
EasyChair Preprint
№ 4648

Continuous Distributed Key Generation on
Blockchain Based on BFT Consensus

Lei Lei, Ping Ma, Chunjia Lan and Le Lin

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 25, 2020

Continuous Distributed Key Generation on

Blockchain Based on BFT Consensus

Lei Lei*, Ping Ma*, Chunjia Lan*†, Le Lin*†
*Neng Lian Tech Ltd., Shanghai, China

†Corresponding Auther
{lei.lei, ping.ma, chunjia.lan, linle}@nenglian.com

Abstract—VSS (Verifiable Secret Sharing) protocols are used
in a number of block-chain systems, such as Dfinity and
Ouroboros to generate unpredicted random number flow, they
can be used to determine the proposer list and the voting powers
of the voters at each height. To prevent random numbers from
being predicted and attackers from corrupting a sufficient
number of participants to violate the underlying trust assumptions,
updatable VSS protocol in distributed protocols is important. The
updatable VSS universal setup is also a hot topic in zkSNARKS
protocols such as Sonic [19]. The way that we make it updatable is
to execute the share exchange process repeatedly on chain, this
process is challenging to be implemented in asynchronous network
model, because it involves the wrong shares and the complaints, it
requires the participant has the same view towards the qualified
key generators, we take this process on chain and rely on BFT
consensus mechanism to solve this. The group secret is thus
updatable on chain. This is an enhancement to Dfinity. Therefore,
even if all the coefficients of the random polynomials of epoch n
are leaked, the attacker can use them only in epoch n+2. And the
threshold group members of the DKG protocol can be updated
along with the updates of the staked accounts and nodes.

Keywords—blockchain, distributed key generation, consensus,
verifiable secret sharing

I. INTRODUCTION

Many BFT algorithms, such as Tendermint [3], use a
pseudo-random algorithm (see §D) to compute next proposer.
As method of calculating sequence is open to everyone, a
malicious adversary can compute the sequence in advance and
predict proposer of any future height/round. Thus future block
proposer can be easily attacked by DDoS or network split.

Blockchain is a closed system, it cannot query information
from the outside world, thus it cannot generate random number
through the unpredicted input source like the index of the stock
market. And it is a deterministic system, it expects all nodes run
the same sequence of transactions can get the same result, and
all inputs have to be verifiable, thus it cannot generate random
number through random input source like the local timestamp or
noise of the proposer node. If the input source is verifiable but
predictable, for example, the random number is determined by
the block header hash of some future height, the block proposer
of that height can choose to contain different sets of transactions
in order to obtain a favorable random number for him.

The “true random number flow” on blockchain is important
to make the proposers priority and validators of each height
unpredictable.

II. RELATED WORK

There are already some famous architectures devoted to
generate “true random number flow” on blockchain, such as
Algorand, Dfnity and Ouroboros.

The VRF processes in Algorand [2] are: At each height,
based on the last random number, each node computes the VRF
to obtain a new verifiable random number and participates in
arriving at a consensus to confirm the hash with the highest
priority—for example, the greatest one. However, a latent issue
is that the generator itself can choose to not to broadcast the
random number if it is not favorable to him, although he cannot
control the other participants’ random numbers, it does
somehow affect the random number flow.

If we want to make the random number unpredictable to
generator itself, each generator can only generate a piece of
random number, and only pieces above the threshold can
recover the group signature that can be used as random number.
Thus each participant cannot predict next random number but
has to participate in signature process honestly. Dfinity fits goal
well. The DKG protocol—Joint-Feldman [1] is based on BLS
threshold group signature [9,18] and has several advantages:

A. The group signature can be recovered by aggregating [8,10]
the signature slices of any 𝑡 participants. Usually the
threshold 𝑡 = 𝑛/2, which means the protocol is tolerant to
at most half nodes offline.

B. Group public key can be computed by every participant, so
once group signature is recovered, it can be sent to any node
and be verified directly. Thus it’s not always case 𝑡 signature
slices are needed for a participant to compute the group
signature. This save a large amount of network propagation.

Our work can be summarized as enhanced Dfinity, that is:
we do the share exchange process continuously at each epoch,
rather than only doing once at the start of the chain. A
continuous share exchange mechanism is necessary for two
reasons: First, the participants might change, some may want to
withdraw its stake, and others want to stake its deposit and join.
If a participant has already withdrawn and get out, and is still a
valid participant in the DKG protocol, this is clearly not
reasonable. Second, the coefficients that generated once at a
time might be leaked by human reasons, we cannot depend the
system security on no person making mistake.

As for Ouroboros [7], its consensus protocol — Cardano,
in first stage, it uses follow-satoshi(fts) and secure multiparty
computation to randomly generate the slots for the proposers of

next epoch. In second stage, it changes to use VSS protocol to
handle pause or network problem of the protocol in the first
stage. We view VSS as an alias of DKG, and one part of our
work is to solve the network problem in implementation of VSS
protocol. And we do a step further, we consider the participant
might be Byzantine thus they can collude to deduce secret, the
analysis is in Section Ⅴ.D.

III. MOTIVATION

 In order to make signature slice, the participant has to
firstly compute its private key from the received shares of the
generators in the “qualified set”. There are some issues related
to this process and is the key part that this paper wants to discuss.

A. Implementation

 To aggregate the received shares, each participant should
have the same view towards the “qualified set”. This
makes DKG protocol challenging to be adopted in a
weak synchronous network. A participant is considered
as unqualified if it has been complained against by
enough other participants. In a weak synchronous
network, maybe some participants collect enough
complaints toward a certain participant, but others do not,
this lead they have different result of the qualified set.

 Even if we solve the issue, based on what rule, what
number of complaints is “enough” to kick a participant
out from the qualified set?

B. Security

 The shares that generated by participant are determined
by the coefficients of the random generated polynomials.
The coefficients can be considered as the initial private
key of each participant and they should not be leaked. If
we discuss the protocol in the Byzantine environment,
we need to analyze the safety conditions that the
adversary corrupts how many participants can it deduce
to the coefficients of every participant, then the adversary
is able to predict all the future random numbers flow.

 We should redo the share exchange process when the
staked nodes change, for the new staked node should join
the DKG process and the shares generated by old nodes
should not be valid any more. Even if they do not change,
constantly doing this process makes the system securer,
though this adds extra network load, we can setup the
strategy such as doing the share exchange process every
1000 blocks to make the extra load acceptable.

IV. IMPLEMENTING DKG ON TENDERMINT

Among BFT consensus protocols, some like CasperFFG [5]
doesn’t have the feature of instant finality, while Tendermint
has this feature [3], we require the blocks of each epoch be
finalized at the end of the epoch. Though HoneyBadger [15]
also has this feature, its process is much more complicated, thus
we decide to integrate the DKG process on Tendermint.

A. Modified consensus process of Tendermint

In Tendermint, a proposal block can be committed if there
are 𝑛 − 𝑓 precommits of the same round that are for it, then the
node can enter the next height [4]. We now present another rule

for this mechanism: the node needs to recover the group
signature of each height either by gathering the signature slices
of t nodes or by receiving a verified group signature before the
block can be committed. Thus, at each height, the two
conditions—𝑛 − 𝑓 precommits of the same round for this block
and a group signature of this height—should be met
simultaneously for the node to commit the block of this height.

The signature slice of 𝑃𝑗: 𝜎𝑖𝑗 = 𝐻0(𝑚)𝑠𝑘𝑗 where m should

be a message that every node has a same view to. We use 𝐻0

(group signature) as random number for each height. Since we

want to have a “true random number flow”, message should be

relevant only with the previous random number, we use the

concatenated string of group signature of previous height and

its hash as the message. The first initial message is configured

in initial config file. In Fig 2, We see that the message m is

irrelevant with block data. Thus the block proposer cannot

manipulate the block data to manipulate the random numbers.

Fig. 1. Continuous random number flow

Fig. 2. Consensus flow combined with random number flow

B. Block format

As shown in Table Ⅰ, a block contains a header that contains
the hashes of relevant parts of this block and the state root of
previous height. We add “DkgData” that contains the
commitments and approvals to the block format of Tendermint.

TABLE I. BLOCK FORMAT

Block Field Description

Header

Height Height of current block

DataHash Hash of Data

EvidenceDataHash Hash of EvidenceData

DkgDataHash Hash of DkgData

ProposerAddress Proposer of this block

LastGroupSign BLS group signature of the previous height

AppHash Merkle root of state tree after executing previous block

LastCommit

Precommits [] 2/3 + precommits of the previous height block

BlockID
Merkle root of the header, each node can verify if

this block links to the same previous block as its

Data Txs [] Transactions in this block

EvidenceData Evidences [] Verifiable evidences of malicious behaviors

DkgData

Commitments[] 𝑡 commitments of block proposer

Approvals []
Each approval includes index of share sender (SrcID)

and recipient (DestID), its signature

C. Approval table

Executing the DKG algorithm in an asynchronous network
causes different nodes to have different views of complaints,
e.g: node A receives a complaint from C against D, but node B
does not.To solve this, we define every epoch as a statistic cycle
of the approval table. Every block is allowed to contain some
approvals (as shown in Table Ⅰ), and each approval in the block
corresponds to a unit in the approval table. For example, the
approval (SrcID: 5, DestID: 3, Sig:...) means that the third key
aggregator has received and verified the share from the fifth key
generator. Thus unit of row 3 and column 5 is marked with “”.

The signature in approval message is not the BLS signature,
but is based on other asymmetric cryptography such as ECDSA.
Every node has a public key to indicate its identity, and the
share that is supposed to be sent to a recipient node needs to be
encrypted using the public key of the recipient node to prevent
other nodes from peeping at it. A node sends out an approval
message after verifying a share from another node. If a node
fails to verify a share, it refrains from sending out an approval
message rather than make a complaint.

At the end of an epoch, if a unit in the approval table
remains blank, this is equivalent to a complaint from the key
aggregator (the row) against the key generator (the column).

Since the approval table is formed through blocks of an
epoch, consensus ensures that every node has the same view of
the approvals. The unit that does not have the approval is
marked a “”, i.e: there is a complaint in this unit. Table Ⅱ
shows two complaints from D and F against E. This can happen
if E sent incorrect shares to D and F, or if the shares from E did
not arrive at D and F in time.

If leave E as a qualified key generator, D and F cannot make

signatures in the 𝑛 + 2 epoch because they do not get correct

shares from E;

Else, choose deleting column E, there is no “” in the table,
and the qualified key generators are A, B, C, D, and F. The
threshold group still contains six players, and each aggregate

shares from only the qualified key generators. Each player
makes signatures using its own aggregated shares. Although E
has been kicked out from the qualified key generators, it is still
a valid threshold group member in the 𝑛 + 2 epoch.

）（

）（

）（

）（

）（

）（

)6(f),6(f),6(f),6(f),6(f),s,,,(:6)F(index

)5(f),5(f),5(f),5(f),5(f),s,,,(:5)E(index

)4(f),4(f),4(f),4(f),4(f),s,,,(:4)D(index

)3(f),3(f),3(f),3(f),3(f),s,,,(:3)C(index

)2(f),2(f),2(f),2(f),2(f),s,,,(:2)B(index

)1(f),1(f),1(f),1(f),1(f),s,,,(:)1A(index

643216664636261

643215654535251

643214644434241

643213634333231

643212624232221

643216141312111













ssss

ssss

ssss

ssss

ssss

ssss

For each “” unit, we have two choices: delete the column

or delete the row, which are equivalent to deleting a key

generator from the qualified set or a threshold group member in

the 𝑛 + 2 epoch, respectively.

TABLE II. THE APPROBAL TABLE

Send

Recv A B C D E F

A      

B      

C      

D      

E      

F      

V. IMPLEMENT VSS ON BLOCKCHAIN

A. Description of DKG protocol

The DKG protocol [9] is as follows: There are 𝑛 parties
𝑃1 , … , 𝑃𝑛,

1) 𝑃𝑖 generates a random polynomial:

𝑓𝑖(𝑥) = 𝑎𝑖0 + ⋯ + 𝑎𝑖(𝑡−1)𝑥𝑡−1, (𝑎𝑖0, … , 𝑎𝑖(𝑡−1)) ∈ ℤ𝑞
𝑡 .

2) 𝑃𝑖 generates commitments for polynomial coefficients,
(𝐴𝑖0, 𝐴𝑖1, … , 𝐴𝑖𝑡−1) = (𝑔𝑎𝑖0 , 𝑔𝑎𝑖1 , … , 𝑔𝑎𝑖𝑡−1), then it broadcasts
the commitments.

3) 𝑃𝑖 computes shares 𝑠𝑖𝑗 = 𝑓𝑖(𝑗) 𝑚𝑜𝑑 𝑞, 𝑗 ∈ [1, 𝑛] , and

sends each share 𝑠𝑖𝑗 secretly to 𝑃𝑗 .

4) Each key aggregator verifies:

𝑔𝑠𝑖𝑗 = ∏ (𝐴𝑖𝑘)𝑗𝑘𝑡−1
𝑘=0 𝑚𝑜𝑑𝑞, 𝑖, 𝑗 ∈ [1, 𝑛].

Define Q as set of nodes that are qualified key generators

after Handle Complaints Algorithm (Section Ⅴ.D). Then,

a) 𝑃𝑖The group public key:

𝑃𝐾 = ∏ 𝐴𝑖0 = ∏ 𝑔𝑎𝑖0
𝑖∈𝑄𝑖∈𝑄 𝑚𝑜𝑑𝑞.

b) 𝑃𝑗’s aggregated secret key:

𝑠𝑘𝑗 = ∑ 𝑠𝑖𝑗𝑖∈𝑄 𝑚𝑜𝑑𝑞 = ∑ 𝑓𝑖(𝑗)𝑖∈𝑄 𝑚𝑜𝑑𝑞.

c)𝑃𝑗’s public key: 𝑝𝑘𝑗 = 𝑔∑ 𝑠𝑖𝑗𝑖∈𝑄 = ∏ 𝑔𝑠𝑖𝑗
𝑖∈𝑄 .

d)No party can compute the group’s private key SK, but

it is equal to ∑ 𝑎𝑖0𝑖∈𝑄 𝑚𝑜𝑑 𝑞.

5) When 𝑃𝑗’s secret key has been aggregated, it can start

generating the signature slice: 𝜎𝑗 = (𝐻0(𝑚))
𝑠𝑘𝑗

.

6) Each party can recover a group signature by collecting t

signature slices: 𝜎 = ∏ 𝜎𝑙𝑖

𝑎𝑙𝑖𝑙𝑖∈𝑆 , 𝑎𝑙𝑖
= ∏ 𝑙𝑖/(𝑙𝑖 − 𝑙𝑗)𝑙𝑖∈𝑆,𝑙𝑗∈𝑙𝑖

or

receive a group signature directly and verify it by: 𝑒(𝑔1, 𝜎) =
𝑒(𝑃𝐾, 𝐻0(𝑚)) , where 𝑒 is a non-degenerate, efficiently
computable, bilinear pairing.

B. An issue in protocol Joint-Feldman

In Protocol Joint-Feldman [1], only if number of complaints
is greater than t can we mark the key generator as disqualified.

This implies that if the number of complaints is equal to or less

than t, the key generator still qualifies. The question then arises

concerning the nodes that complain against it. They do so

because they do not receive the share, or receive an incorrect

share, and thus cannot aggregate a correct private key. Thus

letting the key generator qualify means letting the complainers

out of the game. If we use this rule to deal with Table Ⅲ, all
key aggregators are out. To solve this, we can simply delete

columns D, E, and F and get a 6*3 table, which means that we

have six players in the 𝑛 + 2 epoch and each aggregates three

shares. Although we lose half of key aggregators, at least the

game can continue.

TABLE III. A CASE WHERE ALL KEY GENERATORS HAVE BEEN

COMPLAINED AGAINST

Send

Recv A B C D E F

A 

B 

C 

D 

E 

F 

But if we change the rule to simply eliminate all key

generators that have been complained against, it is problematic

in some cases. See Table Ⅳ, E and F are two malicious nodes

that are eventually left as the only qualified key generators; if

they are controlled by a malicious party, the party can predict

all random numbers because it controls all private keys.

TABLE IV. TWO MALICIOUS NODES COMPLAIN AGAINST ALL OTHER

KEY GENERATORS

Send

Recv A B C D E F

A

B

C

D

E    

F    

C. Simple way to deal with approval table

A simple method is to iterate the unit at the diagonal, to find

the unit of which the row and the column contain the most “”

units, then delete the row and the column, keep doing this until

there is no “” unit in the whole table.

D. Security analysis of DKG algorithm

Though the simple way can solve the issue mentioned in
Section Ⅴ.B, if we analyze the protocol in the Byzantine
environment, which means the adversary can corrupt all
generators to obtain all coefficients, or control enough sibyl
nodes to figure out all the coefficients of all the generators, the
simple method is not secure enough, thus we state three
conditions:

1) [Liveness] The number of remaining key aggregators
should be equal or greater than t.

2) [Safety] All qualified key generators should not be
controlled by a malicious party.

3) [Safety] There should not be t or more than t key
aggregators controlled by a malicious party.

The reason for Condition 1) is clear, as otherwise, the group

signature cannot be recovered. The Condition 2) and 3) are in

response to collusion attack. However, it is hard to judge a

participant is controlled by an adversary or not, but with

premise of BFT, we can find a way to judge them

Premise of BFT Malicious stakes should be less than 1/3 of all

the staked money.

Using this premise, we can deduce Conditions 2) and 3) to:

2) [Safety] Stake belonging to the remaining key generators

should be no less than 1/3 of the total stakes

3) [Safety] There should not be t key aggregators have

stakes less than 1/3 of the total stake

In this way, we could use concrete figure to measure, to

eliminate the possibility that a malicious party control all the

key generators or control more than t key aggregators.

E. Using the knapsack model to deal with approval table

To handle a “” unit, deleting the column decreases the
possibility that Condition 2) is met, while deleting the row
decreases the possibility that Condition 1) is met.

Conditions 1) and 2) are analogous to conditions of volume
and the value in the 0-1 knapsack problem. We consider that
each column in the approval table is like an item in the knapsack
model. Its value is the stake of the key generator of that column
and its volume is the number of “” that the column has. While
the 0-1 knapsack problem is to find a solution whereby the
knapsack is filled with columns with the highest total value, the
knapsack problem in our model is to find a solution that reaches
a target total value with the minimal total volume.

We call the method used to deal with the approval table the
“Handle Complaints Algorithm." The goal is to eliminate all “”
units from the table. It is described in §A

The algorithm can obtain a solution if there is one, it might
not be the most optimal one, that is, the minimum possible total
volume of items in the knapsack that could satisfy a goal total
value, for we use greedy approximation algorithm to obtain the
result. That is not a problem, as long as the result is indeed a
solution and every node run in the algorithm can get the same

result. If the algorithm ends with failure, all configurations of
the threshold group members stay unchanged.

F. Commitment region

Handle Complaints Algorithm guarantees only Conditions
1) and 2), below, we show how to guarantee Condition 3).

If we simply let all staked nodes to participate in DKG
process, the system will be vulnerable to sibyl-attack. Currently
we set the barrier of becoming a staked node to that it should
stake at least 1/1000 of the whole chain’s coins. A malicious
party can split his deposit into multiple accounts and stake on a
huge amount of nodes, once he stakes 𝑡 nodes, he controls 𝑡
key aggregators, thus Condition 3) is violated. To reject those
sibyl nodes. We can define a region of beginning blocks of each
epoch, we call it the commitment region, where each proposer
is allowed attach its commitments into the block, and the block
proposer itself becomes a key generator and a key aggregator.
Condition 3) can be satisfied by setting a commitment length 𝑛
close to threshold 𝑡 (see §B). In each epoch, When the 𝑖𝑡ℎ block
proposer 𝑃𝑖 in the commitment region is going to make a block,
it generates a random polynomial function containing t
coefficients, and generates t commitments for each coefficient,
then it includes the commitments into the block. When its block
has been committed by consensus, it computes shares 𝑠𝑖𝑗 = 𝑓𝑖(𝑗)

mod q for player 𝑃𝑗, in which 𝑗 = 1, … , 𝑛 and 𝑃𝑗 is the 𝑗𝑡ℎ block
proposer in the commitment region. It waits five heights to send
the shares, as other nodes may not receive the commitment
block immediately, and thus they cannot verify the shares.

There might be duplicate block proposers within the
commitment region. In this case, we treat them as different
share recipients but as the same key generator.

We treat different block proposers as the same key generator
because they constitute one physical node, and there is no need
for them to generate two random polynomial functions and let
the aggregators aggregate them because this complicates the
implementation to no benefit. We treat the block proposers as
different share recipients because if we consider them as the
same share recipient, the number of malicious nodes will not
follow a binomial distribution.

For the shares need to be encrypted and sent to the recipient,
we need another asymmetric encryption algorithm, such as
ECC, to use the recipient’s public key to encrypt the share, so
that the nodes in the middle cannot peek into the data of share.
Duplicate nodes that are logically different key aggregators are
physically one node. Therefore, multiple shares sent to it are
encrypted by the same public key of ECC of the recipient node.
In the 𝑛 + 2 epoch, this node acts as different threshold group
members and sends multiple signature slices at each height.

The received shares of each epoch are stored in a data file

“dkg-state.json”, the file also stores the coefficients generated

at the start of this epoch, and the private key from the
aggregated shares of last epoch. This file is stored when a new

share is received and verified, and at the start of each.

VI. CONTINUOUS KEY ROTATION

A. Continuous Share Exchange process

We define Share Exchange Process as that which includes
proposing a commitment block, broadcasting shares, verifying
shares and broadcasting approvals, building up an approval
table and running the Handle Complaints Algorithm to obtain a
new threshold group of epoch 𝑛 + 2 , i.e. the implementation
of Step 1 to 4 in Section Ⅴ.A on blockchain. We define the
Signature Process as at each height every threshold group node
generates a signature slice and every node tries to recover the
group signature, i.e. the implementation of Step 5 to 6 in

Section Ⅴ.A. The two processes overlap in the time base. The
Share Exchange process in epoch 𝑛 involves preparing for the
DKG signature process in epoch 𝑛 + 2; because it determines
the group’s public key and private key, and the aggregated
private key of each threshold group node of epoch 𝑛 + 2.

Fig. 3. The overlapping of the two prosesses

At the end of every epoch, each node runs Handle

Complaints Algorithm to obtain a new threshold group of epoch

𝑛 + 2. Each node in the group uses aggregated shares as its

private key, computes the public key of every other threshold

group node and the group public key based on the commitments
of the qualified key generators. If the Handle Complaints

Algorithm fails (it cannot eliminate all “” units from the given

approval table), the threshold group and the group public key in

epoch 𝑛 + 2 remain unchanged from those in the previous

epoch 𝑛 + 1. This is a minor case since if the network is good

and all shares are received and verified, the approval table of

each epoch should always be full filled.

Fig. 4. Cases in which the Handle Complaints Algorithm of one epoch fails

The first Share Exchange process still relies on synchronous

communication. It is executed when the chain starts, we assume

that no complaint is generated because the initial nodes when

we launch the chain should be ones that we deploy ourselves,

they must be honest nodes. If a node has verified all shares sent

to it, it broadcasts a FINISH message. If a node has gathered 𝑛
FINISH messages, it finishes the first Share Exchange process

and switches to the consensus process. We assume that all

https://en.wikipedia.org/wiki/Polynomial#Polynomial_functions

shares are eventually verified by every node, if a network issue

arises, we simply relaunch the chain.

B. Independent true random number flow

In Section Ⅰ, we mentioned that we want to obtain an
“independent true random number flow” that is irrelevant to the
blocks data. But to implement distributed key rotation, we still
rely on consensus to ensure that each participant has the same
view of the approval table. Thus the participant can choose to
send or not send an approval to affect the approval table, and
affect the random number flow. Since it still cannot predict the
random numbers, this is safe.

If the premise of 𝑛 ≥ 3𝑓 + 1 is violated, i.e. the chain is
possible to be forked by malicious voters. Since random
number flow is irrelevant to blocks data, it doevs not fork, it can
determine proposer priority list and voters of later heights, thus
we can rely on independent true random flow to solve the forks.

But the random number flow in our implementation is not
fully independent to the blocks data, if the chain forks, the
approval table forks as well, this will cause the random numbers
in epoch 𝑛 + 2 begin to fork. That is the reason that we set new
threshold group take effect in epoch 𝑛 + 2. The epoch 𝑛 + 1 is
supposed to detect the forks and choose one. To prevent long-
range attack [16], the change of validators should not take effect
in the next epoch, so does the change of threshold group
members in our protocol.

The random number of each height cannot be used to select
a subset of validators from the full set, because it undermines
the premise of BFT (see §C).

VII. EXPERIMENTAL DATA

Compare performance with Tendermint, the performance in
our protocol should be slower, because of the extra network
load of the shares and approvals in each epoch, and the
signature slices at each height. Our contribution is not to boost
performance but to obtain better security.

We formulated a system of twelve validator nodes using
Tendermint with the continuous DKG process. The average
time to commit an empty block is approximately two seconds,
and each block carries 10,000 transactions that takes three to
four seconds. We compared it with a Tendermint cluster
without implementing DKG and obtained nearly identical
latency. This is because Tendermint requires two steps of
voting and collecting. Recovering a group signature needs only
one step of sending signature slices and collecting them, and
this step can be performed simultaneously or ahead of the
prevote step of Tendermint. So group signature is often
recovered earlier than n-f precommits are collected. The shares
and approval messages broadcasted in network can occupy
some bandwidth. But if they are placed in an epoch length of
200 blocks, the effect is acceptable.

What’s more important of the experiment is to show the
proposers priority and validators of each height are randomly
selected, rather than followed by a predicted pseudo-random
sequence. The experimental data in §F shows that the total
counts of a node be selected as proposer in a range of blocks is
proportional to its stake, as shown in §E.

VIII. APPLICATIONS

Other than generating random numbers on blockchain, VSS
protocol is also used to enhance the security of the wallet [18],
and in electronic voting [20], and in the setup phase of the
zkSNARKs protocols, such as Groth16 [13] and Plonk [14].
While Groth16 needs setup for each program, Plonk needs only
one universal setup, in the premise that there is at least one
honest participant that does not collude to deduce the group
secret. The schema of continuous key rotation fits for the
systems that consider the group secret in the initial setup phase
could be leaked, and the group members can change, thus a new
setup phase is needed because the new joined member does not
trust the public parameters generated by the old ones.

IX. CONCLUSION

We propose a modified DKG protocol on blockchain based
on the consensus algorithm Tendermint.

The enhancement to Dfinity is: continuously execute the

exchange of the shares in every epoch, rather than only on the

start of the chain. Threshold group members are selected from

all staked nodes, thus they are updated if staked nodes change.

Even if the staked nodes don’t change, the coefficients of the
polynomials of each key generator are regenerated each epoch,

thus the group public key and the aggregated private key of each

threshold group member of the DKG protocol are rotated in

each epoch. It is difficult for the attacker to continuously learn

the updated polynomials of each participant in each epoch, the

security of the distributed system is then enhanced.

The contribution to DKG protocol is: we present a way to

execute it on blockchain in asynchronous and Byzantine

environment, we consider the participants may collude to

compute the group private key and take measures to prevent it.

REFERENCES

[1] Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin.

Secure Distributed Key Generation for Discrete-Log Based
Cryptosystems. Journal of Cryptology 20(1):51-83.

[2] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, Nickolai

Zeldovich. Algorand: Scaling Byzantine Agreements for
Cryptocurrencies. ACM, 2017, pp. 51-68.

https://people.csail.mit.edu/nickolai/papers/gilad-algorand-eprint.pdf

[3] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on bft
consensus. arXiv preprint arXiv:1807.04938, 2018.

https://arxiv.org/abs/1807.04938.

[4] Terdermint Organization. Application Architecture Guide.
https://tendermint.com/docs/app-dev/app-architecture.html

[5] Vlad Zamfir. Casper the friendly ghost: A “correct-by-construction”

blockchain consensus protocol, 2017. arXiv:1710.09437.
https://github.com/ethereum/research/blob/master/papers/CasperTFG/Ca

sperTFG.pdf

[6] Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY
Technology Overview Series Consensus System. CoRR abs/1805.04548

(2018).https://dfinity.org/static/ dfinity-
consensus0325c35128c72b42df7dd30c22c41208.pdf

[7] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In Annual

International Cryptology Conference. Springer, 2017, pp. 357-388.

[8] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil
Pairing. In Proceedings of the 7th International Conference on the Theory

and Application of Cryptology and Information Security: Advances in

https://people.csail.mit.edu/nickolai/papers/gilad-algorand-eprint.pdf
https://arxiv.org/abs/1807.04938
https://tendermint.com/docs/app-dev/app-architecture.html
https://github.com/ethereum/research/blob/master/papers/CasperTFG/CasperTFG.pdf
https://github.com/ethereum/research/blob/master/papers/CasperTFG/CasperTFG.pdf
https://dfinity.org/static/%20dfinity-consensus
https://dfinity.org/static/%20dfinity-consensus

Cryptology, ASIACRYPT ’01, pages 514–532, London, UK, UK, 2001.

Springer-Verlag.

[9] B. Libert, M. Joye, and M. Yung. Born and raised distributively: Fully

distributed non-interactive adaptively-secure threshold signatures with
short shares. Theoretical Computer Science, 645:1–24, 2016.

[10] Dan Boneh, Manu Drijvers, Gregory Neven. BLS Multi-Signatures With

Public-Key Aggregation. https://crypto.
stanford.edu/~dabo/pubs/papers/BLSmultisig.html.

[11] Alistair Stewart. Grandpa Byzantine Finality Gadgets.

https://github.com/w3f/consensus/blob/master/pdf/grandpa.pdf

[12] Pedersen T.P. (1992) Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing. In: Feigenbaum J. (eds) Advances in

Cryptology — CRYPTO ’91. CRYPTO 1991. Lecture Notes in Computer
Science, vol 576. Springer, Berlin, Heidelberg

https://www.cs.cornell.edu/courses/cs754/2001fa/129.PDF

[13] J. Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In:
Proceedings of the 35th Annual International Conference on Theory and

Applications of Cryptographic Techniques. EUROCRYPT ’16. 2016, pp.
305–326. .

[14] Kate A., Zaverucha G.M., Goldberg I. (2010) Constant-Size

Commitments to Polynomials and Their Applications. In: Abe M. (eds)
Advances in Cryptology - ASIACRYPT 2010. ASIACRYPT 2010.

Lecture Notes in Computer Science, vol 6477. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-17373-8_11

[15] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016.

The Honey Badger of BFT Protocols. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security (CCS

'16). Association for Computing Machinery, New York, NY, USA, 31–
42. DOI:https://doi.org/10.1145/2976749.2978399

[16] Vitalik Buterin. Long-range attacks: The serious problem with adaptive
proof of work. https://blog.ethereum.org/2014/05/15/long-range-attacks-

the-serious-problem-with-adaptive-proof-of-work/, 2014.

[17] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of
blockchains. M.Sc. Thesis, University of Guelph, Canada, June 2016.

[18] R. Gennaro, S. Goldfeder, and A. Narayanan. Threshold-optimal

DSA/ECDSA signatures and an application to Bitcoin wallet security. In
International Conference on Applied Cryptography and Network Security,

pages 156–174. Springer, 2016.

[19] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. “Sonic: Zero-
Knowledge SNARKs from Linear-Size Universal and Updateable

Structured Reference Strings”. In: Proceedings of the 26th ACM
Conference on Computer and Communications Security. CCS ’19. 2019..

[20] Berry Schoenmakers. A simple publicly verifiable secret sharing scheme

and its application to electronic voting. In Michael J. Wiener, editor,
Advances in Cryptology - CRYPTO ’99, 19th Annual International

Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, volume 1666 of Lecture Notes in Computer Science,

pages 148–164. Springer, 1999.

https://github.com/w3f/consensus/blob/master/pdf/grandpa.pdf
https://www.cs.cornell.edu/courses/cs754/2001fa/129.PDF
https://doi.org/10.1007/978-3-642-17373-8_11

APPENDIX

A. HANHLE COMPLAINTS ALGORITHM

Input: An 𝑛 ∗ 𝑚 approval table with threshold t.

Output: A 𝑗 ∗ 𝑘 sub-table with no “” unit, where 𝑗 ≥ 𝑡 and the total stake of the k columns should surpass 1/3
of the total stake.

We perform the following steps to find the solution:

Step 1. Put the columns with zero “” into the knapsack. Now the volume of the knapsack is still 0, but it has

a total value.

Step 2. Check if the total value meets Condition 2, that is, the total value surpass 1/3 of all stakes. If it does:

The algorithm ends successfully. The solution is a n*k table, which has k columns that have no complaint.

Otherwise: Delete the columns with more than t “” unis, then goto Step 3.

Step 3. For each column c := range the remaining columns {

We define:

Additive columns of c:= the other columns that have no “” due to the deletion of the “” rows of c (e.g.,

in.Table Ⅴ, column F's additive columns are B, D, and J)

An item is an abstract concept; it is the column c itself and its additive columns. We call c the main

column of this item.

The item’s value is the sum of stakes of the column c itself and its additive columns

The item’s volume is the number of “”units in column c

The item’s ratio := its value/its volume

}

Note that although different items have different main columns, their additive columns may overlap, (e.g,

The items in Table Ⅴ are {B}, {D}, {F,{B,D,J}}, {H,{B,D}},and {J})

Sort items by their ratios. If the ratios of two items are equal, sort them by the address of the node of the

main column.

Put the top item into the knapsack, which means placing the columns of this item into the knapsack and

deleting rows with “”of the main column of this item

Step 4. Check if the knapsack meets Condition 1 and 2, that is:

If the total volume of knapsack has exceeded the limit, goto Step 5

Otherwise:

If the total value in the knapsack has reached the target value, the algorithm ends with success, return:

the columns in the knapsack as the qualified set Q and the remaining rows as the threshold group

members.

Otherwise: Modify the volumes and values of the remaining items (because after the deletion of some

rows, the volumes of the remaining columns may decrease), then repeat Step 3 and Step 4.

(Step 3 and 4 are akin to depth-first search in a binary tree. When it reaches the leaf of a path and has not

found a solution, it needs to go backward and try other paths. Every node is a choice between placing a

column into knapsack and not)

Steps 5. This step is the backtracking step in the recursive algorithm. It sends the search back to higher tree

nodes. It tries not to put the item into the knapsack and tries the next item in the sorted list, then goto Step 4 to

check the result.

Keep the depth-first search until it finds a solution or ends the search without a solution, which means that the

algorithm fails.

An example of executing the algorithm is given below:

TABLE V. AN INPUT APPROVAL TABLE

 Slots 3 1 2 2 1 1 1 7 18 4

 Send

Recv A B C D E F G H I J

A  

B  

C    

D  

E    

F 

G  

H

I

J

 Total slots=40, target value=40 × 1/3=12, t=5

Table Ⅵ is the execution process that handles the
approval table in Table Ⅴ

TABLE VI. AN EXAMPLE OF EXECUTING HANDLE COMPLAINTS

ALGORITHM

Step Items in

knapsack

Sorted remaining items by

their ratios

Total

Value

Total

Volume

Delete

d Rows

1 A,C,E,G

J: 4/1 = 4

F: (1 + 1 + 2 + 4)/3 = 8/3

H: (7 + 1 + 2)/5 = 2

D: 2/1 = 2

B: 1/1 = 1

7 0

2 7 ≥ 12? N. Goto Step 3. Put J to knapsack

3

A,C,E,G,J H: (7 + 1 + 2 + 1)/5 = 2.2

F: (1 + 1 + 2)/2 = 2

D: 2/1 = 2

B: 1/1 = 1

11 1 G

4 11 ≥ 12? N ; 1 > 5? N; Goto Step 3. Put H and B,D,F into knapsack

3
A,B,C,D,E,

F,G,H,J 22 6
A,B,C,

D,E,G

4 6 > 5? Y; Goto Step 5. Revert last putting, change to put F and B,D into napsack

5 A,B,C,D,E,

F,G,J

 15 3 C,E,G

The algorithm ends successfully. The remaining key generators are A, B, C, D, E, F, G, J.

The remaining key aggregators are A, B, D, F, H, I, J.

B. CHOOSING AN APPROPRIATE COMMITMENT LENGTH

Let 𝑛 be the length of the commitment region, in which
each block proposer has a lower than 1/3 probability to be a
malicious one. We use 𝑝 to represent the probability, and m
to represent the number of malicious key aggregators in the
region. Then, m follows a binomial distribution 𝐵(𝑛, 𝑝), and
the cumulative distribution function 𝐶𝐷𝐹(𝑡, 𝑛, 𝑝) stands for
the probability of 𝑚 < 𝑡 . Given an acceptable failure
probability ρ and threshold 𝑡, we can deduce the maximum
length of the region 𝑛 such that CDF(𝑡, 𝑛, 𝑝)< ρ:

TABLE VII. MAXIMUM LENGTH OF COMMITMENT REGION FOR A

THRESHOLD 𝑡

−𝐥𝐠𝛒 𝒑 𝒏 𝒕

10 1/5 47 30

12 1/4 36 30

12 1/4 56 40

12 1/3 47 40

If we set 𝑡 = 40, we can choose 𝑛 from [47,56).

C. ANALYSIS OF MINIMAL NUMBER OF SELECTIONS TO GET

A QUALIFIED SUBSET

To use a random number to select a subset of validators

for consensus, we need to ensure that the subset also satisfies

the premise of BFT: Less than 1/3 of the subset’s voting

power is malicious. A validator’s voting power is equal to the

number of times it has been selected. To ensure this in terms
of probability, the analysis is similar to that in (§B). Let n be

the total number of selections. Each selection has a lower than

1/3 probability to obtain a malicious validator. We use p to

represent the probability and m to represent the total voting

power of the malicious validators in the subset. Then, m

follows a binomial distribution 𝐵(𝑛, 𝑝) and the cumulative

distribution function 𝐶𝐷𝐹(𝑛/3, 𝑛, 𝑝) stands for the

probability of 𝑚 < 𝑛/3 . Given an acceptable failure

probability ρ , we can deduce the minimal number of

selections n such that 𝐶𝐷𝐹(𝑛/3, 𝑛, 𝑝) < 𝜌:

TABLE VIII. MINIMAL NUMBER OF SELECTIONS TO GET A QUALIFIED

SUBSET BASED ON DIFFERENT PROBABILITIES TO GET MALICIOUS NONE IN

A SELECTION

−𝒍𝒈𝝆 𝒑 𝒏

12 1/5 600

10 1/4 1200

12 1/4 2000

If there are 𝑢 staked accounts, and their stakes are evenly
distributed, the probability that an account is not selected in

n selections is 𝐶𝑢
1 ∗ (𝑢 − 1

𝑢⁄)
𝑛
. If 𝑢 = 100 and 𝑛 = 2000,

this is 1.86 × 10−7.

It thus turns out that if u is far smaller than n, the subset
is often equal to the full set, the scale of the nodes doing
consensus is not reduced, but voting powers are randomly
assigned to them.

D. EXAMPLES SHOWING THE PSEUDO-RANDOM SEQUENCE

OF THE PROPOSER IN TENDERMINT

TABLE IX. AN EXAMPLE OF 4-NODE PRIORITY INCREMENT IN

TENDERMINT

 A: Power 20 B:Power 18 C:Power 12 D:Power 10

Initial Priority 20 18 12 10

1st proposer is A (max is 20) 20-60=-40 18 12 10

All increase -40+20=-20 18+18=36 12+12=24 10+10=20

2nd proposer is B (max is 36) -20 36-60=-24 24 20

All increase -20+20=0 -24+18=-6 24+12=36 20+10=30

3rd proposer is C (max is 36) 0 -6 36-60=-24 30

TABLE X. AN EXAMPLE OF 4-NODE PRIORITY INCREMENT IN

TENDERMINT

 A: Power 99 B: Power 1

Initial Priority 99 1

1st proposer is A (max is 99) 99- 100=-1 1

All increase -1+99=98 1+1=2

2nd proposer is A(max is 98) 98-100=-2 2

All increase -2+99=97 2+1=3

3rd proposer is A(max is 97) 97-100=-3 3

E. EXPERIMENTAL DATA

TABLE XI. EXPERIMENTAL DATA

 Round

slots 1 2 3 4

7 205 201 215 203

7 211 202 209 207

14 419 403 417 412

14 421 410 423 411

22 615 624 611 621

22 627 611 623 617

29 832 822 831 828

29 839 838 835 829

44 1251 1260 1255 1257

44 1255 1259 1254 1241

58 1660 1698 1658 1703

58 1665 1672 1669 1671

We make the stakes of the twelve nodes 1, 1, 2, 2, 3, 3, 4,

4, 6, 6, 8, 8 × 1010, and their slots are equal to their stakes
divide 1/1000 of whole money of the system, as there are

other initial accounts, so their slots in the stake table are 7, 7,

14, 14, 22, 22, 29, 29, 44, 44, 58, 58. We do four rounds of

tests, each round is 10’000 blocks, and see the probability of

each node be selected as proposer is more or less proportional

to their slots.

