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ABSTRACT 

Digital twins are one of the key technologies behind the 
Fourth Industrial Revolution.  In the coming years they will be 
introduced on a large scale in the industry and in other 
spheres. A wide range of digital twins will be in demand: from 
separate components to complex technical facilities, such as 
automobiles, airplanes, manufacturing lines, factories, 
corporations, etc. To provide their successful interaction, it is 
important to create digital twins on the uniform principles. 
Currently, creating a digital twin is a complex scientific issue. 
It presents difficulties because it is necessary not only to 
describe physical (or chemical, biological, etc.) processes 
going on in the object, but also to envisage significant changes 
of its properties in the course of its operation. In this case the 
digital twin is supposed to adapt to the changes in the original 
object in accordance with the data received from the sensors. 

When the real object is in operation, its properties and 
specifics of the physical processes going on in it can change. 
The model is supposed to adapt in accordance with these 
changes, which is rather difficult if a model is generated by 
applying computer-aided engineering software packages 
(CAE) based on the finite element method (FEM). 

We think that another approach is more promising. It involves 
building an adaptive model at the second stage. This model 
can be specified and redesigned in accordance with the 
observations on the object. Since neural networks have 
proved to be efficient in solving complicated problems related 
to data processing, we recommend using them as the basic 
class of mathematical models for creating digital twins. 
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1. INTRODUCTION 

Industry 4.0 is largely based on the digital twin technology. 
Digital twins corresponding to particular physical objects will 
work in computational nodes that control manufacturing 
lines, robots, complex technical installations (airplanes, 
automobiles, vessels, etc.) Digital twins appear to be the most 
useful when the properties of the object change over its 
lifetime. These changes can be undesirable, for instance, wear 
and tear of friction surfaces or the formation of cracks in 
metal components. In [1] it is suggested that it should be used 
for monitoring supply chains, which will both lead to 
improvements in the manufacturing process and provide 
feedback with the supplier of raw materials. In [2] the authors 
consider a number of spheres in which digital twins can be 
applied: smart homes, hotels and hospitals; smart cities, 
classes and campuses, smart stores, warehouses and 
production floors; virtual and augmented reality, smart and 
safe hospitals. Digital twins for autonomous / self-driving cars 
can make decisions about planning the route and interacting 
with other vehicles. 
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Currently, digital twins have been defined in a number of 
ways by various authors. For example, the Defense Acquisition 
University defined a digital twin in the following way: “an 
integrated multiphysics, multiscale, probabilistic simulation of 
an as - built system, enabled by Digital Thread, that uses the 
best available models, sensor information, and input data to 
mirror and predict activities/performance over the life of its 
corresponding physical twin”. In the article [1] a digital twin is 
defined as: 

- A model of the object; 

- An evolving set of data relating to the object, and 

- A means of dynamically updating or adjusting the 
model in accordance with the data. 

In the article [2] the authors give the following definition of a 
digital twin: ” a digital twin is a computer program that takes 
real-world data about a physical object or system as inputs 
and produces as outputs (predications or simulations of how 
that physical object or system will be affected by those 
inputs)”. 

In the article [3]“DT is regarded consistently as a high fidelity 
virtual replica of the physical asset with real-time two-. way 
communication for simulation purposes and decision-making 
aiding features for product service enhancement”. Söderberg 
with a group of researchers [4] define a digital twin as "Using 
a digital copy of the physical system to perform real-time 
optimization". According to Kannan and Arunachalam [5] a 
digital twin is a “Digital representation of the physical asset 
which can communicate, coordinate and cooperate the 
manufacturing process for an improved productivity and 
efficiency through knowledge sharing”. 

Problems: Once digital twins are embedded in a 
computational node, they cannot be kept unchanged since the 
simulated object undergoes changes in the course of 
functioning. A virtual twin of the real object should change in 
accordance with the information received from the sensors. 
The algorithms of such changes should be implemented in the 
above mentioned computational node. For example, it is clear 
that a unified DT modeling framework is needed urgently [3]. 
In order to make a digital model of a physical object it is 
necessary to obtain information about its geometry and the 
properties of the material it is made from. One reason that the 
digital twin concept is so valuable in manufacturing is that it 
allows for development of individual models of individual 
objects within a unifed framework that makes model 
development, validation, and updating simple. An individually 
tailored model can be used for many applications during 
manufacture and service [1]. 

When complex technical facilities are designed, it is common 
to apply computer-aided engineering software packages 
(CAE) based on the finite element method (FEM) - ANSYS, 
ABAQUS, etc. However, using them for modelling a real object 
poses a number of major difficulties. Firstly, to apply FEM it is 
necessary to know differential equations describing the 
behavior of the object. Adequate information about these 
equations is not usually available because it is difficult to 
describe physical processes going on in the object which is 

being emulated. Secondly, applying FEM requires knowledge 
of initial and boundary conditions, but this information is 
generally even less accurate and adequate. Thirdly, when the 
real object is in operation, its properties and specifics of the 
physical processes going on in it can change. The model is 
supposed to adapt in accordance with these changes, which is 
rather difficult if a model is generated by FEM. 

In the article [6] it is argued that one of the priorities is 
developing a unified approach and a consolidated definition of 
a digital twin. It applies primarily to transition from niche, 
intra-industry projects to a general one, in which all 
implementations of digital twins will be compatible and 
capable of integration. 

Recently a number of approaches to creating digital twins 
have been used. Emuakpor et al. integrated a nondestructive 
material determination technique, a water displacement 
method, and an iterative Ritz method for the DT to measure 
the material property. The technique was verified through an 
experiment on nickel alloys [7]. [«Digital Twin in Industry: 
State-of-the-Art» Fei Tao, Senior Member, IEEE, He Zhang, Ang 
Liu, and A.Y.C. Nee]. Majumdar et al. studied the behavior of 
synergistic materials based on the multi-physics modeling, 
which was used as the foundation for building the DT model 
[8]. [«Digital Twin in Industry: State-of-the-Art» Fei Tao, 
Senior Member, IEEE, He Zhang, Ang Liu, and A.Y.C. Nee]. 

5G technologies [6] have played an increasingly significant 
part in creating digital twins since their development has 
opened up more opportunities for faster providing and 
exchanging data.  

In the course of transition to Industry 4.0 it is essential to 
create appropriate mathematical and algorithmic tools, which 
will be conducive to addressing a wide range of issues in a 
uniform and consistent way. It will be the next significant 
milestone for transition to Industry 4.1, which will involve the 
same production processes as Industry 4.0, but the 
implementation of these processes will be achieved on the 
basis of cheaper unified technologies. 

2. METHODS 

We consider neural networks to be one of such key 
technologies. We suggest that neural networks should be 
applied for creating digital twins. [9],[10],[11]. 

Currently neural networks are widely used in Big Data 
problems, image processing, pattern recognition, controlling 
complex systems and other artificial intelligence issues. They 
can be applied to some of the problems related to creating 
digital twins. For example, in article [12] a general model of 
ignition processes and forest fire propagation was developed. 
This model was built on the same principles as digital twins. 
The general model includes several “submodels”, which form 
a hierarchy. A discrete empirical “submodel” tracks the 
trajectory of airborne hot particles. A topographical 
“submodel” takes into consideration the ambient combustible 
material, airborne embers capable of starting secondary fires 
as well as updrafts (due to hot air). The third “submodel”, 
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based on machine learning allows considering data received 
from sensors and cameras. 

Each “submodel” is supported by theoretical and empirical 
evidence. Empirical models are expressed by algebraic 
equations for movement of hot particles and heat transfer 
coefficients [13], [14]. In semi-empirical models, which 
improve empirical models, more precise ratios for fire 
propagation velocities expressed by linear differential 
equations are used [15]. Physical models combine differential 
equations of thermodynamics with forest fire parameters 
[16], [17]. 

Machine learning models use the genetic algorithm to draw on 
the results of measurements obtained from a number of 
sensors and cameras placed in different topographical areas. 
The genetic algorithm is designed to optimize of all types of 
“submodels” by minimizing the error of general modelling 
expressed as a percentage of the forest destroyed by the fire 
and the time when the event occurred.  

3. OUR APPROACH 

At the moment it is vital to move from solving individual 
problems to the common methodology for solving them, 
which was described in our monograph [9]. 

To explain our methodology, we need to point out that the 
transition to Industry 4.1 requires a paradigm shift in 
mathematical modelling. The traditional mathematical 
modelling of a real object involves two stages. At the first 
stage the object is described with a differential equation or a 
system of differential equations (ordinary or partial 
derivatives) with initial, boundary and another additional 
conditions. The second stage involves numerical solution to 
these equations with maximum precision; designing the 
control system on the basis of the differential model, etc. If 
further observations of the object conflict with the 
calculations that have been made, the ongoing processes are 
studied additionally. The model of the object is refined on the 
basis of these observations. Then computational studies of 
this model are conducted again. 

Such an approach does not require many intellectual 
resources, and it is not time-consuming. To make 
mathematical modelling more efficient we suggest changing 
the traditional perspective on the differential model of an 
object. We do not perceive it as accurate background 
information for further research, but rather as approximate 
data about an object along with the measured data. On the 
basis of this information we make a set of mathematical 
models for the object. The parameters of these models can be 
changed while the object is in operation. The model which 
best matches the object at a particular stage of its lifecycle can 
be chosen from this set. 

Our methodology involves three simple steps [9]. The first 
step is an assessment of the quality of the mathematical model 
through the functional. In [9] this step was illustrated with a 
number of sample problems. The second step involves 
choosing the type of a neural network which is the most 

appropriate for solving the problem. In [9] we described the 
types of neural networks which we consider to be the most 
useful. We also offered recommendations on how to choose a 
certain type of a neural network in accordance with the 
characteristics of the problem that needs solving. The third 
step is neural network training, by which we mean minimizing 
the functional mentioned above and characterizing the quality 
of the model. The algorithms of such training were considered 
in the third chapter of our monograph [9].  A major part of the 
algorithms entails simultaneous adjustment of the neural 
network parameters as well as its structure. The book 
contains the results of a considerable number of 
computational experiments. The examples of building neural 
network models of the real objects can be found in the articles 
[18-32]. 

The procedure of creating a neural network model of a 
particular element (process) in the object for which we are 
developing a model will be described here. The element 
(object) in question is described as a boundary problem for a 
differential equation:  

( ) , ( ), ,pA u g u u x x R= =   ( )B u h

=    (1) 

Here u is a function describing the condition of the element or 

process under consideration, ( )A u   is a differential, integro-

differential or differential-algebraic operator, i.e. an algebraic 
expression that contains derivatives, integrals or algebraic 

relations of function ( ),  u B u  ,  is an operator determined by 

the boundary conditions,  Γ is a boundary of the domain      

The approximate solution to the problem (1) will be 
presented as an output of the artificial neural network (ANN) 
with the specified architecture:  

( ) ( )
1

, ,
N

i i

i

u x w c v x a
=

=                                                            (2) 

Here w is a vector of weights, which aggregates linear input 

parameters
ic    and non-linear input parameters 𝑎𝑖 . The basis 

neural network element (function of v  ) is set by choosing the 

type of a neural network and the activation function. 

The vector of ANN weights is founded as the result of the 
process of the stepwise network training, which, in general 
terms, is based on minimization of a particular error 
functional. For problem (1) it is made up of two summands, 
where the first one is the estimation of the equation 
satisfaction, and the second one - of the boundary condition. 
Since the model used as the digital twin is supposed to 
consider the results of observations on the target object, the 
third summand is added to the functional. It shows how 
precisely the model (2) conforms to these data. 

 The computational experiments have illustrated that using 
a fixed number of test (trial) points does not make sense 
because in this case minor errors in these trial points will 
entail errors in other points of area  . It appeared that the 
problem could be solved by using periodically regenerated 
test points in area  , and, if necessary, on its boundary  . 
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The regeneration of the test points after a certain number of 
steps of neural network training process will be conducive to 
its sustainability. In addition to that we organize the 
calculations as the process of the functional set minimization. 
Each functional is obtained by a specified selection of the test 
points and is not totally minimized (only several steps of the 
selected minimization method are made between the 
regenerations of the test points). In particular, such an 
approach allows avoiding the problem of falling into the local 
extremum. This problem is quite common for most methods 
of the global non-linear optimization. Furthermore, in the 
course of error functional optimization, we can include new 
observations as additional summands.  

In addition to that in the monograph [9] the authors offer the 
methods of designing approximate multi-layer solutions to 
differential equations on the basis of classical numerical 
methods. We use well-known formulae of numerical methods 
to solve differential equations to generate a set of adaptive 
functional solutions rather than to generate tables of 
numerical solutions. We have considered a number of 
problems with real measurements, for which our models 
represent the object more accurately than exact solutions to 
the original differential equations. 

The specific features of our approach can be illustrated with 
the following example. In the article [33] the authors define a 
digital twin for a single-degree-of-freedom dynamic system, 
the equation of motion of which is described by the following 
equation: 

( ) ( )
( ) ( )

2

2
 

d u t du t
m c k u t f t

dtdt
+ + =                                            (3) 

Here m, c and k are the mass, damping and stiffness 
coefficients. The forcing function and the dynamic response is 

denoted by ( )f t and ( )u t respectively.  

If the coefficients are fixed, the problem has an analytical 
solution. In the course of finding the solution, the authors 
introduce the values which can be measured with sensors, 
suggesting that the model describes an aircraft. 

If the coefficients are fixed, the problem has an analytical 
solution. In the course of finding the solution, the authors 
introduce the values which can be measured with sensors, 
suggesting that the model describes an aircraft. Such values 

can be undamped natural frequency
k

m
 =  and damping 

factor
2

c

km
 =   . 

The model corresponding to the equation (3) a bi-time-scale 
model reproducing the dynamics of the physical system at 
both time-scales, the system time and a “slow time”, is defined 
as a digital twin. The concept of a slow time is used to separate 
the evolution of the system properties from the instantaneous 
time. The “slow” time corresponds to the data about the 
condition of the measured system parameters that are 
received from the sensors. 

The article only considers the situations when the mass and 
stiffness coefficients change separately or together. It also 
addresses the issue of error in measuring values  and   

and its influence on the result. In addition, the authors of the 
article do not suggest explicitly using the data about the object 
that cannot be easily inserted in the differential equation. 
However, in our neural network approach such data are 
certainly taken into consideration by applying the common 
error functional. 

In particular, the equation (3) can apparently be regarded as 
quite an approximate model of an aircraft. We solved the 
problems in which the differential equation was considered to 
be one part of the information about the behavior of the real 
object, whereas the results of measurements were the other 
part. Moreover, our approach allows solving the problems of 
building the models on the basis of the equation (3) without 
any information available about the slowly changing 
coefficients in the situation when they are restored while the 
object is operating in accordance with the measurements of 

the value ( )u t . 

5. CONCLUSION 

We recommend using classical methods to create digital twins 
of the technical objects, in which the processes are accurately 
described with differential equations. If the accurate 
differential models of the technical objects are unknown, we 
recommend using neural network modelling to create their 
digital twins [9]. 
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