ﬁ EasyChair Preprint

Ne 13769

Integrated Netlist Synthesis and In-Memory
Mapping for Memristor-Aided Logic

Seunggyu Lee, Wonjae Lee and Youngsoo Shin

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 2, 2024

Integrated Netlist Synthesis and In-Memory Mapping for
Memristor-Aided Logic

Seunggyu Lee
School of EE, KAIST
Daejeon, Korea

Wonjae Lee
School of EE, KAIST
Daejeon, Korea

Youngsoo Shin
School of EE, KAIST
Daejeon, Korea

sg.lee@kaist.ac.kr wonjaelee@kaist.ac.kr youngsoo@Xkaist.edu
ABSTRACT %ﬁ v, G{\I}D
Memristive memory (memristor) enables logic operations within a ai v
the memory array, where memristors in the same row or column b y
serve as a logic gate. Logic functions are implemented in the mem- GND

ory through netlist synthesis and in-memory mapping, which as-
signs each gate operation to specific memristors. The goal is to
minimize latency, which represents the number of clock cycles re-
quired to complete the operations. While multiple gate operations
can be executed in the same clock cycle, additional cycles may be
needed for copy operations to align the gate operations. Therefore,
assigning each operation to a clock cycle is a challenge. Further-
more, the results of in-memory mapping vary depending on the
input netlist. To further reduce latency, an integrated approach is
necessary to provide an optimal netlist. We propose two approaches:
(1) graph coloring-based in-memory mapping, where the gates are
colored to assign sets of gates that operate simultaneously, and (2)
integration with mapping-aware netlist synthesis, which iteratively
revises the input netlist based on latency evaluation; an incremental
method is employed to accelerate the process. Experiments demon-
strate that the coloring-based in-memory mapping reduces latency
by 17% compared to the state-of-the-art method. The integrated
approach achieves an additional 15% reduction in latency.

CCS CONCEPTS

« Hardware — Emerging technologies; Logic synthesis.

KEYWORDS

Memristor-aided logic, logic synthesis, in-memory mapping, graph
coloring.

ACM Reference Format:

Seunggyu Lee, Wonjae Lee, and Youngsoo Shin. 2024. Integrated Netlist
Synthesis and In-Memory Mapping for Memristor-Aided Logic. In Great
Lakes Symposium on VLSI 2024 (GLSVLSI 24), June 12—14, 2024, Clearwater,

FL, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3649476.
3658758

1 INTRODUCTION

Conventional logic operation is performed within a processing
unit (i.e., CPU or GPU), and processed data is transferred into
the memory for storage. The data transfer between the processor
and the memory causes a significant overhead in both energy and
performance; for instance, a DRAM access consumes three orders of
magnitude more energy than a 32-bit add operation [5]. Processing-
in-memory (PIM) allows logic operations to be conducted within the

GLSVLSI 24, June 12-14, 2024, Clearwater, FL, USA
2024. ACM ISBN 979-8-4007-0605-9/24/06.
https://doi.org/10.1145/3649476.3658758

Eaz & b2(§){/Z'I
a, & b3<§; yj‘

—> NOR operation

Ygég Y}ség
/X INV operation for copy

(b) ()

Figure 1: (a) NOR and INV gate diagrams and their realiza-
tion using memristors, (b) a parallel operation for three NOR
gates, and (c) a copy operation for alignment of parallel op-
erations.

memory itself, so it significantly reduces the data transfer. Notably,
PIM achieves 110 times greater energy efficiency [12] and 23 times
higher performance [4].

There have been prior works to implement processing units
within memory cells, such as SRAM [1] and DRAM [10]. However,
they still require data transfer between the processing and the stor-
age. In this paper, we use a non-volatile resistive memory called
memristor [3], which is the two-terminal device with two resis-
tance values. The resistance is determined by the voltage across
the memristor, and then its resistance state is preserved. Low and
high resistance states represent logic 1 and 0, respectively. So, logic
gates are implemented solely by memristors, called memristor-aided
logic [7].

In memristor-aided logic, a logic function can be realized as a
sequence of NOR and INV operations. All logic gates in the corre-
sponding netlist are mapped onto memristive memory array. This
process, which is known as in-memory mapping, specifies which
memristors are used to perform the gate operation (i.e., NOR or
INV) at a given clock cycle. As shown in Figure 1(a), NOR and INV
gates are implemented by one or more input memristors and a sin-
gle output memristor in a row (or column) of memristive memory
array. The gate operation is executed by applying a gate voltage
(Vi) to each input memristor and grounding the output memristor

https://doi.org/10.1145/3649476.3658758
https://doi.org/10.1145/3649476.3658758
https://doi.org/10.1145/3649476.3658758

GLSVLSI ’24, June 12-14, 2024, Clearwater, FL, USA

N L

o <L
X X X X
W oN WS

X X X X X X
@ N

Seunggyu Lee, Wonjae Lee, and Youngsoo Shin

VARVARY,

yj& yj& yj& Operations
1.{9,.9,

o9 20

Xi& Y% Yi& . Egigs}

Figure 2: The NOR and INV netlist (a) colored through graph coloring formulation, (b) transformed into a netlist with minimum
latency using the proposed netlist synthesis, and (c¢) mapped onto memristive memory array by formulating CP.

simultaneously, in which the gate inputs a, b and the gate output
y correspond to resistance states of the input memristors and the
output memristor, respectively. NOR or INV operations can be con-
ducted in parallel by aligning the respective inputs and outputs of
multiple gates on the same column (or row), as illustrated in Fig-
ure 1(b). It should also be noted that additional copy operations may
be required due to the alignment for parallel operations in the next
clock cycle (see y; in Figure 1(c)); the copy uses two INV operations
to move the resistance state of one memristor to another.

The objective of in-memory mapping is to minimize the total
number of clock cycles required for completing all gate operations,
called latency. Staircase-structure mapping [15] aims to maximize
parallel operations, but it also causes copy operations to align the
inputs and output for multiple gates at each level of the netlist. In [2],
latency optimization problem is formulated through integer linear
programming (ILP). It is very time-consuming for large circuits
because the optimizer searches all possible operations by mapping
gates to various locations. To reduce its runtime, multiple ILPs
are used [14] by partitioning the netlist. However, a large number
of copy operations are required for connecting the partitions. In
addition, none of these methods consider latency during netlist
synthesis; instead, they just use the conventional netlist synthesis
which aims to minimize the area (i.e., the number of gates in the
netlist).

In this paper, we address a mapping method using graph color-
ing, and its integration with mapping-aware netlist synthesis. First,
coloring-based in-memory mapping is introduced to maximize par-
allel operations without copies. Parallel operations are assigned
through graph coloring formulation such that gates with the same
color operate in parallel. For the colored netlist, in-memory map-
ping is performed by formulating constraint programming (CP).
Second, in-memory mapping is integrated with the proposed netlist
synthesis, which utilizes a rewriting algorithm and an incremental
graph coloring method. The rewriting algorithm iteratively per-
forms local replacements in the netlist to minimize latency, and
the incremental graph coloring accelerates the iterative latency
evaluations by reusing an existing coloring result.

Our main contributions are summarized as follows.

e In-memory mapping based on graph coloring, which maxi-
mally assigns parallel operations without copy overhead.

o Integrated approach, which synthesizes the netlist in corre-
lation with in-memory mapping to further reduce latency
through local replacements and quick latency evaluation.

The remainder of this paper is organized as follows. The details
of the integrated netlist synthesis and in-memory mapping are
presented in Section 2. The effectiveness of the proposed method is
assessed in terms of latency in Section 3. Conclusions are drawn
in Section 4.

2 PROPOSED METHODS

Figure 2 illustrates an overview of our three approaches, where x
and y; denote the primary input and the gate g; output, respectively.
First, a NOR and INV netlist is colored by graph coloring formula-
tion. In this process, sets of parallel operations are assigned in such
a way that gates capable of parallel operation share the same color
(Figure 2(a)). Since each parallel operation takes one clock cycle, the
number of colors directly represents latency. Second, the proposed
netlist synthesis transforms a netlist into logically equivalent one
with the minimum number of colors (Figure 2(b)). Third, constraint
programming (CP) is formulated to perform in-memory mapping
for a colored netlist. As a result, we obtain an operation sequence
where gates with the same color operate simultaneously in each
clock cycle, and a mapping result in which the inputs and outputs of
gates are aligned within the memristive memory array; Figure 2(c)
shows the mapping result of Figure 2(b). The proposed coloring-
based mapping utilizes the first and third approaches, while the
integrated method applies all three approaches.

2.1 Parallel Operation Assignment Using Graph
Coloring

A graph coloring problem is formulated based on four rules that
reflect an efficient in-memory mapping approach, which maximizes
parallel operations without requiring copies. To solve the formula-
tion, we employ a graph coloring algorithm [8], which yields the
best solution compared to other heuristic algorithms. Then, we
derive a colored netlist which consists of gates with correspond-
ing colors. Note that this graph coloring result is utilized in the
proposed netlist synthesis (Section 2.2), which finds a netlist with
the minimum number of colors, and in the CP-based in-memory
mapping (Section 2.3), where multiple gates sharing the same color
are aligned.

Figure 3 shows an example of graph coloring formulation. NOR
and INV netlist is modeled as an undirected graph, where a vertex
v; corresponds to a gate g; and an edge e; j connects two vertices v;
and vj when they satisfy any of the three conditions.

Integrated Netlist Synthesis and In-Memory Mapping for Memristor-Aided Logic

X X XX
S [Nl

X X
(AN

Figure 3: (a) An example NOR and INV netlist and (b) the
result of its graph coloring formulation.

2.1.1 Signal Dependency. Signal path is a connection of gates
where signals propagate from primary inputs to primary outputs.
If two gates are part of the same signal path, the output of one gate
propagates through intermediate gates and then serves as the input
of the other gate. As a result, they cannot operate in parallel due
to their signal dependency. For instance, as shown in Figure 3(a),
the output of gate g1 is provided to gate g5 through gate g4, so this
constructs the signal dependency between gates g1 and gs. In the
same manner, all gates in the signal path {g1, g4, g5, g7} cannot be
conducted in parallel. Therefore, an edge is added between each
pair of vertices vy, vy, vs5, and vy.

2.1.2 Gate Type. NOR and INV gates operate in separate clock
cycles because they use different numbers of input memristors.
Thus, we add an edge between vertices with different gate types. As
shown in Figure 3(b), the vertex vs corresponding to the INV gate
g4 is connected to all vertices that are associated with NOR gates. In
addition, we consider the gate connected to the fanout, called fanout
gate. It is necessary to perform continuous parallel operations in-
stead of maximizing parallel operations at specific clock cycles;
otherwise, there would be no more parallel operations in the next
cycles. Accordingly, gates with fanouts connected to different NOR
gates should not operate in parallel. If the fanout gates are different
and at least one of them is a NOR gate, an edge connects between
the corresponding vertices. As illustrated in Figure 3(b), an edge e12
is generated because the fanouts of the associated gates g; and g2
are connected to INV gate g4 and NOR gate g, respectively. Note
that if all fanout gates are of type INV, no edges are constructed.
This is because INV gates use only one input memristor, which
does not affect alignment.

2.1.3 Number of Fanouts. An output of a gate operation can be
stored in multiple memristors, which is achieved by grounding
the output memristors at a clock cycle. This allows for providing
inputs to the gates connected to fanouts in a single cycle, and
then enables those gates to operate in parallel. If the number of
fanouts differs between two gates, they use a different number of
output memristors, which results in them executing at separate
clock cycles. Thus, we create edges between gates with different
numbers of fanouts. Also, the gate connected to the fanin, called
fanin gate, is taken into account. The difference in the number of
fanouts for fanin gates leads to those gates operating on different
clock cycles. It affects the mapping of the next gates connected to
the fanouts of the fanin gates. To reflect this condition for fanin
gate, we compare sets that consist of the number of fanouts. If the

GLSVLSI ’24, June 12-14, 2024, Clearwater, FL, USA

Initial netlist

NIG modeling

’ Subgraph enumeration ‘

I

‘ Latency evaluation ‘

I}

’ Replacement ‘

Subgraph library

!

No

Explore all vertices?

¥
NIG with reduced latency

Figure 4: Overall flow of NIG rewriting.

sets for the fanin gates are different, we add an edge between the
vertices corresponding to the two gates.

2.2 Mapping-Aware Netlist Synthesis

Alogic function is represented as a NOR and INV netlist. To decrease
the latency of the resulting netlist, we propose the NIG rewriting
method, which transforms the netlist into another logically equiv-
alent one with minimum latency. The latency is presented as the
number of colors derived from our graph coloring formulation,
eliminating the need to calculate latency through in-memory map-
ping; the runtime for executing mapping once is much larger than
the time taken for a single graph coloring formulation.

Even though performing the graph coloring algorithm [8] once is
fast, the total runtime for latency evaluation largely increases with
the number of gates in the netlist. It is because as the netlist size is
larger, the number of enumerated subgraphs increases. This results
in a significant number of graph coloring formulations. In addition,
the coloring algorithm exhibits O(n?) time in the n-vertex graph,
where n denotes the number of gates in a netlist. To significantly
reduce the runtime, we propose an incremental graph coloring
method. It revises an existing coloring result, instead of performing
entirely new graph coloring formulation.

2.2.1 NIG Rewriting. Figure 4 shows the overall flow of the pro-
posed rewriting method. We model an input netlist as NOR-INV
graph (NIG), where vertices correspond to NOR gates while edges
represent gate connections. INV gates are denoted by black markers
on the edges. To explore the logically equivalent netlists, a library
is created from pre-computed library [9] which stores logically
equivalent AIG subgraphs for 4-variable functions; NIG is obtained
by converting each AND gate of AIG into NOR and INV gates, and
then NIG subgraph library is derived.

For each vertex of NIG, we perform subgraph enumeration,
which searches all logically equivalent subgraphs in the NIG sub-
graph library; input NIG can be transformed into an equivalent
NIG by using those subgraphs. Each of the equivalent NIG is evalu-
ated in latency through the proposed incremental graph coloring

GLSVLSI ’24, June 12-14, 2024, Clearwater, FL, USA

Subgraph,

Logically equivalent Subgraph
2

Revised graph
(b)

Coloring result,

Coloring result,

Figure 5: (a) An example of two logically equivalent netlists
and (b) incremental graph coloring.

method. Finally, among the equivalent subgraphs, the subgraph of
input NIG is replaced with the optimal subgraph that minimizes
the latency. The same process sequentially repeats for all vertices
in topological order.

2.2.2 Incremental Graph Coloring. Figure 5 shows an example of
incremental graph coloring method, where subgraph; in the netlist;
is logically equivalent with subgraph; in the netlisty (see dotted
lines in Figure 5(a)). A coloring result; for netlist; is obtained using
an algorithm introduced in [8]. Then, we revise the coloring result;
to formulate the graph coloring problem for netlist;. The subgraph;
vertices v1 and v4 that are not in subgraph; are removed with those
edges ey; and eqj, while subgraph; vertices vg and vg, which are
not present in netlist;, are added with their corresponding edges
egr and eg; (see red lines in Figure 5(b)). Finally, except for the
explored gate gs, all subgraphy vertices vy, v3, vg, and vg are colored
by the graph coloring algorithm, resulting in the coloring result;
for netlist,.

The incremental method confines vertex exploration within the
subgraph. This ensures that regardless of the netlist size, coloring is
only applied to vertices of the subgraph. In addition, the remaining
vertices outside the subgraph have pre-determined colors. Thus,
the complexity is significantly reduced to O(m?), where m denotes
the number of gates in the subgraph. Reusing the existing coloring
result may slightly increase the number of colors used, but the im-
pact is small. This is because, despite the subgraph replacement, the
relationships between vertices outside the subgraph are preserved.

2.3 In-Memory Mapping Using CP

In-memory mapping is performed by formulating constraint pro-
gramming (CP) for a colored netlist. In this formulation, the loca-
tions of both the input and output memristors for each gate are
determined while satisfying the alignment constraints. Operation
sequence is derived from colored gate sets, in which gates sharing
the same color execute parallel operations, while gates with differ-
ent colors operate in different clock cycles. The formulated CP can
be quickly solved because its goal is to find a solution that satisfies
the alignment constraints, unlike previous works [2, 14] that solve

Seunggyu Lee, Wonjae Lee, and Youngsoo Shin

Coordinate: (1,1)

~ CP formulation Y7 [Ye]Ys
X1 X3 y2 y8
X2 X3 y3 yg
Jomeeeooees Vel Vel
77777 TATN
Alignment ! YaiYo)
X, | X5 1Yol }ryzill'ya_}
Xo] Xs Y. Vs}Yel

Figure 6: In-memory mapping through CP formulation,
which perform alignments between parallel operation sets.

the latency optimization problem. In addition, parallel operation
sets, which are obtained from the colored gates, are provided to
CP. Thus, alignments are performed based on the sets, instead of
individual gates, as shown in Figure 6.

2.3.1 CP Formulation. We utilize row and column indices as coor-
dinates for both the input and output memristors. The coordinate
of NOR gate g; is defined as:

{(rinlgi > Cinly,), (rinzgi > Cin2g,)s (routgia Couty,)}s (1)
where the gate inputs inlg,, in2g,, and the gate output outy, are
mapped to (rinlgis Cinlg,), (rinZgia Cin2g,),and (routgia Couty,), respec-
tively, with row indices rin1,, rin2y,, r'out,, € N and column indices
Cinly,» Cin2,,» Cout,, € N. For INV gate g, only one input is used for
its coordinate, i.e., {("inlgi, Cinlgi), (”outgi, Coutgi)}- For instance,
in Figure 6, the coordinates of NOR gate g2 and INV gate gg are
{(2, 1),(2,2), (2, 3)} and {(2, 3), (2, 4)}, respectively.

Each gate in a netlist operates in a row or a column. For a gate
gi, the inputs inlg,, in2y, and the output outy, are arranged either
in the same row and different columns or in the same column and
different rows, which is given by:

{(Vinlgi =Tin2g, = routgi) & (Cinlgl. * Cin2g, * Coutgi)} (2)

I {(Cinlgi = Cin2g, = Cautgi) & (rinlgi * Tin2g, * routgi)}-

Since gates g; and g; with the same color operate in parallel, they
should be aligned in columns or rows. This is represented by:

{(Cinlgi = Cinlgj) & (Cinzgi = CinZgj) & (Coutgi = Coutgj) (3

I {(Cinlgi = Cinzgj) & (CinZgi = Cinlgj) & (Coutgi = Coutgj)}]
I {(rinlgi = rinlgj) & (rin29i = rinZgj) & (routgi = routgj)}

I {(rinlgi = rinzgj) & (rinZgi = rinlgj) & (routgi = routgj)}],

where the gates g; and g should simultaneously satisfy Equation (2).
If a gate output outy, serves as another gate input ing; (ie., inlg,
or in2g;), outy, and ing; are mapped to the same memristor. The

Integrated Netlist Synthesis and In-Memory Mapping for Memristor-Aided Logic

connectivity between gates g; and g; is given as:
(routyi = ringj) & (Coutyi = Cingj) 4

To preserve resistance states of output memristors, the outputs
outg, and outy, of two different gates g; and g; should not overlap;
thus, they are mapped to different memristors, which is represented
as:

(routgi * routgj) I (Coutgi # Coutyj)- (5

3 EXPERIMENTAL RESULTS

A set of test circuits from ISCAS85 benchmarks [6] are taken for
the experiments, which are listed in Table 1 in order of circuit
complexity. Conventional netlist synthesis is conducted using a
standard logic synthesis tool (ABC) [11], and the number of gates in
the resulting netlist is presented in column 2 of Table 1. Our netlist
synthesis and in-memory mapping are implemented in C++. The
number of colors in the graph coloring formulation is calculated by
a coloring algorithm [8]. The solutions of ILP and CP are obtained
using a commercial solver [13].

3.1 In-Memory Mapping

In Table 1, we assess our in-memory mapping in terms of latency.
Our proposed method (coloring) is compared with two previous ap-
proaches: staircase method [15] and partitioning-based method [14].
Each test circuit is synthesized into a NOR and INV netlist through
conventional netlist synthesis. The netlist is mapped by our coloring-
based method, and the resulting latency is presented in column
5. Previous methods are also applied to the same netlist, and the
latency differences from our approach are shown in columns 3-4
(see parentheses). For the partitioning-based approach, we vary
partition sizes and select the best result within the runtime limit
of 24 hours; this ensures tractability because solving ILP for large
partitions causes significant runtime overhead.

Our method consistently outperforms the previous approaches,
demonstrating reliable improvements across all test circuits. Specif-
ically, we achieve the minimum latency compared to both the stair-
case and partitioning-based methods, which increase the average
latency by 31% and 17%, respectively. This is because our graph
coloring formulation maximizes parallel operations without copy
overhead. It is important to note that the proposed method shows
greater latency reduction, particularly for larger circuits. This comes
from the fact that copy operations in previous methods increase
with the circuit size due to the larger complexity of the mapping
process. In the staircase method, gates from each level are alter-
natively mapped in rows and columns. Then, inputs for the next
level are provided through simple alignments using copy opera-
tions. Similarly, the partitioning-based approach formulates ILPs
individually for each partition. Even though the resulting latency
in a partition is minimized, a large number of copy operations are
required to align between multiple partitions. On the other hand,
our solution is not affected by such copy overhead.

We further evaluate our method in terms of efficiency by com-
paring its runtime with that of the partitioning-based approach. We
gradually increase the partition size for the previous approach until
it achieves a similar latency to ours, without setting any runtime
limit. As a result, in the case of the smallest test circuit (c432), the

GLSVLSI ’24, June 12-14, 2024, Clearwater, FL, USA

Table 1: Comparison of various in-memory mapping meth-
ods in latency

Latency

Circuits #Gates Staircase Partitioning Coloring

[15] [14] (Proposed)
432 251 225 (+24%) 204 (+13%) 181
880 521 427 (+26%) 382 (+13%) 339
1908 583 517 (+26%) 465 (+14%) 409
499 606 242 (+27%) 219 (+15%) 190
c1355 606 236 (+27%) 216 (+16%) 186
2670 1060 551 (+30%) 493 (+16%) 425
¢3540 1422 1435 (+33%) 1270 (+18%) 1079
5315 1989 | 1361 (+35%) | 1196 (+18%) 1011
7552 2345 | 2182 (+37%) | 1913 (+20%) 1597
6288 2718 | 3751 (+40%) | 3491 (+31%) 2672

[Average || [+31% “17% |]

partitioning-based method exhibits the same latency of 181; but
it takes over a week, while our mapping is completed within 5
minutes. Notably, the maximum runtime from our method among
all test circuits is only 50 minutes for c6288.

3.2 Integrated Method

The goal of the proposed integrated method is to achieve further
reduction in latency by obtaining an optimal netlist based on the
resulting latency of in-memory mapping. In Table 2, we assess our
integrated method in terms of latency compared to our coloring-
based mapping, where the input netlist is obtained from conven-
tional netlist synthesis (see column 5 of Table 1). As listed in column
4, the latency difference compared to our coloring-based mapping
is shown in parentheses, and the proposed integrated approach
exhibits an additional 15% reduction in latency, on average. We
observe that the latency difference increases with the circuit size.
This is because in-memory mapping becomes more complex as the
circuit is larger; the alignments between more gates are considered.
Thus, to minimize the resulting latency of in-memory mapping,
netlist synthesis should be performed in correlation with the map-
ping. But, conventional netlist synthesis simply reduces the area
of the netlist, so it results in a netlist which requires more copy
operations.

To assess the effect of the proposed incremental graph coloring,
we create another integrated method as a baseline, where latency
evaluation in NIG rewriting is performed using a non-incremental
graph coloring method. The integrated method based on the non-
incremental coloring significantly reduces latency as listed in col-
umn 2, but the results are shown only for 6 small circuits due to
computational complexity, where the runtime limit is set to 24 hours.
On the other hand, our incremental coloring-based method achieves
latency reductions for all test circuits. As shown in columns 3 and
5, the runtime gain increases as the circuit is larger. This is because,
when a circuit is modeled by NIG, both the number of vertices
to explore and the number of subgraphs enumerated from those
vertices increase in proportion to the circuit size. Accordingly, more
graph coloring formulations for latency evaluation are required.
Also, the runtime gain comes from the fact that the time taken for
a single execution of the graph coloring algorithm [8] increases

GLSVLSI ’24, June 12-14, 2024, Clearwater, FL, USA

Table 2: Comparison of two integrated methods in latency
and runtime

Circuits Non-incremental coloring Incremental coloring
Latency [Runtime Latency [Runtime
432 158 (-13%) 28m | 163 (-10%) 5m
880 294 (-13%) 159m | 304 (-10%) 13m
1908 350 (-14%) 524m | 363 (-11%) 15m
499 162 (-15%) 605m | 168 (-12%) 16m
1355 159 (-15%) 595m | 165 (-11%) 16m
2670 352 (-17%) 1031m | 366 (-14%) 19m
3540 - - | 890 (-18%) 30m
5315 - - | 804 (-20%) 36m
7552 - - | 1264 (-21%) 39m
6288 - - | 2094 (-22%) 52m
l Average H [[-15% [l

according to the time complexity (see Section 2.2). Even though the
proposed integrated method achieves about 3% less reduction in
latency compared to the non-incremental approach, this compro-
mise is acceptable considering the significant runtime gain, e.g., 54
times for ¢2670. In addition, the runtime overhead resulting from
integrating the proposed netlist synthesis is negligible; it’s only
about 3% for the largest test circuit (c6288). This indicates that our
integration is very effective in reducing latency.

The resulting latency of in-memory mapping can vary signif-
icantly depending on the synthesized netlist. Figure 7 illustrates
the changes in latency according to the number of replacements
conducted during three netlist synthesis methods: conventional
approach [9], NIG rewriting with non-incremental graph coloring
method, and the proposed approach using incremental graph color-
ing. A test circuit (c432) serves as input for each netlist synthesis
method. Conventional rewriting and the other two NIG rewriting
methods perform replacements until the area and latency converge,
respectively. We observe that the latency from the conventional
netlist synthesis does not continue to decrease; in fact, latency even
increases at specific replacements. In contrast, the other two meth-
ods consistently reduce latency with each replacement. This shows
the importance of considering in-memory mapping during netlist
synthesis.

4 CONCLUSION

We have addressed a coloring-based in-memory mapping, and its
integration with mapping-aware netlist synthesis. Graph coloring
formulation is performed to maximally assign parallel operations
without copy overhead. The gates capable of parallel operation are
assigned with the same color. In-memory mapping for the colored
netlist is then performed by formulating constraint programming
(CP). Our netlist synthesis employs a rewriting algorithm to obtain
the netlist with minimum latency. The input netlist is iteratively
transformed based on latency evaluation through an incremental
graph coloring method. Experimental results show that the pro-
posed coloring-based mapping achieves 17% reduction in latency
compared to the state-of-the-art method. The integrated approach
further reduces 15% of latency from our coloring-based method.

Seunggyu Lee, Wonjae Lee, and Youngsoo Shin

250 -
225
>
&
& 200
--- Conventional RRES
175 Non-incremental coloring
— Proposed
1 50 1 1 1 1 1
0 15 30 45 60 75

#Replacements

Figure 7: Latency per replacement conducted by conventional
rewriting [9], NIG rewriting with non-incremental graph
coloring method, and the proposed rewriting.

ACKNOWLEDGEMENTS

This work was supported in part by the Institute of Information and
communications Technology Planning and Evaluation (IITP) grant
funded by the Korea Government (MSIT) through Logic Synthesis
for NVM-based PIM Computing Architecture under Grant 2022-0-
00971. The EDA tool was supported by the IC Design Education
Center (IDEC), Korea.

REFERENCES

[1] Shaizeen Aga et al. 2017. Compute caches. In Proc. Int. Symp. on High Performance

Computer Architecture. 481-492.

Rotem Ben Hur et al. 2017. SIMPLE MAGIC: Synthesis and in-memory mapping

of logic execution for memristor-aided logic. In Proc. Int. Conf. on Computer-Aided

Design. 225-232.

[3] Leon O. Chua. 1971. Memristor-the missing circuit element. IEEE Trans. on
Circuit Theory 18, 5 (Sept. 1971), 507-519.

[4] Juan Gémez-Luna et al. 2022. Benchmarking a new paradigm: Experimental
analysis and characterization of a real processing-in-memory system. IEEE Access
10 (May 2022), 52565-52608.

[5] Song Han et al. 2016. EIE: Efficient inference engine on compressed deep neural
network. In Proc. Int. Symp. on Computer Architecture. 243-254.

[6] Mark C Hansen, Hakan Yalcin, and John P Hayes. 1999. Unveiling the ISCAS-85
benchmarks: A case study in reverse engineering. IEEE Design & Test of Computers
16, 3 (Sept. 1999), 72-80.

[7] Shahar Kvatinsky et al. 2014. MAGIC—memristor-aided logic. IEEE Trans. on
Circuits and Systems II 61, 11 (Nov. 2014), 895-899.

[8] Frank Thomson Leighton. 1979. A graph coloring algorithm for large scheduling
problems. 7. Res. Nat. Bur. Standards 84, 6 (Dec. 1979), 489-506.

[9] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. 2006. DAG-aware

AIG rewriting: A fresh look at combinational logic synthesis. In Proc. Design

Automation Conf. 532-535.

Vivek Seshadri et al. 2017. Ambit: In-memory accelerator for bulk bitwise opera-

tions using commodity DRAM technology. In Proc. Int. Symp. on Microarchitecture.

273-287.

Berkeley Logic Synthesis and Verification Group. 2012. ABC: A system for

sequential synthesis and verification. http://www.eecs.berkeley.edu/~alanmi/

abc/

[12] Peng Yao et al. 2020. Fully hardware-implemented memristor convolutional

neural network. Nature 577, 7792 (Jan. 2020), 641-646.

Z3Prover. 2024. The z3 theorem prover. https://github.com/Z3Prover/z3/

Zhenhua Zhu et al. 2019. A general logic synthesis framework for memristor-

based logic design. In Proc. Int. Conf. on Computer-Aided Design. 1-8.

Alwin Zulehner et al. 2019. A staircase structure for scalable and efficient synthe-

sis of memristor-aided logic. In Proc. Asia and South Pacific Design Automation

Conf. 237-242.

[2

=
=

[11

ey
N

[15

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/
https://github.com/Z3Prover/z3/

	Abstract
	1 Introduction
	2 Proposed Methods
	2.1 Parallel Operation Assignment Using Graph Coloring
	2.2 Mapping-Aware Netlist Synthesis
	2.3 In-Memory Mapping Using CP

	3 Experimental Results
	3.1 In-Memory Mapping
	3.2 Integrated Method

	4 Conclusion
	References

