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1. INTRODUCTION 
A novel approach for assessing the geometry of gears generated through hobbing, dubbed the shape deviation network, was 

introduced by Iba et al [1][2]. This methodology facilitates the visualization of phase differences among deviations from a holistic 

perspective. Building upon this, Kono et al. developed a network delineating tooth profile and helix deviations, employing 

artificial intelligence for image recognition to estimate hobbing-induced errors [3][4]. However, investigations into the distinctive 
attributes of hobbed gear's shape deviation network are notably lacking. In this investigation, we first construct a network 

utilizing tooth helix deviation curves of hobbed gears, followed by eigenvalue analysis of the graph Laplacian to quantitatively 

assess the intrinsic characteristics of the tooth helix deviation network. 

2. HOBBING SIMULATION AND GEAR SPECIFICATIONS 
In this manuscript, the shape deviation curves of a gear were derived employing the hobbing simulation software engineered by 

Kono (3). Table 1 shows the specifications of the gears to be hobbed. Additionally, Figure 1 illustrates the tooth helix deviation 

curve generated by the simulation. 

Table 1. Gear Specification.                      

Gear data 

Normal Module [mm] 2 

Number of Teeth [-] 30 

Normal Pressure Angle [deg.] 20 

Helix angle [deg.] 30 

Face width [mm] 15 

Fig. 1 Helix deviation curves 

3. CORRELATION COEFFICIENT  
A network is constructed from the shape deviation curves of the hobbed gear. In this section, we first explain the correlation 

coefficients that act as weights among nodes in the tooth profile deviation network. In this manuscript, the correlation coefficients 

are employed as quantitative metrics for phase differences in the tooth helix deviations. First, let 𝑓𝑗𝛽(𝑥) and 𝑓𝑘𝛽(𝑥) be two 

tooth helix deviation curves, where 𝑗 and 𝑘 are positive natural numbers from tooth number 1 to 𝑧 and 𝑥 is a variable in the 

tooth width direction. The inner product between the two tooth helix deviation curves is defined as in Equation (1). In this 

equation, 𝐿 means the range of integration. 
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Next, we define the norm of the 𝑗th tooth deviation curve 𝑓𝑗𝛽(𝑥) in equation (2). 
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Using these inner products and the norm of the deviation curve, we define the correlation coefficient between the two tooth helix 

deviation curves in equation (3). 
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Here, the defined correlation coefficient takes the range −1 ≤ 𝑟𝑗,𝑘 ≤ 1. If this coefficient is close to 1, it means that the phase 

difference between the two deviation curves is small, and vice versa. Furthermore, in order to consider the eigenvalue analysis 

of the graph Laplacian matrix as a mechanical vibration system composed of springs and masses, the defined correlation 

coefficient is normalized to vary from 0 to 1 according to the following equation. 

𝑅𝑗,𝑘 =
𝑟𝑗,𝑘+1

2
                                                                               （4） 

4. EIGENVALUE ANALYSIS OF GRAPH LAPLACIAN OF HELIX DEVIATION NETWORK 
We establish the tooth helix deviation network by defining the coefficients as links among the nodes according to equation (4). 

The resultant network can be characterized as an adjacency matrix. The adjacency matrix 𝐴 of the network with a total of 𝑁 

nodes becomes an 𝑁 × 𝑁 square matrix, where typically, the elements 𝐴𝑚,𝑚 of the adjacency matrix, where the link (𝑚, 𝑛) 

has a weight 𝑤𝑚,𝑛, are defined as follows: 

𝐴𝑚,𝑛 = {
𝑤𝑚,𝑛  (If 𝑣𝑚 and 𝑣𝑛 are connected)

0 (In other case)
           （5） 

The sum of the weighted links connecting each node is called the degree, and the matrix whose diagonal components are the 

degree is called the degree matrix 𝐷. The diagonal component 𝐷𝑖𝑖 of the degree matrix is represented by the following equation 

(6). 

𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗
𝑛
𝑗=1  （6） 

Using equations (5) and (6), the graph Laplacian matrix of the network is defined by the following equation 

𝐿 = 𝐷 − 𝐴 （7） 

Attempts to quantitatively evaluate the network created by performing an eigenvalue analysis of the graph Laplacian matrix. 

5. RESULT AND DISCUSSION 
Constructing a tooth helix deviation network from the correlation coefficients between the tooth helix deviations, we present the 

results of eigenvalue analysis conducted on the obtained graph Laplacian. In Figure 2 left, the vertical axis represents the 
eigenvalues, and the horizontal axis represents the degrees of the eigenvalues. Due to the properties of the graph Laplacian, the 

smallest eigenvalue is 0. Furthermore, the eigenvalues of the second and third are of the same magnitude, as are the eigenvalues 

of the fourth and fifth, and the sixth and seventh. 

 

 

 

 

 

 

 

 
 

 

 

Figure 2. Eigenvalues and eigen modes of the helix deviation network 

By normalizing the correlation coefficients, and since all coefficients take positive values, eigenvalue analysis of the graph 

Laplacian can be conceptualized as being replaced by a mechanical vibrational system composed of springs and masses. Here, 

the nodes of the network represent mass points, and the correlation coefficients can be regarded as springs connecting masses. 

Thus, eigenvalues can be interpreted as natural frequencies, and eigenvectors as corresponding vibration modes. Due to the 

properties of the graph Laplacian, there exists a zero-eigenvalue corresponding to a rigid mode with uniform amplitude. 

Subsequent eigenvalues appear in pairs, and their corresponding eigenmodes exhibit shapes with a 90-degree phase difference, 

resembling sine and cosine waves. By expressing it in this way, it has become possible to interpret the inherent characteristics 

of the tooth profile deviation network of hobbed gears more easily 
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