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Abstract— The paper deals with a moving  optimal control 

problem for heat conductivity  processes. A quadratic functional 

is taken as  an optimality criterion. The existence of the stated 

problem is studied. Definition of the the optimal control is given. 
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I. INTRODUCTION 

The paper deals with a moving optimal control problem for 

heat-conductivity processes. The  problem is: it is required  

to find such a control Utptptptp m = − )}(),...,(),({)( 121   

from the class of possible  controls that affords a minimum 

value to the functional 

dxtxupI =
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within the solution of the problem (1)-(3) satisfying the initial 

boundary conditions. 

The solution of the stated mixed problem (1)-(3) for each 

fixed  control at first is sought in the form of the solution 

)()(),( tTxXtxu =  

satisfying boundary conditions (1) and initial conditons (3) of 

the homogeeneous equation corresponding to the equation 

(1), so, the functions )()( tTxX  are non-trivial functions [1]. 

At first we find the solution of equation (1) satisfying the 

initial and homogeneous conditions [2]. Then according to 

the known rule, the solution of the stated mixed problem for 

each fixed control is in the form ),( txu [2]. 

 

II. PROBLEM STATEMENT 

 Let the temperature at the ends of the rod of length    

be equal zero and the rod is supplied with heat of intensity 

)(),...,(),( 121 tptptp m−  at the points  −11 ...0 mxx  

outside. Then this process is mathematically described bu the 

equation  
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boundary conditions 

Ttutu == 0,0)0,(,0),0(  ,                          (2) 

and initial conditons   

= xxxu 0),()0,(  .                              (3) 

Here )(x  is the density of the rod material and is positive 

in the interval  x0 ,  the function )(xa is a given 

function differentiable in the interval   ),0(  , )(x  is a 

continuous function in the interval ],0[  ,

)(),...,(),( 121 tptptp m− are control functions and are taken 

from the class of possible controls   
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  - is Driac’s  “delta”  function. 

The problem is: to find such a control  

Utptptptp m = − )}(),...,(),({)( 121   from the class of 

posible functions that affords a minimum  to the functional  

dxTxupJ =


0

2 ),()(                                     (4) 

within the solution of the problem (1)-(3). 

2.The solution of the mixed problem (1)-(3) for each fixed 

control at first is found in the form of homogeneous equation  
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 corresponding to the equation (1), the solution satisfying 

boundary conditions (2) and initial conditions  (3) in the form  

)()(),( tTxXtxu =                                    (6)  

so, the functions )()( tTxX are non-trivial functions. 



Since  
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from the equation  (5)  
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Hence we obtain   
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Thus, for the function determined by the  equality (6) be the 

solution of the equation (5) it is necessary functions  )(tT  

and )(xX  recpectivelly be the  solutions of the following 

equation:  

0)()( =+ tTtT  ,                                             (7) 
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For boundary conditions (2) be satisfied, it is 

necessary   

0)(,0)0( == XX                                                  (9) 

When )(xa  and )(x  satisfy the above conditions,  

the spectral problem  (8), (9) has an increasing sequence of 

eigen-values }{ k  with the limit +  and a system of eigen-

functions )}({ xX k  orthonormal in the interval ],0[  .  

Writing n =  in the equation (7), the solution of the 

obtained equation is the form  
t
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solution of the problem  (5), (2)is in the form  
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Since  
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we can expand it in Fourier series in ],0[   with respect to the 

orthonormal system  )}({ xX n  i.e. the expansion  
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is valid. 

In can be easily shown that the solution of the equation  

(1) satisfying the homogeneous initial condition and 

homogeneous boundary conditions is in the form  
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Then acording to the known rule, the solution of the problem  

(1)-(3) for each fixed control is in the form 
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It shoul be noted that the function determined by the 

equality (11)  is the generalized solution of the problem (1)-

(3). 

III. SOLUTİON OF THE OPTİMAL CONTROL PROBLEM 

 

 Having substituted the solution of the problem (1)-(3) 

determined by the equality (11)  in the expression of the 

functional  )( pJ  and taking into account that the system 

)}({ xX n  is orthonormal in the interval  ],0[   and making the 

following  replacement, we obtain: 
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After this replacement, we can write the functional )( pJ  as 

follows  
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Theorem. The stated problem has a solution if the 

conditions 



,0)(),,0()(),,0()(),,0()( 1  xCxCxCxa  

),0( x , 1,...,1),,0()( 2 −= miTLtpi  are satisfied. 

 

IV. CONCLUSION 

 

In the paper we study an optimal control problem for a system 

described by a parabolic type equation 
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Quadratic functional is taken as an optimality criterion [2].  

At first we define the solution to the mixed problem for each 

control. Then a theorem on the existence and uniquness of the 

optimal control is proved [3]. 
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