dependent diffusion
network (CDDN) framework to identify the visual relationships.
Before carrying out CDDN, object detectors are used to acquire
the locations, labels and confidence scores of all the detected
objects, which would be used as the input for CDDN. Then two
types of global context information (semantic priors and spatial
scenes) are used for visual relationship detection. Semantic priors
are learned by a word semantic graph from language priors, and
spatial scenes are obtained by a visual scene graph to extract the
visual features. Then these two types of global context information
are adaptively aggregated by a diffusion network to estimated the
predicates.

CISC [79] is another SGG method by introducing the context
information. Besides significative visual pattern is als be explored
for SGG. In Relationship Context-InterSeCtion Region (CISC)
method, the context for relationships is constructed to benefit the
relationship recognition from their association, and the proposed
intersection region are used to discover the effective visual pattern
for relationship recognition.

Knowledge-embedded routing network [31]. In the real
world, the distribution of the relationships is unbalanced, which
leads to the poor performance of the existing methods in recogniz-
ing the relationships with the low frequency. To solve this problem,
the SGG model based on knowledge-embedded routing network
is proposed. A series of object regions are generated using Faster
RCNN. Then, a graph network is used to propagate the features of
nodes on the graph to learn the more contextualized features, so as
to predict the labels in each object pair. Moreover, another graph is
used to correlate the given object pairs with possible relationships,
and a graph neural network is used to infer their relationship.
The process is repeated for all object pairs, and the scene graph
is generated. Therefore, the statistical correlations between object
pairs and their relationships is the introduced priors for SGG.

KB-GAN [32]. Since the existing scene graph datasets have
the problem of the long tail in the distribution of object and
relationship labels. Commonsense knowledge extracted from the
external knowledge bases (KB) is used to refine object and phrase
features for SGG, and an auxiliary image reconstruction path
based on GAN is introduced to regularize the whole SGG network



(KB-GAN). Therefore, in fact KB-GAN is also an application of
scene graph on image generation.

3.3 videos and pixels-level for SGG

SGFB. In [80], a new data structure: Action Genome is introduced
as a representation of spatio-temporal scene graphs. To generate
the spatio-temporal scene graphs, Scene Graph Feature Banks
(SGFB) is proposed, and the spatio-temporal scene graphs are
further incorporated into a sequence of scene graph features as
the final representation Fsg = [f1, f2, ..., fr], which is used
to predict action labels by 3D CNNs. With Action Genome, the
action recognition task has achieved better performance on the
Charades dataset.

Ontology graph is proposed in [3] to describe objects, parts,
actions and attributes in a scene. Ontology graph has several
similarities with scene graph, for example, these two types of
graph structures have objects, attributes and relationships, and both
of them also have their sub-graphs. In [3]], ontology graph is used
for scene-centric joint-parsing of cross-view videos, and the tasks
of object detection, multi-object tracking, action recognition and
human attributes recognition are used to evaluate the proposed
scene-centric joint-parsing framework.

Pixels2Graph [81]. the existing relationship detection meth-
ods usually have two steps: object detection and relationship
recognition, while Pixels2Graph is to directly get objects and
relationships from the pixels in the original images. In the method
of Pixels2Graph, The elements of the scene graph, including nodes
and edges, are detected first, actually that is the objects and the
bounding boxes of the relations on the graph are detected. Then
these elements are combined with associative embedding to form
the relationships of the objects.

4 APPLICATIONS OF SCENE GRAPH

Scene graph can describe the objects in a scene and the re-
lationships between the objects, which provides better visual
representations for relevant visual tasks, and can greatly improve
the model performance of these visual tasks. In this section, we
stated the applications of scene graph to different types of visual
tasks.

4.1 Image Retrieval

Image retrieval is a classic visual task in computer vision. In
this task, the query could be the content of an image or the
text describing the image. Content-based image retrieval methods
typically use low-level visual features. There has been much
recent interest in models that can jointly reason about images and
natural language descriptions. While these models are typically
limited in terms of expressiveness. In contrast, scene graphs
are a structured representation of visual scenes. Each node is
explicitly grounded in an image region,it also explicitly repre-
sent and reason about the objects, attributes,and relationships in
images, avoiding the inherent referential uncertainty of text-based
representations. Therefore, scene graph-based image retrieval has
broad development prospects.

In 2015, J.Johnson et al.[1] proposed the concept of scene
graph, and design a conditional random field model for image re-
trieval by utilizing the scene graph, which is constructed manually.
In [82], a new framework is proposed for online cross-modal scene
retrieval based on binary representations and semantic graph. This
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approach can also do text-based image retrieval. Overview of
proposed framework. Their approach mainly consists of four parts:
cross-modal binary representation, semantic graph across different
modalities, the joint objective function and the online update
method. Ramnath et al. [83]] proposed a neural-symbolic approach
for a one-shot retrieval of images from a large scale catalog,
given the caption description. To facilitate this, they represent
the catalog and caption as scene-graphs and model the retrieval
task as a learnable graph matching problem, trained end-to-end
with a reinforce algorithm. Wang et al. [84] propose to represent
image and text with two kinds of scene graphs: visual scene graph
(VSG) and textual scene graph(TSG),and the image-text retrieval
task is then naturally formulated as cross-modal scene graph
matching. Given a query in one modality (a sentence query or
an image query), the goal of the image-text cross-modal retrieval
task is to find the most similar sample from the database in
another modality. Therefore, their Scene Graph Matching (SGM)
model aims to evaluate the similarity of the image-text pairs by
dissecting the input image and text sentence into scene graphs.
The framework of SGM is illustrated in Figure, which consists of
two branches of networks. In the visual branch, the input image
is represented into a visual scene graph (VSG) and then encoded
into the visual feature graph (VFG). Simultaneously, the sentence
is parsed into a textual scene graph (TSG) and then encoded into
the textual feature graph (TFG) in the textual branch. Finally, the
model collects object features and relationship features from the
VFG and TFG and calculates the similarity score at the object-
level and relationship-level, respectively.

4.2

Image generation of complex realistic scenes with multiple objects
and desired layouts is one of the core frontiers for computer
vision. Despite significant recent progress on generative models,
controlled generation of images depicting multiple and complex
object layouts is still a difficult problem.

Johnson et al. [35] attempted to generate a realistic image
given the corresponding scene graph with object labels and
their relationships by Image Generation Network (IG-Net). This
problem is a rebuilding work which meets the following three
challenges: how to process the graph-structured input, how to
guarantee the uniformity between the generated images and their
corresponding scene graphs, and how to ensure the authenticity
of the synthesized images. These challenges are settled as fol-
lows. The input which is a scene graph specifying objects and
relationships will be processed with a graph convolution network
in IG-Net, which passes information along edges to compute
embedding vectors for all objects. These vectors thereafter are
used to predict bounding boxes and segmentation masks for
objects, which guarantees the uniformity between the generated
images and their corresponding scene graphs. The bounding boxes
and segmentation masks are jointly combined to form a scene
layout, which is then used to generate a rough image I using
the cascaded refinement network (CRN). The authenticity of [ is
solved by adversarially training IG-Net against a pair of discrimi-
nator networks D;,,g and Dy as this processure encourages I to
both appear realistic and to contain realistic, recognizable objects.

For generating images, Zhao et al. [85] proposed an end-to-end
method (Layout2Im) for generating diverse images from layout
(bounding boxes+categories). The representation of each object
is disentangled into a specified/certain part (category) and an
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unspecified/uncertain part (appearance). The category is encoded
using a word embedding and the appearance is distilled into
a low-dimensional vector sampled from a normal distribution.
Individual object representations are composed together using
convolutional LSTM to obtain an encoding of the complete layout,
and then decoded to an image. Several loss terms are introduced
to encourage accurate and diverse image generation.

Since the previous image generation methods cannot introduce
new additianl information to the existing description, and are lim-
ited to generating images at one time. Therefore, Mittal et al. [86]
proposed a recursive network architecture that preserves the image
content generated in previous steps and modifies the accumulated
images based on newly provided scene information. This method
allows to preserve the context in sequentially generated images
by subjecting certain information to subsequent image generation
conditions.

To solve the problem that it needs to ensure whether the
generated image conforms to the scene graph, Tripathi et al.
[87] propose an image generation method by harnessing scene
graph context to improve image generation. In this method, They
introduce a scene graph context network that pools the features
generated from the graph convolutional neural network. These
pooled context features are then passed to a fully-connected layer,
where embeddings are generated, so as to be provided to both
the generator and the discriminator networks during training. The
scene context network encourages the images not only to appear
realistic, but to respect the scene graph relationships.

In [88], a semi-parametric method (PasteGAN) is proposed
by Yikang et al. for generating the image from the scene graph
and the image crops, where spatial arrangements of the objects
and their pair-wise relationships are defined by the scene graph,
and the object appearances are determined by the given object
crops.The two branches are trained simultaneously with the same
scene graph: One branch focuses on generating the diverse images
with the crops retrieved from the external memory, while the other
branch aims at reconstructing the ground-truth image using the
original crops.

To improve the quality of generated images, several previous
methods are proposed for mapping Scene Graph to images, which
is invariant to a set of logical equivalences. Tripathi et al. [89]
proposed a new image generation method based scene graph. In
this method, the scene graph representations are first enhanced
with heuristic-based relations, which increases the minimal stor-
age overhead. Then, the extreme points representations are used
to supervise the scene composition network learning.

Generating realistic images of complex visual scenes becomes
very challenging if we want to control the structure of the gener-
ated images. To this end, Herzig et al. [36] present a novel model
which can inherently learns canonical graph representations, thus
it can ensure that semantically similar scene graphs could result
in similar predictions. In addition, the proposed model can better
capture object representation independently of number of objects
in the graph.

A narrative collage is an interesting image editing method
for summarizing the main theme or storyline behind an image.
in [90]], Fang et al. introduced a layer graph and a scene graph
to represent the relative depth order and semantic relationship
between the objects. the input image collection is clustered to
select representative images, and then a group of semantic salient
objects are detected from each representative image. Both layer
graphs and scene graphs are constructed and combined according
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to the specific rules for reorganizing the detected objects in each
image.

4.3

Different from the traditional image captioning methods, a method
with scene-graph based semantic representation for image caption-
ing is proposed in [91]. To embed scene graph as an intermediate
state, the task of image captioning is divided into two phases:
concept cognition and sentence construction respectively. In this
method, a CNN-RNN-SVM framework is proposed to generate
the scene-graph-based sequence, which is then transformed into a
bit vector, as the input of RNN in the next phase for generating
the captions.

Grounding language to visual relations is critical to various
language-and-vision applications. In [92]], Neural Scene Graph
Generators are designed to tackle two language-and-vision tasks
of image-text matching and image captioning. The Scene Graph
Generators can learn effective visual relation features to facilitate
grounding language to visual relations and subsequently improve
the two applications.

Since the graphical representations with conceptual positional
binding can improve Image captioning. a novel technique for cap-
tion generation using the neural-symbolic encoding of the scene-
graphs is introduced in [93|], and this technique is derived from re-
gional visual information of the images, and called Tensor Product
Scene-Graph-Triplet Representation (TPsgtR). A neuro-symbolic
embedding is introduced to embed identified relationships among
different regions of the image into concrete forms, instead of
relying on the model to compose for any/all combinations. These
neural symbolic representation helps in better definition of the
neural symbolic space for neuro-symbolic attention and can be
transformed to better captions.

Scene Graph Auto-Encoder (SGAE) is proposed in [40] to
incorporate the language inductive bias into the encoder-decoder
image captioning framework. Therefore, exploiting the inductive
bias as a language prior is expected to help the conventional
encoder-decoder models less likely overfit to the dataset bias
and focus on reasoning. Specifically, the scene graph is used to
represent the complex structural layout of both image (I) and
sentence (S). In the textual domain, SGAE is used to learn
a dictionary (D) that helps to reconstruct sentences. While in
the vision-language domain, the shared D is used to guide the
encoder-decoder. Thanks to the scene graph representation and
shared dictionary, the inductive bias is transferred across domains
in principle.

In [42]. A new scene graph-based framework comprised an
image scene graph generator, a sentence scene graph generator, a
scene graph encoder and a sentence decoder is present for unpaired
image captioning. Specifically, the scene graph encoder and the
sentence decoder are trained on the text modality. Moreover, an
unsupervised feature alignment method is proposed to map the
scene graph features from the image to the sentences.

A framework based on scene graphs for image captioning is
proposed in [41]] to solve the problem that most of the previous
methods treat entities in images individually, thus lacking struc-
tured information. To leverage both visual features and semantic
knowledge in structured scene graphs, CNN features are extracted
from the bounding box offsets of object entities for visual rep-
resentations, and the semantic relationship features are extracted
from triples for semantic representations. After obtaining these
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features, a hierarchical-attention-based module is used to learn
discriminative features for word generation at each time step.

In [94], the Scene Graph Captioner (SGC) framework is
proposed for the image captioning task, SGC is used to capture
the comprehensive structural semantic of visual scene by explicitly
modeling objects, attributes of objects, and relationships between
objects. While the LSTM-based framework translates these infor-
mation into the final text.

Storytelling from an image stream. In [4], the scene graph
is used to generate the story from an image stream. The proposed
SGVST models visual relations in one image and cross-images,
which is conducive to image description. Experimental results
show that this method can significantly improve the quality of
story generation. The Scene Graph Parser converts an image into
a Scene Graph G. Then, the scene Graph is input multi-modal
Graph ConvNet, and the nodes in the scene graph are enhanced
by Graph convolutional neural network (GCN). In order to model
the interaction between images, the temporal convolutional neural
network (TCN) is used to further optimize the visual representa-
tions of images. Finally, the features of relation aware, which is a
set of internal relation and cross-image relation, are obtained and
input to Hierarchical Decoder to generate stories.

4.4 Visual Question Answering

The scene graph contains the structured semantic information of
an image, which includes the knowledge of present objects, their
attributes, and pairwise relationships. Thus, the scene graph can
provide a beneficial prior for other vision tasks like VQA.

In [95], inspired by conventional QA systems that operate
on knowledge graphs, an alternative approach is investigated.
Specifically, the scene graphs derived from images is investigated
for Visual QA: an image is abstractly represented by a graph
with nodes corresponding to object entities and edges to object
relationships. Then, the graph network (GN) is adapted to encode
the scene graph and perform structured reasoning according to the
input question. Since scene graphs can already capture essential
information of images and graph networks, the QA method based
scene graph have the potential to outperform state-of-the-art Visual
QA algorithms.

A method of Visual Question Answering is proposed based
scene graphs and visual attention [44]. In this method, generating
natural language (NL) explanations is used for the Visual Question
Answering (VQA) problem. NL explanations comprising of the
evidence is generated to support the answer to a question asked to
an image using two sources of information: annotations of entities
in an image generated from the scene graph and the attention map
generated by a VQA model when answering the question.

BLOCK, a new multimodal fusion based on the block-
superdiagonal tensor decomposition [43]], is introduced for achiev-
ing the tasks of visual question answering and visual relationship
detection. BLOCK is able to represent very fine interactions
between modalities while maintaining powerful mono-modal rep-
resentations. Moreover, the end-to-end learnable architectures is
designed for representing relevant interactions between modalities.

In [96], a Scene Graph Convolutional Network (Scene GCN)
is designed to jointly reason the object properties and relational
semantics for VQA task. In this method, to effectively represent
visual relational semantics, a visual relationship encoder is built
to yield discriminative and type-aware visual relationship embed-
dings constrained by both the visual context and language priors.
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Moreover, SceneGCN is proposed to reason about the visual clues
for the correct answer under the guidance of the question.

4.5 Visual social and human-object relationship detec-
tion

In this section, we will discuss the methods for visual social rela-
tionship recognition and visual human-object relationship recog-
nition by using scene graph.

Social relationships are the foundation of human social struc-
ture. Developing computational models to understand social re-
lationships from visual data is critical to building intelligent ma-
chines that can better interact with humans in social environments.
In [37], a Dual-Glance model is proposed for social relationship
recognition. In this method, the person of interest is detected first,
and then attention mechanisms are used to exploit contextual cues.
Furthermore, Li et al. proposed an Adaptive Focal Loss to leverage
the ambiguous annotations for more effective learning to solve the
problem that visually identifying social relationship bears certain
degree of uncertainty.

The pose-guided Person-Object Graph and Person-Pose Graph
[97]] are proposed to model the actions from persons to object
and the interactions between paired persons, respectively. Based
on the graphs, social relation reasoning is performed by graph
convolutional networks. One branch is designed to learn global
features from the whole image. A deep CNN, i.e., ResNet is used
to learn knowledge about the scenes for social relation recognition.
The other branch is focused on regional cues and fine interactions
among persons and contextual objects for social relation reason-
ing, and contains three main procedures. Social relation reasoning
is performed on the two graphs by graph convolutional networks.
The social relation between a pair of persons is predicted by
integrating the global feature from CNN and the reasoning feature
from the GCNs.

Adversarial adaptation of scene graph model is present for
understanding civic issues in [39]]. In this model, Faster R-CNN
provides the object labels and their bounding regions. Object
context generates a contextualized representation for each object.
Edge context generates a contextualized representation for each
edge using the representation of the object pairs. During adver-
sarial training, information regarding the edge contexts passed
on to the Discriminator, which learns to distinguish between
the seen and unseen object pairs. The training objective of the
Discriminator results in gradients flowing into the Discriminator as
well as the edge context layer. The loss for the model decreases as
the model learns to fool the Discriminator by adapting a uniform
representation for seen and unseen classes.

Visual relationship recognition aims at interpreting rich in-
teractions between a pair of localized objects. Zoom-Net in
[38] is proposed to mining deep feature interactions for visual
relationship recognition, and the method of Spatiality-Context-
Appearance Module (SCA-M) the core of Zoom-Net, and attempts
to capture contextual information by directly fusing pairwise fea-
tures. The proposed SCA-M integrates the local and global contex-
tual information in a spatiality-aware manner, and three classifiers
with intra-hierarchy structures are applied to the features obtained
from each branch for visual relationship recognition.

To solve diverse interactions problem, Plesse et al. [98] pro-
posed guided proposal framework, Semantic knowledge distilla-
tion and Internal knowledge distillation. Object detection is only
the first step towards image understanding, as images are more



than the sum of their parts and can not be fully understood without
the relationships between these objects. such tasks have been
enabled by the releases of large scale datasets providing bounding
box annotations paired with natural language descriptions, or
triplet annotations. Predicates are semantically similar when they
appear in similar contexts. The purpose of this method is to restrict
the outputs to a subset of predicates that are the most probable for
a given pair of objects.

Recognizing human object interactions (HOI) is an important
part of distinguishing the rich variety of human action in the visual
world. A novel method for Human-Object Interactions (HOI)
recognition is proposed in [99]]. In this method, HO-RCNN detects
HOISs in two steps. First, proposals of human-object region pairs
are generated by using state-of the-art human and object detectors.
Then, each human object proposal is passed into a ConvNet to
generate HOI classification scores. The whole network adopts
a multi-stream architecture to extract features on the detected
humans, objects, and human-object spatial relations. Given a
human-object proposal, HO-RCNN classifies its HOIs using a
multi-stream network, where different streams extract features
from differents sources.

Furthermore, a multi-task approach based on Zero-Shot Learn-
ing is proposed in [100] to scale all combinations of human-object
interactions. This approach address the challenge of scaling human
object interaction recognition by introducing an approach for zero-
shot learning that reasons on the decomposition of HOIs as verbs
and objects. Specifically, a factorized model consisting of both
shared neural network layers as well as independent verb and
object networks is introduced. The entire model is trained jointly
in a multi-task fashion. For test time, the scores are calculated
for all combinations of verb-object prediction pairs to produce
the final HOI prediction where the verb and object are tightly
localized.

In [101]], Transferable interactiveness Prior, which indicates
whether human and object interact with each other or not, is
explored for human-object interaction detection. The interactive-
ness prior can be learned across HOI datasets, regardless of
HOI category settings. Therefore, the core idea is to exploit
an Interactiveness Network to learn the general interactiveness
prior from multiple HOI datasets and perform Non-Interaction
Suppression before HOI classification in inference.

InteractNet is proposed in [[102] to detecting and recognizing
Human-Object interactions. This network model is driven by a
human-centric approach, and would be used to address the task of
detecting (human, verd, object) triplets in challenging everyday
photos. There is a hypothesis that the appearance of a person is a
powerful cue for localizing the objects they are interacting with.
To exploit this cue, the model learns to predict an action-specific
density over target object locations based on the appearance of a
detected person. Moreover, the proposed model also jointly learns
to detect people and objects, and by fusing these predictions it
efficiently infers interaction triplets in a clean, jointly trained end-
to-end system.

Graph Parsing Neural Network [103]] is proposed by Qi et al.
for addressing the task of detecting and recognizing human-object
interactions (HOI) in images and videos. GPNN is a framework
that incorporates structural knowledge while being differentiable
end-to-end. For a given scene, GPNN infers a parse graph that
includes the HOI graph structure represented by an adjacency
matrix and the node labels. Within a message passing inference
framework, GPNN iteratively computes the adjacency matrices
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and node labels.

4.6

Scene graphs allows us to reason about the objects and their
relationships as compared to an unstructured text description.
Possible layouts of the images are then inferred from the scene
graph representation. (subject,relation, object) is the key to
image understanding and reasoning [104], [105], [106]]. To un-
derstand an image, it needs to recognize different components
(objects, actions, scenes) and infer higher-level events, activities,
and background context. In addition, to detect and infer such
information needs a combination of vision modules, reasoning
modules, and background knowledge.

Wang et al.[107] proposed a deep convolutional neural net-
work to increase segmentation accuracy by learning from an Image
Descriptions in the Wild (IDW-CNN), which has three important
parts, including a ResNet-101 network for feature extraction, a
network stream predicts its segmentation label-map, and another
stream estimates its object interactions. IDW-CNN jointly trains
IDW and existing image segmentation dataset, and fully explores
the knowledge from different datasets, thus improves the per-
formance of both datasets. As only weak labels are used, so
IDW-CNN can also be used Semi- and Weakly-supervised Image
Segmentation.

Aditya et al.[104] present an intermediate knowledge struc-
ture called Scene Description Graph (SDG), which uses a deep
learning-based perception system to obtain the objects, scenes and
constituents with probabilistic weights from an input image. A
common-sense knowledge base is built from image annotations
along with a Bayesian Network of commonly occurring objects
and scene constituents (the concepts that can not be seen, but can
be understood from the scene) are inferred to predict how the
objects interact in the scene.

Zhang et al.[105] made a research on relationship recognition
at an unprecedented scale, where the total number of visual entities
is more than 80,000. An image is input to the visual module, and
three visual embeddings x, x,, and x,, for subject, relation, and
object can be obtained. To this end, a continuous output space
is used for objects and relations instead of discrete labels, and a
new relationship detection model is developed tp embed objects
and relations into two vector spaces, and learns a visual and a
semantic module to map the features from the two modalities into
a shared space.

Shi et al. [106] advanced NMN towards X visual reasoning
by using the proposed explainable and eXplicit Neural Modules
(XNMs) reasoning over scene graphs. The scene graph can in-
sulate the “low-level” visual perception from the modules, and
thus can prevent reasoning shortcut of both language and vision
counterpart. A scene graph is the knowledge representation of a
visual input, where the nodes are the entities and the edges are the
relationships between entities. Given an input image and a ques-
tion, first parse the image into a scene graph and parse the question
into a module program, and then execute the program over the
scene graph. A set of generic base modules are proposed, and this
modules can conduct reasoning over scene graphs— explainable
and eXplicit Neural Modules (XNMs) —as the reasoning building
blocks. Besides, XNMs are totally attention-based, making all the
intermediate reasoning steps transparent.

Generating semantic layout from scene graph is a crucial
intermediate task of connecting text to image. To Learn the
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relation from semantic description to its visual incarnation leads
to important applications, such as text-to-image synthesis and se-
mantic image retrieval. The underlying taskS of inferring semantic
layout from scene graph and connecting text to image are achieved
in [108], [109].

Li et al.[108]] proposed a conceptually simple, flexible and
general framework using sequence to sequence (seq-to-seq) learn-
ing to infer semantic layout from scene graph called Seq-SG2SL,
which derives sequence proxies for the two modality, and a
Transformer-based seq-to-seq model learns to transduce one into
the other. A scene graph is decomposed into a sequence of
semantic fragments (SF), one for each relationship. A semantic
layout is the consequence from a series of brick-action code
segments (BACS), dictating the position and scale of each object
bounding box in the layout. Viewing the two building blocks, SF
and BACS, as corresponding terms in two different vocabularies,
a seq-to-seq model is fittingly used to translate. Seq-SG2SL is
an intuitive framework that learns BACS to drag-and-drop and
scale-adjust the two bounding boxes of subject and object in a
relationship to the layout supervised by its SF counterpart.

Advancements on text-to-image synthesis generate remarkable
images from textual descriptions. However, these methods are
designed to generate only one object with varying attributes.
Talavera et al. [109] proposed a method that infers object lay-
outs from scene graphs has been proposed as a solution to this
problem, and an object encoding module is designed to capture
object features and use it as additional information to the image
generation network. The goal is to generate an image that matches
the descriptions provided in an input scene graph.

The task of eferring Expression Grounding (REF) is to localize
a region in an image, where the region is described by a natural
language expression. To achieve this task fundamentally, it should
first find out the contextual objects and then exploit them to
disambiguate the referent from other similar objects by using the
attributes and relationships. Liu et al.[110] present a novel REF
framework called Marginalized Scene Graph Likelihood (MSGL),
which jointly models all the objects mentioned in the referring
expression, and hence allows the visual reasoning with the referent
and its contexts. Compared with the other discriminative models
which neglect the rich linguistic structure and focus on holistic
grounding score calculation, MSGL exploit the full linguistic
structure. MSGL first constructs a CRF model based on scene
graphs, parsed from the sentences, and then marginalizes out the
unlabeled contexts by belief propagation.

4.7 3D scene graph

3-D scene graph is defined in [111] by Kim et al. to represent
the physical environments in a sparse and semantic way, and
a 3-D scene graph construction framework is also proposed.
Similar to 2D scene graph generated from 2D images, 3-D scene
graph describes the environments compactly by abstracting the
environments as graphs, where nodes depict the objects and
edges characterize the relations between the pairs of objects. As
the proposed 3-D scene graph illustrates the environments in a
sparse manner, the graph can cover up an extensive range of
physical spaces, which guarantees the scalability. Furthermore, the
applicability of the 3-D scene graph is verified by demonstrating
two major applications: visual question and answering (VQA) and
task planning, and achieved better performance than the traditional
methods.
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3D Scene Graph can provides numerically accurate quantifi-
cation to relationships, thus 3-D scene graph as an environment
model and the 3-D scene graph construction framework has got
excellent scores. In [2], a 3-D scene graph construction method
is proposed. The input to this method is the typical output of 3D
scanners and consists of 3D mesh models, registered RGB panora-
mas and the corresponding camera parameters. Each panorama is
densely sampled for rectilinear images. Mask R-CNN detection
on them are aggregated back on the panoramas with a weighted
majority voting scheme. The output is the 3D Scene Graph of the
scanned space, which formulates as a four layered graph. Each
layer has a set of nodes, each node has a set of attributes, and
there are edges between nodes which represent their relationships.
Single panorama projections are then aggregated on the 3D mesh.
Finally, These detections become the nodes of 3D Scene Graph. A
subsequent automated step calculates the remaining attributes and
relationships.

In [112], Yang et al.proposed a novel method for inferring
precise support relations, and introduced a framework for con-
structing semantic scene graphs and assessing the quality. In
this method, a Convolutional Neural Network is used to detect
objects in the given images. Then, the precise support relations
between objects are inferred by taking two important auxiliary
information in the indoor environments. Finally, a semantic scene
graph describing the contextual relations within a cluttered indoor
scene is constructed. Compared with the previous methods for
extracting support relations, this proposed approach provides more
accurate results.

5 CONCLUSION

It is always the goal of computer vision to have a deep under-
standing of a scene, and then be able to reason about relevant
events, even some unseen events. Since scene graph, a new content
for scene description, is proposed in 2015, subsequently, a wave
of research works on scene graph generation and application has
been set off. Scene graph is a type of data structure that describes
the objects, attributes and the relationship between objects in
a scene, and has powerful expression for the scene. While the
first scene graph is established manually. Subsequently, many
scene graph generation methods are proposed to build a more
complete scene graph by a variety of network models, feature
extraction methods, and even by introducing the prior knowledge.
Meanwhile, some relevant models and methods are designed to
reduce the computational complexity of scene graph generation.
Furthermore, there are also many research works on applying
scene graph to different types of visual tasks, such as image
retrieval, image generation, image/video caption and so on. Due to
the scene graph’s powerful ability of scene representation and the
introduction of relevant knowledge information, the performances
of these visual tasks are greatly improved. Therefore, this paper
gives a systematic overview of the current researches on scene
graph generation and application. For scene graph generation, the
model types of object relation recognition are classified; while
we categorize scene graph applications according to the visual
tasks. The review of scene graph generation and application is to
summarize the latest scene graph research, point out the problems
that still need to be solved in future scene graph research. We
expect this review can provide an overall technical reference for
scene graph research.
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