
EasyChair Preprint
№ 7306

Possible Counterexample of the Riemann
Hypothesis

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 16, 2022



Noname manuscript No.
(will be inserted by the editor)

Possible Counterexample of the Riemann Hypothesis

Frank Vega

the date of receipt and acceptance should be inserted later

Abstract Under the assumption that the Riemann hypothesis is true, von Koch de-
duced the improved asymptotic formula θ(x) = x+O(

√
x× log2 x), where θ(x) is

the Chebyshev function. On the contrary, we prove if there exists some real number
x ≥ 108 such that θ(x) > x+ 1

logloglogx ×
√

x× log2 x, then the Riemann hypothesis
should be false. Note that, the von Koch asymptotic formula uses the Big O notation,
where f (x) = O(g(x)) means that there exists a positive real number M and a real
number y, such that | f (x)| ≤ M×g(x) for all x ≥ y. However, no matter how big we
get the real number y ≥ 108, the another positive real number M could always prevail
over the value of 1

logloglogx for sufficiently large numbers x ≥ y.
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numbers
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1 Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros
only at the negative even integers and complex numbers with real part 1

2 [2]. The
Riemann hypothesis belongs to the David Hilbert’s list of 23 unsolved problems [2].
Besides, it is one of the Clay Mathematics Institute’s Millennium Prize Problems [2].
This problem has remained unsolved for many years [2]. In mathematics, the Cheby-
shev function θ(x) is given by

θ(x) = ∑
p≤x

log p
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where p ≤ x means all the prime numbers p that are less than or equal to x. Say
Nicolas(pn) holds provided

∏
q≤pn

q
q−1

> eγ × logθ(pn).

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, log is the natural loga-
rithm, and pn is the nth prime number. The importance of this property is:

Theorem 1.1 [7], [8]. Nicolas(pn) holds for all prime numbers pn > 2 if and only
if the Riemann hypothesis is true.

We know the following properties for the Chebyshev function:

Theorem 1.2 [11]. If the Riemann hypothesis holds, then

θ(x) = x+O(
√

x× log2 x)

for all x ≥ 108.

Theorem 1.3 [9]. For 2 ≤ x ≤ 108

θ(x)< x.

We also know that

Theorem 1.4 [10]. If the Riemann hypothesis holds, then(
e−γ

logx
×∏

q≤x

q
q−1

−1

)
<

3× logx+5
8×π ×

√
x

for all numbers x ≥ 13.1.

Let’s define H = γ − B such that B ≈ 0.2614972128 is the Meissel-Mertens con-
stant [6]. We know from the constant H, the following formula:

Theorem 1.5 [3].

∑
q

(
log(

q
q−1

)− 1
q

)
= γ −B = H.

For x ≥ 2, the function u(x) is defined as follows

u(x) = ∑
q>x

(
log(

q
q−1

)− 1
q

)
.

We use the following theorems:

Theorem 1.6 [5]. For x >−1:

x
x+1

≤ log(1+ x).
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Theorem 1.7 [4]. For x ≥ 1:

log(1+
1
x
)<

1
x+0.4

.

Let’s define:

δ (x) =

(
∑
q≤x

1
q
− log logx−B

)
.

Definition 1.8 We define another function:

ϖ(x) =

(
∑
q≤x

1
q
− log logθ(x)−B

)
.

Putting all together yields the proof that the inequality ϖ(x) > u(x) is satisfied for a
number x ≥ 3 if and only if Nicolas(p) holds, where p is the greatest prime number
such that p ≤ x. In this way, we introduce another criterion for the Riemann hypoth-
esis based on the Nicolas criterion and deduce some of its consequences.

2 Results

Theorem 2.1 The Riemann hypothesis is true if and only if the inequality ϖ(x) >
u(x) is satisfied for all numbers x ≥ 3.

Proof In the paper [8] is defined the function:

f (x) = eγ × (logθ(x))×∏
q≤x

q−1
q

.

We know that f (x) is lesser than 1 when Nicolas(p) holds, where p is the greatest
prime number such that 2 < p ≤ x. In the same paper, we found that

log f (x) =U(x)+u(x)

where U(x) = −ϖ(x) [8]. When f (x) is lesser than 1, then log f (x) < 0. Conse-
quently, we obtain that

−ϖ(x)+u(x)< 0

which is the same as ϖ(x) > u(x). Therefore, this is a consequence of the theorem
1.1.

Theorem 2.2 If the Riemann hypothesis holds, then

3× logx+5
8×π ×

√
x+1.2× logx+2

+
logx

logθ(x)
> 1

for all numbers x ≥ 13.1.
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Proof Under the assumption that the Riemann hypothesis is true, then we would have

∏
q≤x

q
q−1

< eγ × logx×
(

1+
3× logx+5
8×π ×

√
x

)
after of distributing the terms based on the theorem 1.4 for all numbers x ≥ 13.1. If
we apply the logarithm to the both sides of the previous inequality, then we obtain
that

∑
q≤x

log(
q

q−1
)< γ + log logx+ log

(
1+

3× logx+5
8×π ×

√
x

)
.

That would be equivalent to

∑
q≤x

1
q
+ ∑

q≤x

(
log(

q
q−1

)− 1
q

)
< γ + log logx+

3× logx+5
8×π ×

√
x+1.2× logx+2

where we know that

log
(

1+
3× logx+5
8×π ×

√
x

)
<

1
8×π×

√
x

3×logx+5 +0.4

=
3× logx+5

8×π ×
√

x+0.4× (3× logx+5)

=
3× logx+5

8×π ×
√

x+1.2× logx+2

according to theorem 1.7 since 8×π×
√

x
3×logx+5 ≥ 1 for all numbers x ≥ 13.1. We use the

theorem 1.5 to show that

∑
q≤x

(
log(

q
q−1

)− 1
q

)
= H −u(x)

and γ = H +B. So,

H −u(x)< H +B+ log logx− ∑
q≤x

1
q
+

3× logx+5
8×π ×

√
x+1.2× logx+2

which is the same as

H −u(x)< H −δ (x)+
3× logx+5

8×π ×
√

x+1.2× logx+2
.

We eliminate the value of H and thus,

−u(x)<−δ (x)+
3× logx+5

8×π ×
√

x+1.2× logx+2

which is equal to

u(x)+
3× logx+5

8×π ×
√

x+1.2× logx+2
> δ (x).
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Under the assumption that the Riemann hypothesis is true, we know from the theorem
2.1 that ϖ(x)> u(x) for all numbers x ≥ 13.1 and therefore,

ϖ(x)+
3× logx+5

8×π ×
√

x+1.2× logx+2
> δ (x).

Hence,
3× logx+5

8×π ×
√

x+1.2× logx+2
> log logθ(x)− log logx.

Suppose that θ(x) = ε × x for some constant ε > 1. Then,

log logθ(x)− log logx = log log(ε × x)− log logx

= log(logx+ logε)− log logx

= log
(

logx× (1+
logε

logx
)

)
− log logx

= log logx+ log(1+
logε

logx
)− log logx

= log(1+
logε

logx
).

In addition, we know that

log(1+
logε

logx
)≥ logε

logθ(x)

using the theorem 1.6 since logε

logx >−1 when ε > 1. Certainly, we will have that

log(1+
logε

logx
)≥

logε

logx
logε

logx +1
=

logε

logε + logx
=

logε

logθ(x)
.

Thus,
3× logx+5

8×π ×
√

x+1.2× logx+2
>

logε

logθ(x)
.

If we add the following value of logx
logθ(x) to the both sides of the inequality, then

3× logx+5
8×π ×

√
x+1.2× logx+2

+
logx

logθ(x)
>

logε

logθ(x)
+

logx
logθ(x)

=
logε + logx

logθ(x)

=
logθ(x)
logθ(x)

= 1.

We know this inequality is satisfied when 0 < ε ≤ 1 since we would obtain that
logx

logθ(x) ≥ 1. Therefore, the proof is done.
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Theorem 2.3 If there exists some real number x ≥ 108 such that

θ(x)> x+
1

logloglogx
×
√

x× log2 x,

then the Riemann hypothesis is false.

Proof If the Riemann hypothesis holds, then

θ(x) = x+O(
√

x× log2 x)

for all x ≥ 108 due to the theorem 1.2. Now, suppose there is a real number x ≥ 108

such that θ(x)> x+ 1
logloglogx ×

√
x× log2 x. That would be equivalent to

logθ(x)> log(x+
1

logloglogx
×
√

x× log2 x)

and so,
1

logθ(x)
<

1
log(x+ 1

logloglogx ×
√

x× log2 x)

for all numbers x ≥ 108. Hence,

logx
logθ(x)

<
logx

log(x+ 1
logloglogx ×

√
x× log2 x)

.

If the Riemann hypothesis holds, then

3× logx+5
8×π ×

√
x+1.2× logx+2

+
logx

log(x+ 1
logloglogx ×

√
x× log2 x)

> 1

for those values of x that complies with

θ(x)> x+
1

logloglogx
×
√

x× log2 x

due to the theorem 2.2. By contraposition, if there exists some number y ≥ 108 such
that for all x ≥ y the inequality

3× logx+5
8×π ×

√
x+1.2× logx+2

+
logx

log(x+ 1
logloglogx ×

√
x× log2 x)

≤ 1

is satisfied, then the Riemann hypothesis should be false. Let’s define the function

υ(x) =
3× logx+5

8×π ×
√

x+1.2× logx+2
+

logx
log(x+ 1

logloglogx ×
√

x× log2 x)
−1.

The Riemann hypothesis is false when there exists some number y ≥ 108 such that
for all x ≥ y the inequality υ(x)≤ 0 is always satisfied. We ignore when 2 ≤ x ≤ 108

since θ(x)< x according to the theorem 1.3. We know that the function υ(x) is mono-
tonically decreasing for every number x ≥ 108. The derivative of υ(x) is negative for
all x ≥ 108. Indeed, a function υ(x) of a real variable x is monotonically decreasing
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in some interval if the derivative of υ(x) is lesser than zero and the function υ(x)
is continuous over that interval [1]. It is enough to find a value of y ≥ 108 such that
υ(y) ≤ 0 since for all x ≥ y we would have that υ(x) ≤ υ(y) ≤ 0, because of υ(x)
is monotonically decreasing. We found the value y = 108 complies with υ(y) ≤ 0.
In this way, we obtain that υ(x) ≤ 0 for every number x ≥ 108. Hence, the proof is
complete.

Appendix

We found the derivative of υ(x) in the web site https://www.wolframalpha.com/
input. Besides, we determine the sign of the function υ(x) using the tool gp from
the web site https://pari.math.u-bordeaux.fr. In the project PARI/GP, the
method sign(F(X)) returns −1 when the function F(X) is negative in the value of X .
We checked that is negative for X = 108 with a real precision of 1000016 significant
digits when F(X) = υ(x). We also checked that is still negative for X = 100000!,
where (. . .)! means the factorial function.
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des nombres DPP, Paris 82, 207–218 (1981)

8. Nicolas, J.L.: Petites valeurs de la fonction d’Euler. Journal of number theory 17(3), 375–388 (1983).
DOI 10.1016/0022-314X(83)90055-0

9. Rosser, J.B., Schoenfeld, L.: Approximate Formulas for Some Functions of Prime Numbers. Illinois
Journal of Mathematics 6(1), 64–94 (1962). DOI doi:10.1215/ijm/1255631807

10. Rosser, J.B., Schoenfeld, L.: Sharper Bounds for the Chebyshev Functions θ (x) and ψ(x). Mathemat-
ics of computation pp. 243–269 (1975). DOI 10.1090/S0025-5718-1975-0457373-7

11. Von Koch, H.: Sur la distribution des nombres premiers. Acta Mathematica 24(1), 159 (1901)


