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Abstract— The Tree-Seed Algorithm, TSA for short, is a meta-heuristic optimization algorithm inspired by the relationships between 
trees and seeds. The performance of TSA on the lower dimensional function optimization had been proved, in this work, we applied 
TSA to optimize higher dimensional functions. In this study, a version of TSA has been developed, called iTSA, which has been applied 
to solve 50 and 100 dimensional numeric functions. The improvement is based on the usage of more solution update mechanisms 

instead of one mechanism. In experiments, CEC2015 benchmark functions are used and iTSA is compared with the basic version of 
TSA, artificial bee colony, particle swarm optimization and some variants of differential evolution algorithm. The experimental results 
are reported as mean, max, min solutions and standard deviation of the 30 different runs. The experimental results also show that the 
proposed algorithm produces comparable and robust solution in terms of solution quality and robustness.  
Keywords: tree-seed algorithm, update mechanism, function optimization, CEC2015 

1. Introduction 

Swarm intelligence is an attempt to design algorithms or distributed problem solving devices inspired by the collective 

behaviour of social insects and other animal societies (Bonabeau, Dorigo et al. 1999). Swarm intelligence is mainly 

inspired by social behaviour patterns of organisms that live and interact within large groups of unsophisticated 

autonomous individuals. (Hongbo Liu 2007) 

The Differential Evolution (DE) algorithm and its variants are population based evolutionary algorithm which is 

derived from individual differences and was proposed by Storn and Price (Storn and Price 1997) in 1997. Commonly 

accepted mutation strategies include DE/best/1, DE/rand/1, DE/current-to-best/1 and DE/rand/2. DE/rand/1 showed good 
performance linearly. Observations have indicated that DE/rand/1 performs well for linearly separable, unimodal or non-

separable and noisy functions. Experiments also indicate that DE/current-to-best/1 and DE/rand/2 are effective for solving 

multi-modal and non-separable functions (Asafuddoula, Ray et al. 2014).  

In 2015, Kiran (Kiran 2015) proposed the TSA to solve numerical continuous optimization problems. In 2016, Cinar 

and Kiran (Cinar and Kiran 2016) parallelized TSA within the CUDA platform. In again 2016, Zheng et al. (Zheng, Zhou 

et al. 2016) proposed a study on the balanced voltage regulation with TSA called TSA-MPC. This approach is named as 

TSA-MPC. TSA-MPC showed good performance on control of turbine governing and generator excitation. Another study 

(RBF-TSA) is a Radial Based Function Neural Network (RBFN) based on TSA and performed by Muneeswaran and 

Rajasekaran (Muneeswaran and Rajasekaran 2016). In this study, two numerical function approaches are used for 

experiments. It was observed that TSA performed better than PSO. In 2017, the same team (Muneeswaran and 

Rajasekaran 2017) used TSA to determine the best noise reduction filter coefficients for speckle reduction problems. 

Chen et al. (Chen, Tan et al. 2017) determined the parameters of equivalent circuit models for basic Li-ion batteries with 
TSA, and performed a study in which TSA performed better than GA in experimental results. In 2018, Cinar and Kiran 

(Cinar and Kiran 2018) improved parallel TSA within CUDA platform. In 2018, Zhou et al. (Zhou, Zheng et al. 2018) at 

first, the variable length tree seed algorithm (VTSA) was proposed and then this approach was developed and named as 

VTSA-CA. VTSA-CA is a fuzzy clustering algorithm. Ding et al. (Ding, Yao et al. 2018) used TSA to compare the 

structural damage identification problem. Muneeswaran and Rajasekaran (Muneeswaran and Rajasekaran 2018) adjusted 

the radial basic function network for segmentation of the gallbladder in ultrasound images with TSA. Ding et al. (Ding, 

Li et al. 2019) proposed a new structural damage identification approach with TSA and K-mean clustering algorithm, 

which was called C-TSA. Oliva et al. (Oliva, Elaziz et al. 2019) use TSA for image segmentation. The maximum between 

class variance criterions (Otsu) is used as an objective function. The proposed approach has better performance than other 

methods of multi-level thresholding problem for image segmentation. The proposed approach has better performance 

than other methods on the multi-level thresholding problem for image segmentation. Li et al. (Li, Muneeswaran et al. 
2019) detect the edge of images with FIR filter which optimized by using TSA. A new data compression method is 

proposed and compared with well—known compression techniques like JPEG. 

The rest of the paper is arranged as follows. Section 2 provides information about the basic TSA. Integration Search 

Strategies (iTSA) in Tree Seed Algorithm is mentioned in Section 3. Then, in Section 4, experimental results are shown 

and interpreted. Finally, the paper concluded in Section 5. 
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2. Tree-Seed Algorithm (TSA) 

TSA is a population-based iterative search algorithm inspired by the relationship between trees and their seeds (Kiran 

2015).TSA is an optimization algorithm that is contemporary, modern, constantly open to development and able to work 

on in the existing methods. Based on the control variable on TSA, new update mechanisms are allowed for some problems 

to be solved. 

In nature, the growth of trees, which are a part of sustainable life, can occur through seeds. In the natural environment, 

some seeds become trees as a result of the spread of the seeds of the trees. These solutions are used to obtain the suitability 

of a specific objective function for the optimization problem. The seed production process is controlled by a parameter 

called the Search Tendency (ST). Two solution update rules for seed production process. ST is a fixed number in the 
range [0, 1] originally set. The number of seeds is determined by a random number between 10% of the population size 

and 25% of the population size. k indicates the number of seeds. 

𝑆𝑘,𝑗 = 𝑇𝑖,𝑗 + 𝛼𝑖,𝑗 × (𝐵𝑒𝑠𝑡𝑗 − 𝑇𝑟,𝑗)                                                                                                                                                      (1) 

𝑆𝑘,𝑗 = 𝑇𝑖,𝑗 + 𝛼𝑖,𝑗 × (𝑇𝑖,𝑗 − 𝑇𝑟,𝑗)                                                                                                                                                           (2) 

where 𝑆𝑘,𝑗 is the jth dimension of kth seed of the ith tree, 𝑇𝑖,𝑗 is the jth dimension of ith tree, 𝐵𝑒𝑠𝑡𝑗 , is the jth dimension 

of best tree obtained so far,  𝑇𝑟,𝑗 is the jth dimension of randomly selected tree from the stand, 𝛼𝑖,𝑗  , is scaling factor 

produced in range of [-1,1] for ith tree. The Eq. (1) takes into account the location of the tree from which the seed is to be 
produced and the best location in all trees. This search equation regulates local search or strengthens the capabilities of 

the proposed algorithm. The Eq. (2) uses two different tree positions to produce a new seed from the tree. With this 

equation, new regions are discovered while searching. Before the seed production mechanism, the stand should be 

initialized by using Eq. (3) given as follows: 

𝑇𝑖,𝑗 = 𝐿𝑜𝑤𝑗 + 𝑟𝑖,𝑗(𝐻𝑖𝑔ℎ𝑗 − 𝐿𝑜𝑤𝑗)                                                                                                                                                     (3) 

Here, 𝐿𝑜𝑤𝑗  is the lower bound of the search space. 𝐻𝑖𝑔ℎ𝑗 is the upper bound of the search space and 𝑟𝑖,𝑗  is a random 

number for each dimension in the range [0,1].  

3. Integration Search Strategies in Tree Seed Algorithm (iTsa) 

Swarm intelligence algorithms consist of two main stages called exploration and exploitation. The ability to research 

around the points discovered by the TSA algorithm is quite good. However, if the tree population becomes stable in a 

specific area, it may be difficult to find new seeds. In order to eliminate such constraints, it has been proposed to increase 

the search capability. Thus, high dimensional optimization problems will be solved and new seed production strategies 

will be used. 

There was a need to improve the TSA for high dimensional functions. Because in the basic version of TSA there was 

no performance problem for the low-scale. However, as the size of the problem increases, there is a significant 

performance loss. For these reasons, some improvement methods have been added to the basic form of the function.  
One of these is the addition of the control parameter called the Withering Process to the algorithm (Kıran 2016). The 

c parameter, which is the Acceleration Coefficient calculated based on the size of the problem, is added to the basic 

structure of the TSA in the work that also called the improved TSA (Aslan, Beskirli et al. 2018). In addition, a different 

approach is proposed for the basic TSA, and a new approach based on the restrictive dimension of the updates is proposed. 

Based on the ST parameter, which is the control parameter, five new equations have been added, bringing some 

restrictions to the upper and lower limits. These equations are again inspired by the equations of Differential Evolution 

and variants (Qin and Suganthan 2005),  

𝑆(𝑗,𝑑) = 𝐵𝑑 + (𝑇(𝑟1,𝑑) − 𝑇(𝑟2,𝑑)) ∗ 𝑟𝑎𝑛𝑑(−1,1)                                                                                                                               (4) 

𝑆(𝑗,𝑑) = 𝑇(𝑟1,𝑑) + (𝑇(𝑟2,𝑑) − 𝑇(𝑟3,𝑑)) ∗ 𝑟𝑎𝑛𝑑(−1,1)                                                                                                                        (5) 

𝑆(𝑗,𝑑) = 𝑇(𝑖,𝑑) + ((𝐵𝑑 − 𝑇(𝑖,𝑑)) + (𝑇(𝑟1,𝑑) − 𝑇(𝑟2,𝑑))) ∗ 𝑟𝑎𝑛𝑑(−1,1)                                                                                        (6) 

𝑆(𝑗,𝑑) =𝐵𝑑 + ((𝑇(𝑟1,𝑑) − 𝑇(𝑟2,𝑑)) + (𝑇(𝑟3,𝑑) − 𝑇(𝑟4,𝑑))) ∗ 𝑟𝑎𝑛𝑑(−1,1)                                                                                       (7) 

𝑆(𝑗,𝑑) =𝑇(𝑟1,𝑑) + ((𝑇(𝑟2,𝑑) − 𝑇(𝑟3,𝑑)) + (𝑇(𝑟4,𝑑) − 𝑇(𝑟5,𝑑))) ∗ 𝑟𝑎𝑛𝑑(−1,1)                                                                                 (8) 

where d is the dimension of the problem, j is the jth seed of ith tree, 𝑟𝑎𝑛𝑑(−1,1) is uniformly random number between 

-1 and 1, 𝐵𝑑 is best tree value,  𝑇(𝑖,𝑑), 𝑇(𝑟1,𝑑), 𝑇(𝑟2,𝑑), 𝑇(𝑟3,𝑑), 𝑇(𝑟4,𝑑), 𝑇(𝑟5,𝑑) are random trees. Where r1, r2, r3, r4, r5 are 

random integers generated over the population number and are different from each other.𝑇(𝑖,𝑑) is the current tree. 

We use rand (-1, 1) value instead of F scaling factor. In the basic forms of equations 6, 7 and 8, two different F scaling 

factor is used for limiting the difference vectors. In our work, we remove one of them and we used only one scaling factor 

as rand (-1, 1).  

 4. Experimental Results and Discussion 

In experimental studies the CEC2015 single objective optimization benchmark functions are solved by the proposed 

and compared algorithms. The obtained results are compared with the variants of the latest methods Artificial Bee (ABC) 

algorithm, Particle Swarm Optimization Algorithm (PSO), Differential evaluation (DE) algorithm on the test problems. 

The number of populations was selected as 50 in experimental studies. The ST value was chosen as 0.1 for the basic TSA 

and the dimensionality of the problems is selected as 50 and 100.  



The CEC2015 Single Objective Optimization Benchmark Functions contain shifted, rotated, hybrid and composition 

type functions. In the experiments, the number of dimension is fixed as 50 and 100 for all CEC2015 single objective 

optimization benchmark functions. The search range is between -100 and 100. All of 15 functions are minimization 

problems. For more details of these functions, please look at work of Liang et.al. (Liang, Qu et al. 2014).  

   The differences between the values of TSA and iTSA and are shown in Table 1. According to the results given here, 

iTSA is better than TSA for F7, F11, F12, F14 and F15 functions in CEC2015. The lowest rank value also belongs to 

iTSA. Accordingly, it is clear that iTSA developed for higher dimensions is successful. 

From the results given in Table 2 and Table 3, TSA closely follows the ABC values for CEC2015. iTSA is best for 
F7, F11, F12, F14 and F15. iTSA and PSO have instant rank values for CEC2015 benchmark problems. The results of 

these tables show us that we have achieved best results for most of the functions of iTSA's CEC2015. 

According to the results of Table 4 and Table 5, CEC2015 gave good results for benchmark functions compared to 

variants of iTSA and DE. Especially F3, F4, F5, F7, F11, F12 and F4 has produced better solutions for the functions. F6, 

F8 and F10 followed by DE / cur-to-best / 1. The DE / best / 2 method gave optimum values for F1 and F2 functions. 
Thus, it was observed according to these results that iTSA obtained from DE is better than all variants of DE. 

 

Table 1. Comparison of basic TSA and iTSA according to CEC2015 benchmark functions 

 
  Basic TSA iTSA 

  Std Mean Min Max Std Mean Min Max 

F1 48712879 277816296,9 1,82E+08 387857232,3 7502176,732 33526545,01 14838940,89 49871332,28 

F2 15006111 42822184,04 21479684 110385300 3612,683926 5687,495533 1462,652428 19697,2012 

F3 0,041474 321,1332529 320,98 321,190902 0,040820888 320,6243062 320,543303 320,6933242 

F4 11,9939 844,7727111 822,5568 866,3508148 15,01811416 600,9922309 562,5147506 628,7786901 

F5 372,8728 13448,17374 12585,74 14142,98007 400,0789725 7765,063368 6711,046146 8537,381382 

F6 3073413 12168519,68 5603459 18607454,99 1557625,746 3917453,415 1554282,162 7230398,171 

F7 11,29366 767,6224458 748,9824 790,7171859 13,67045879 743,342026 717,906645 761,0851671 

F8 1111511 4673291,79 2563417 7659872,82 933230,799 2593271,511 828636,2337 5205814,625 

F9 0,400297 1007,813448 1006,913 1008,578995 0,214407026 1005,32365 1004,880194 1005,829712 

F10 454383,4 1767773,213 1030667 2789303,309 254039,3456 665426,8687 187081,5553 1266207,003 

F11 61,40245 2548,805597 2414,722 2662,509389 96,36394482 1552,569972 1471,839198 2135,341645 

F12 1,081416 1313,190033 1311,188 1316,857073 0,815872138 1310,600726 1308,635281 1312,279796 

F13 0,032049 1300,427584 1300,342 1300,491383 0,003771493 1300,094367 1300,085871 1300,100778 

F14 6542,491 69897,24874 57462,97 79839,729 9143,070713 61390,11488 50915,76423 74529,29797 

F15 1,748561 1619,560364 1616,408 1623,904093 4,50394E-07 1600,000002 1600,000001 1600,000003 

   

 
Table 2. Comparison of ABC and iTSA according to CEC2015 benchmark functions 

 

 ABC                                                                                    iTSA 
 

 Std Mean Min             Max            Std Mean        Min          Max 

F1 7,65E-06 1,72E+10 1,72E+10 1,72E+10  7502176,732 33526545,01 14838940,89 49871332,28  

F2 0,000216 1,76E+11 1,76E+11 1,76E+11  3612,683926 5687,495533 1462,652428 19697,2012  

F3 0,000681 320,0018 320,0006 320,0048  0,040820888 320,6243062 320,543303 320,6933242  

F4 6,978856 917,7026 907,9694 934,7509  15,01811416 600,9922309 562,5147506 628,7786901  

F5 200,932 9065,568 8655,725 9520,537  400,0789725 7765,063368 6711,046146 8537,381382  

F6 4,085055 2,32E+09 2,32E+09 2,32E+09  1557625,746 3917453,415 1554282,162 7230398,171  

F7 0,2455 4746,975 4746,506 4747,574  13,67045879 743,342026 717,906645 761,0851671  

F8 33,52495 5,93E+08 5,93E+08 5,93E+08  933230,799 2593271,511 828636,2337 5205814,625  

F9 5,6E-12 4438,153 4438,153 4438,153  0,214407026 1005,32365 1004,880194 1005,829712  

F10 3,55E-07 9,97E+08 9,97E+08 9,97E+08  254039,3456 665426,8687 187081,5553 1266207,003  

F11 2,730711 4786,973 4779,578 4793,694  96,36394482 1552,569972 1471,839198 2135,341645  

F12 3,406591 2605,05 2602,246 2615,644  0,815872138 1310,600726 1308,635281 1312,279796  

F13 4,1E-10 499465,9 499465,9 499465,9  0,003771493 1300,094367 1300,085871 1300,100778  

F14 2,51E-09 2967411 2967411 2967411  9143,070713 61390,11488 50915,76423 74529,29797  

F15 0,002707 49247,51 49247,51 49247,51  4,50394E-07 1600,000002 1600,000001 1600,000003  



    

 
Table 3. Comparison of PSO and iTSA according to CEC2015 benchmark functions 

 

 PSO iTSA 
 

 Std Mean Min Max  Std Mean Min Max  
 

F1 395360,3 768296,1144 208610,1 2181596  7502176,732 33526545,01 14838940,89 49871332,28   

F2 6267,812 6587,480881 201,2878 24411,19  3612,683926 5687,495533 1462,652428 19697,2012   

F3 0,088465 320,8298096 320,6727 321,0502  0,040820888 320,6243062 320,543303 320,6933242   

F4 24,20173 497,2458142 444,7731 576,1068  15,01811416 600,9922309 562,5147506 628,7786901   

F5 952,3963 7899,538476 5099,543 9355,219  400,0789725 7765,063368 6711,046146 8537,381382   

F6 175530,1 268158,8136 53577,29 1021030  1557625,746 3917453,415 1554282,162 7230398,171   

F7 16,68101 755,9670237 713,6885 794,6156  13,67045879 743,342026 717,906645 761,0851671   

F8 103104,1 171731,0703 46265,03 483698,8  933230,799 2593271,511 828636,2337 5205814,625   

F9 0,255731 1004,435781 1003,669 1005,05  0,214407026 1005,32365 1004,880194 1005,829712   

F10 4517,577 8344,145283 3584,453 26701,03  254039,3456 665426,8687 187081,5553 1266207,003   

F11 87,64459 1925,330161 1726,126 2104,063  96,36394482 1552,569972 1471,839198 2135,341645   

F12 32,12313 1387,583354 1307,152 1400,287  0,815872138 1310,600726 1308,635281 1312,279796   

F13 0,008161 1300,090836 1300,076 1300,126  0,003771493 1300,094367 1300,085871 1300,100778   

F14 7300,617 68592,62116 60423,94 77430,63  9143,070713 61390,11488 50915,76423 74529,29797   

F15 0,063861 1600,008942 1600 1600,456  4,50394E-07 1600,000002 1600,000001 1600,000003   

    
 

 
Table 4. Comparison of iTSA according to variants of DE according to CEC2015 (F1-F7) individual comparison 

functions 
 

  F1 F2 F3 F4 F5 F6 F7 

DE/best/1 Std 1,51E+08 525115517,4 2,62E+08 9,6E+08 1,51E+08 525115517,4 2,62E+08 
 Mean 3,9E+08 1196384168 5,45E+08 2,3E+09 3,9E+08 1196384168 5,45E+08 

 
Min 0,047996 321,2427798 321,0834 321,318 0,047996 321,2427798 321,0834 

Max 27,05245 880,6510546 827,6737 953,512 27,05245 880,6510546 827,6737 

        

DE/best/2 Std 34574034 1,3E+08 77943564 2,55E+08 34574034 1,3E+08 77943564 
 Mean 103,9291 303,8325 200,9793 596,9046 103,9291 303,8325 200,9793 

 
Min 0,043717 321,0141 320,8602 321,0943 0,043717 321,0141 320,8602 

Max 16,20724 732,0864 690,6424 768,1413 16,20724 732,0864 690,6424 

        

DE/cur-to-best/1 

 

Std 5340096 14260388 3703048 24478253 5340096 14260388 3703048 

Mean 48991086 38838887 843900,7 2,48E+08 48991086 38838887 843900,7 

Min 0,038659 321,0332 320,9317 321,1048 0,038659 321,0332 320,9317 

Max 17,20108 675,808 640,0137 713,9681 17,20108 675,808 640,0137 

        

DE/rand/1 

 

Std 44086618 2,56E+08 1,38E+08 3,34E+08 44086618 2,56E+08 1,38E+08 

Mean 8892,481 4134,838 205,1341 43704,52 8892,481 4134,838 205,1341 

Min 0,041548 321,0277 320,8788 321,1163 0,041548 321,0277 320,8788 

Max 15,09833 730,8006 684,6887 760,4908 15,09833 730,8006 684,6887 

        

DE/rand/2 

 

Std 67013301 4,12E+08 2,36E+08 5,97E+08 67013301 4,12E+08 2,36E+08 

Mean 138680,6 213328,4 11100,9 451713,3 138680,6 213328,4 11100,9 

Min 0,035376 321,0216 320,9071 321,1142 0,035376 321,0216 320,9071 

Max 14,99814 775,3173 734,2843 801,4126 14,99814 775,3173 734,2843 

        

DE/rand-to-best/1 

 

Std 6666714 23679887 11842453 38223358 6666714 23679887 11842453 

Mean 1117884 377429,1 2377,744 7473879 1117884 377429,1 2377,744 

Min 0,047804 321,0296 320,8444 321,1143 0,047804 321,0296 320,8444 

Max 18,91542 666,6622 594,6502 702,9829 18,91542 666,6622 594,6502 

        

iTSA 

 

Std 7502177 33526545 14838941 49871332 7502177 33526545 14838941 

Mean 3612,684 5687,496 1462,652 19697,2 3612,684 5687,496 1462,652 

Min 0,040821 320,6243 320,5433 320,6933 0,040821 320,6243 320,5433 

Max 15,01811 600,9922 562,5148 628,7787 15,01811 600,9922 562,5148 

        

 



Table 5. Comparison of iTSA according to variants of DE according to CEC2015 (F8-F15) individual comparison 

functions 
 

  F8 F9 F10 F11 F12 F13 F14 F15 

DE/best/1 

Std 8234934 19809388,85 5361119 3,8E+07 8234934 19809388,85 5361119 3,8E+07 

Mean 135,8173 1046,142635 1008,188 1655,35 135,8173 1046,142635 1008,188 1655,35 

Min 9162891 22398471,48 5917706 4,5E+07 9162891 22398471,48 5917706 4,5E+07 

Max 128,4064 2771,930825 2564,307 3073,32 128,4064 2771,930825 2564,307 3073,32 

         

DE/best/2 

Std 1572676 3258746 815308,9 8449168 1572676 3258746 815308,9 8449168 

Mean 0,228668 1004,661 1004,288 1005,817 0,228668 1004,661 1004,288 1005,817 

Min 203071,8 376761 103819,6 1066079 203071,8 376761 103819,6 1066079 

Max 138,8415 1748,839 1518,699 2241,701 138,8415 1748,839 1518,699 2241,701 

         

DE/cur-to-best/1 

Std 463594,9 1259840 552549,5 2456029 463594,9 1259840 552549,5 2456029 

Mean 88,00986 1026,488 1003,698 1389,962 88,00986 1026,488 1003,698 1389,962 

Min 46242,6 99713,46 26376,56 239933,4 46242,6 99713,46 26376,56 239933,4 

Max 95,22216 1700,719 1407,184 1909,647 95,22216 1700,719 1407,184 1909,647 

         

DE/rand/1 

Std 1291252 4360879 1366301 7047993 1291252 4360879 1366301 7047993 

Mean 0,142228 1004,667 1004,292 1004,949 0,142228 1004,667 1004,292 1004,949 

Min 214261,7 624907,9 206773,1 1303185 214261,7 624907,9 206773,1 1303185 

Max 411,0552 1976,313 1500,055 2734,405 411,0552 1976,313 1500,055 2734,405 

         

DE/rand/2 

Std 2044012 5492714 1214371 11163262 2044012 5492714 1214371 11163262 

Mean 0,255092 1005,657 1004,809 1006,341 0,255092 1005,657 1004,809 1006,341 

Min 325088,8 1060105 401725,5 1787271 325088,8 1060105 401725,5 1787271 

Max 48,09812 2891,886 2766,269 2984,348 48,09812 2891,886 2766,269 2984,348 

         

DE/rand-to-best/1 

Std 715556 1888556 631068,7 3552431 715556 1888556 631068,7 3552431 

Mean 0,350433 1004,177 1003,657 1005,141 0,350433 1004,177 1003,657 1005,141 

Min 80170,39 144170,5 47150,81 476113,1 80170,39 144170,5 47150,81 476113,1 

Max 59,48092 1657,698 1535,811 1789,804 59,48092 1657,698 1535,811 1789,804 

         

iTSA 

Std 933230,8 2593272 828636,2 5205815 933230,8 2593272 828636,2 5205815 

Mean 0,214407 1005,324 1004,88 1005,83 0,214407 1005,324 1004,88 1005,83 

Min 254039,3 665426,9 187081,6 1266207 254039,3 665426,9 187081,6 1266207 

Max 96,36394 1552,57 1471,839 2135,342 96,36394 1552,57 1471,839 2135,342 

         

 5. Conclusion 

The initial version of TSA provides ideal solutions for low dimensional continuous optimization problems. A new 

version of TSA is developed for solving high dimensional optimization problems in this work and it is called as iTSA. 

Experimental results show that iTSA, is a better and alternative optimization method for solving large scale optimization 

problems. The experimental results prove that iTSA is better than basic TSA and some other meta-heuristic algorithms 

such as ABC, PSO and DE on CEC2005 benchmark problems. 

The new update equations are inspired by the DE algorithm. Comparisons were made with the variants of DE and 

the tables where experimental results were transferred were added. The ST parameter gives an equal chance to these five 

update equations in each iteration. Thus, we have the opportunity to produce better quality solutions by making different 

movements about the structure in space. Another strong aspect of iTSA is the number of seeds. Each iteration produces a 

different number of seeds by the iTSA, so the search area is searched better. Thus, reasonable values are obtained in the 

solution of the optimization problem. It was operated in 50 dimensions and 100 dimensions and it gave very good results. 

References 
Asafuddoula, M., T. Ray and R. Sarker (2014). "An adaptive hybrid differential evolution algorithm for single objective optimization." Applied 

Mathematics and Computation 231: 601-618. 

Aslan, M., M. Beskirli, H. Kodaz and M. S. Kıran (2018). "An Improved Tree Seed Algorithm for Optimization Problems." 

Bonabeau, E., M. Dorigo and G. Theraulaz (1999). "From natural to artificial swarm intelligence." 

Chen, W., X. Tan and M. Cai (2017). Parameter Identification of Equivalent Circuit Models for Li-ion Batteries Based on Tree Seeds Algorithm. IOP 

Conference Series: Earth and Environmental Science, IOP Publishing. 

Cinar, A. and M. Kiran (2016). A Parallel Version of Tree-Seed Algorithm (TSA) within CUDA Platform. Selçuk International Scientific Conference 

On Applied Sciences. 

Cinar, A. C. (2016). AĞAÇ-TOHUM ALGORİTMASI İÇİN CUDA TABANLI BİR PARALEL PROGRAMLAMA YAKLAŞIMI MSc, SELÇUK 

ÜNİVERSİTESİ. 

Cinar, A. C. and M. S. Kiran (2018). "A parallel implementation of Tree-Seed Algorithm on CUDA-supported graphical processing unit." Journal of 

the Faculty of Engineering and Architecture of Gazi University 33(4): 1397-1409. 

Das, S., S. S. Mullick and P. N. Suganthan (2016). "Recent advances in differential evolution–an updated survey." Swarm and Evolutionary 

Computation 27: 1-30. 

Ding, Z., J. Li, H. Hao and Z.-R. Lu (2019). "Structural damage identification with uncertain modelling error and measurement noise by clustering 

based tree seeds algorithm." Engineering Structures 185: 301-314. 

Ding, Z., R. Yao, J. Li and Z. Lu (2018). "Structural damage identification based on modified Artificial Bee Colony algorithm using modal data." 

Inverse Problems in Science and Engineering 26(3): 422-442. 



El-Abd, M. (2013). "An improved global-best harmony search algorithm." Applied mathematics and computation 222: 94-106. 

Hongbo Liu, A. A. (2007). "An Hybrid Fuzzy Variable Neighborhood Particle Swarm 

Optimization Algorithm for Solving Quadratic Assignment 

Problems." Journal of Universal Computer Science vol. 13, no. 9 (2007), 1309-1331. 

Hussain, S. F. and M. Haris (2019). "A k-means based co-clustering (kCC) algorithm for sparse, high dimensional data." Expert Systems with 

Applications 118: 20-34. 

Jiang Xue-ying, Shi Hui-yuan, Su Cheng-li and L. Ping (2018). "Nonlinear Neural Network Predictive Control 

Based on Tree and Seed Algorithm." JOURNAL OF APPLIED SCIENCES — Electronics and Information Engineering 36(5). 

Kiran, M. S. (2015). "TSA: Tree-seed algorithm for continuous optimization." Expert Systems with Applications 42(19): 6686-6698. 

Kıran, M. S. (2016). An Implementation of Tree-Seed Algorithm (TSA) for Constrained Optimization. Intelligent and Evolutionary Systems: The 19th 

Asia Pacific Symposium, IES 2015, Bangkok, Thailand, November 2015, Proceedings. K. Lavangnananda, S. Phon-Amnuaisuk, W. Engchuan and J. 

H. Chan. Cham, Springer International Publishing: 189-197. 

Li, L., V. Muneeswaran, S. Ramkumar, G. Emayavaramban and G. R. Gonzalez (2019). "Metaheuristic FIR filter with Game theory based Compression 

Technique-A Reliable Medical Image Compression Technique for online applications." Pattern Recognition Letters. 

Liang, J., B. Qu, P. Suganthan and Q. Chen (2014). "Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-

parameter single objective optimization." Technical Report201411A, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China 

and Technical Report, Nanyang Technological University, Singapore. 

Muneeswaran, V. and M. P. Rajasekaran (2016). Performance evaluation of radial basis function networks based on tree seed algorithm. 2016 

International Conference on Circuit, Power and Computing Technologies (ICCPCT), IEEE. 

Muneeswaran, V. and M. P. Rajasekaran (2017). Beltrami-regularized denoising filter based on tree seed optimization algorithm: an ultrasound image 

application. International Conference on Information and Communication Technology for Intelligent Systems, Springer.  

Muneeswaran, V. and M. P. Rajasekaran (2018). Gallbladder shape estimation using tree-seed optimization tuned radial basis function network for 

assessment of acute cholecystitis. Intelligent Engineering Informatics, Springer: 229-239. 

Oliva, D., M. A. Elaziz and S. Hinojosa (2019). Otsu’s Between Class Variance and the Tree Seed Algorithm. Metaheuristic Algorithms for Image 

Segmentation: Theory and Applications, Springer: 71-83. 

Qin, A. K. and P. N. Suganthan (2005). Self-adaptive differential evolution algorithm for numerical optimization. Evolutionary Computation, 2005. 

The 2005 IEEE Congress on, IEEE. 

Storn, R. and K. Price (1997). "Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces." Journal of global 

optimization 11(4): 341-359. 

Zambrano-Bigiarini, M., M. Clerc and R. Rojas (2013). Standard particle swarm optimisation 2011 at cec-2013: A baseline for future pso improvements. 

2013 IEEE Congress on Evolutionary Computation, IEEE. 

Zheng, Y., J. Zhou, W. Zhu, C. Zhang, C. Li and W. Fu (2016). "Design of a multi-mode intelligent model predictive control strategy for hydroelectric 

generating unit." Neurocomputing 207: 287-299. 

Zhou, J., Y. Zheng, Y. Xu, H. Liu and D. Chen (2018). "A heuristic TS fuzzy model for the pumped-storage generator-motor using variable-length tree-

seed algorithm-based competitive agglomeration." Energies 11(4): 944. 

Zhu, G. and S. Kwong (2010). "Gbest-guided artificial bee colony algorithm for numerical function optimization." Applied mathematics and 

computation 217(7): 3166-3173. 
 


