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Abstract—VSS (Verifiable Secret Sharing) protocols are used 
in a number of block-chain systems, such as Dfinity and 
Ouroboros to generate unpredicted random number flow, they 
can be used to determine the proposer list and the voting powers 
of the voters at each height. To prevent random numbers from 
being predicted and attackers from corrupting a sufficient 
number of participants to violate the underlying trust assumptions, 
updatable VSS protocol in distributed protocols is important. The 
updatable VSS universal setup is also a hot topic in zkSNARKS 
protocols such as Sonic [19]. The way that we make it updatable is 
to execute the share exchange process repeatedly on chain, this 
process is challenging to be implemented in asynchronous network 
model, because it involves the wrong shares and the complaints, it 
requires the participant has the same view towards the qualified 
key generators, we take this process on chain and rely on BFT 
consensus mechanism to solve this. The group secret is thus 
updatable on chain. This is an enhancement to Dfinity. Therefore, 
even if all the coefficients of the random polynomials of epoch n 
are leaked, the attacker can use them only in epoch n+2. And the 
threshold group members of the DKG protocol can be updated 
along with the updates of the staked accounts and nodes. 

Keywords—blockchain, distributed key generation, consensus, 
verifiable secret sharing  

I. INTRODUCTION 

Many BFT algorithms, such as Tendermint [3], use a 
pseudo-random algorithm (see §D) to compute next proposer. 
As method of calculating sequence is open to everyone, a 
malicious adversary can compute the sequence in advance and 
predict proposer of any future height/round. Thus future block 
proposer can be easily attacked by DDoS or network split. 

Blockchain is a closed system, it cannot query information 
from the outside world, thus it cannot generate random number 
through the unpredicted input source like the index of the stock 
market. And it is a deterministic system, it expects all nodes run 
the same sequence of transactions can get the same result, and 
all inputs have to be verifiable, thus it cannot generate random 
number through random input source like the local timestamp or 
noise of the proposer node. If the input source is verifiable but 
predictable, for example, the random number is determined by 
the block header hash of some future height, the block proposer 
of that height can choose to contain different sets of transactions 
in order to obtain a favorable random number for him. 

The “true random number flow” on blockchain is important 
to make the proposers priority and validators of each height 
unpredictable. 

II. RELATED WORK 

There are already some famous architectures devoted to 
generate “true random number flow” on blockchain, such as 
Algorand, Dfnity and Ouroboros. 

The VRF processes in Algorand [2] are: At each height, 
based on the last random number, each node computes the VRF 
to obtain a new verifiable random number and participates in 
arriving at a consensus to confirm the hash with the highest 
priority—for example, the greatest one. However, a latent issue 
is that the generator itself can choose to not to broadcast the 
random number if it is not favorable to him, although he cannot 
control the other participants’ random numbers, it does 
somehow affect the random number flow. 

If we want to make the random number unpredictable to 
generator itself, each generator can only generate a piece of 
random number, and only pieces above the threshold can 
recover the group signature that can be used as random number. 
Thus each participant cannot predict next random number but 
has to participate in signature process honestly. Dfinity fits goal 
well. The DKG protocol—Joint-Feldman [1] is based on BLS 
threshold group signature [9,18] and has several advantages: 

A. The group signature can be recovered by aggregating [8,10] 
the signature slices of any 𝑡  participants. Usually the 
threshold 𝑡 = 𝑛/2, which means the protocol is tolerant to 
at most half nodes offline. 

B. Group public key can be computed by every participant, so 
once group signature is recovered, it can be sent to any node 
and be verified directly. Thus it’s not always case 𝑡 signature 
slices are needed for a participant to compute the group 
signature. This save a large amount of network propagation. 

Our work can be summarized as enhanced Dfinity, that is: 
we do the share exchange process continuously at each epoch, 
rather than only doing once at the start of the chain. A 
continuous share exchange mechanism is necessary for two 
reasons: First, the participants might change, some may want to 
withdraw its stake, and others want to stake its deposit and join. 
If a participant has already withdrawn and get out, and is still a 
valid participant in the DKG protocol, this is clearly not 
reasonable. Second, the coefficients that generated once at a 
time might be leaked by human reasons, we cannot depend the 
system security on no person making mistake. 

As for Ouroboros [7], its consensus protocol — Cardano, 
in first stage, it uses follow-satoshi(fts) and secure multiparty 
computation to randomly generate the slots for the proposers of 



next epoch. In second stage, it changes to use VSS protocol to 
handle pause or network problem of the protocol in the first 
stage. We view VSS as an alias of DKG, and one part of our 
work is to solve the network problem in implementation of VSS 
protocol. And we do a step further, we consider the participant 
might be Byzantine thus they can collude to deduce secret, the 
analysis is in Section Ⅴ.D. 

III. MOTIVATION 

 In order to make signature slice, the participant has to 
firstly compute its private key from the received shares of the 
generators in the “qualified set”. There are some issues related 
to this process and is the key part that this paper wants to discuss. 

A. Implementation 

 To aggregate the received shares, each participant should 
have the same view towards the “qualified set”. This 
makes DKG protocol challenging to be adopted in a 
weak synchronous network. A participant is considered 
as unqualified if it has been complained against by 
enough other participants. In a weak synchronous 
network, maybe some participants collect enough 
complaints toward a certain participant, but others do not, 
this lead they have different result of the qualified set. 

 Even if we solve the issue, based on what rule, what 
number of complaints is “enough” to kick a participant 
out from the qualified set? 

B. Security 

 The shares that generated by participant are determined 
by the coefficients of the random generated polynomials. 
The coefficients can be considered as the initial private 
key of each participant and they should not be leaked. If 
we discuss the protocol in the Byzantine environment, 
we need to analyze the safety conditions that the 
adversary corrupts how many participants can it deduce 
to the coefficients of every participant, then the adversary 
is able to predict all the future random numbers flow. 

 We should redo the share exchange process when the 
staked nodes change, for the new staked node should join 
the DKG process and the shares generated by old nodes 
should not be valid any more. Even if they do not change, 
constantly doing this process makes the system securer, 
though this adds extra network load, we can setup the 
strategy such as doing the share exchange process every 
1000 blocks to make the extra load acceptable. 

IV. IMPLEMENTING DKG ON TENDERMINT 

Among BFT consensus protocols, some like CasperFFG [5] 
doesn’t have the feature of instant finality, while Tendermint 
has this feature [3], we require the blocks of each epoch be 
finalized at the end of the epoch. Though HoneyBadger [15] 
also has this feature, its process is much more complicated, thus 
we decide to integrate the DKG process on Tendermint. 

A. Modified consensus process of Tendermint 

In Tendermint, a proposal block can be committed if there 
are 𝑛 − 𝑓 precommits of the same round that are for it, then the 
node can enter the next height [4]. We now present another rule 

for this mechanism: the node needs to recover the group 
signature of each height either by gathering the signature slices 
of t nodes or by receiving a verified group signature before the 
block can be committed. Thus, at each height, the two 
conditions—𝑛 − 𝑓 precommits of the same round for this block 
and a group signature of this height—should be met 
simultaneously for the node to commit the block of this height. 

The signature slice of 𝑃𝑗: 𝜎𝑖𝑗 = 𝐻0(𝑚)𝑠𝑘𝑗 where m should 

be a message that every node has a same view to. We use 𝐻0 

(group signature) as random number for each height. Since we 

want to have a “true random number flow”, message should be 

relevant only with the previous random number, we use the 

concatenated string of group signature of previous height and 

its hash as the message. The first initial message is configured 

in initial config file. In Fig 2, We see that the message m is 

irrelevant with block data. Thus the block proposer cannot 

manipulate the block data to manipulate the random numbers. 

Fig. 1. Continuous random number flow 

Fig. 2. Consensus flow combined with random number flow 

B. Block format 

As shown in Table Ⅰ, a block contains a header that contains 
the hashes of relevant parts of this block and the state root of 
previous height. We add “DkgData” that contains the 
commitments and approvals to the block format of Tendermint. 

 

 



TABLE I.  BLOCK FORMAT 

Block Field Description 

Header 

Height Height of current block 

DataHash Hash of Data 

EvidenceDataHash Hash of EvidenceData 

DkgDataHash Hash of DkgData 

ProposerAddress Proposer of this block 

LastGroupSign BLS group signature of the previous height 

AppHash Merkle root of state tree after executing previous block 

LastCommit 

Precommits [] 2/3 + precommits of the previous height block 

BlockID 
Merkle root of the header, each node can verify if 

this block links to the same previous block as its 

Data Txs [] Transactions in this block 

EvidenceData Evidences [] Verifiable evidences of malicious behaviors 

DkgData 

Commitments[] 𝑡 commitments of block proposer 

Approvals [] 
Each approval includes index of share sender (SrcID) 

and recipient (DestID), its signature 

C. Approval table 

Executing the DKG algorithm in an asynchronous network 
causes different nodes to have different views of complaints, 
e.g: node A receives a complaint from C against D, but node B 
does not.To solve this, we define every epoch as a statistic cycle 
of the approval table. Every block is allowed to contain some 
approvals (as shown in Table Ⅰ), and each approval in the block 
corresponds to a unit in the approval table. For example, the 
approval (SrcID: 5, DestID: 3, Sig:...) means that the third key 
aggregator has received and verified the share from the fifth key 
generator. Thus unit of row 3 and column 5 is marked with “”. 

The signature in approval message is not the BLS signature, 
but is based on other asymmetric cryptography such as ECDSA. 
Every node has a public key to indicate its identity, and the 
share that is supposed to be sent to a recipient node needs to be 
encrypted using the public key of the recipient node to prevent 
other nodes from peeping at it. A node sends out an approval 
message after verifying a share from another node. If a node 
fails to verify a share, it refrains from sending out an approval 
message rather than make a complaint. 

At the end of an epoch, if a unit in the approval table 
remains blank, this is equivalent to a complaint from the key 
aggregator (the row) against the key generator (the column). 

Since the approval table is formed through blocks of an 
epoch, consensus ensures that every node has the same view of 
the approvals. The unit that does not have the approval is 
marked a “”, i.e: there is a complaint in this unit. Table Ⅱ 
shows two complaints from D and F against E. This can happen 
if E sent incorrect shares to D and F, or if the shares from E did 
not arrive at D and F in time. 

If leave E as a qualified key generator, D and F cannot make 

signatures in the 𝑛 + 2 epoch because they do not get correct 

shares from E; 

Else, choose deleting column E, there is no “” in the table, 
and the qualified key generators are A, B, C, D, and F. The 
threshold group still contains six players, and each aggregate 

shares from only the qualified key generators. Each player 
makes signatures using its own aggregated shares. Although E 
has been kicked out from the qualified key generators, it is still 
a valid threshold group member in the 𝑛 + 2 epoch. 
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For each “” unit, we have two choices: delete the column 

or delete the row, which are equivalent to deleting a key 

generator from the qualified set or a threshold group member in 

the 𝑛 + 2 epoch, respectively. 

TABLE II.  THE APPROBAL TABLE 

Send 

Recv A B C D E F 

A       

B       

C       

D       

E       

F       

V. IMPLEMENT VSS ON BLOCKCHAIN 

A. Description of DKG protocol 

The DKG protocol [9] is as follows: There are 𝑛 parties 
𝑃1 , … , 𝑃𝑛, 

1) 𝑃𝑖  generates a random polynomial: 

𝑓𝑖(𝑥) = 𝑎𝑖0 + ⋯ + 𝑎𝑖(𝑡−1)𝑥𝑡−1, (𝑎𝑖0, … , 𝑎𝑖(𝑡−1)) ∈ ℤ𝑞
𝑡 . 

2) 𝑃𝑖  generates commitments for polynomial coefficients, 
(𝐴𝑖0, 𝐴𝑖1, … , 𝐴𝑖𝑡−1) = (𝑔𝑎𝑖0 , 𝑔𝑎𝑖1 , … , 𝑔𝑎𝑖𝑡−1), then it broadcasts 
the commitments. 

3) 𝑃𝑖  computes shares 𝑠𝑖𝑗 = 𝑓𝑖(𝑗) 𝑚𝑜𝑑 𝑞, 𝑗 ∈ [1, 𝑛] , and 

sends each share 𝑠𝑖𝑗  secretly to 𝑃𝑗 . 

4) Each key aggregator verifies: 

𝑔𝑠𝑖𝑗 = ∏ (𝐴𝑖𝑘)𝑗𝑘𝑡−1
𝑘=0 𝑚𝑜𝑑𝑞, 𝑖, 𝑗 ∈ [1, 𝑛]. 

Define Q as set of nodes that are qualified key generators 

after Handle Complaints Algorithm (Section Ⅴ.D). Then, 

a) 𝑃𝑖The group public key: 

𝑃𝐾 = ∏ 𝐴𝑖0 = ∏ 𝑔𝑎𝑖0
𝑖∈𝑄𝑖∈𝑄 𝑚𝑜𝑑𝑞. 

b) 𝑃𝑗’s aggregated secret key: 

𝑠𝑘𝑗 = ∑ 𝑠𝑖𝑗𝑖∈𝑄 𝑚𝑜𝑑𝑞 = ∑ 𝑓𝑖(𝑗)𝑖∈𝑄 𝑚𝑜𝑑𝑞. 

c)𝑃𝑗’s public key: 𝑝𝑘𝑗 = 𝑔∑ 𝑠𝑖𝑗𝑖∈𝑄 = ∏ 𝑔𝑠𝑖𝑗
𝑖∈𝑄 . 

d)No party can compute the group’s private key SK, but 

it is equal to ∑ 𝑎𝑖0𝑖∈𝑄 𝑚𝑜𝑑 𝑞. 

5) When 𝑃𝑗’s secret key has been aggregated, it can start 

generating the signature slice: 𝜎𝑗 = (𝐻0(𝑚))
𝑠𝑘𝑗

.  

6) Each party can recover a group signature by collecting t 

signature slices: 𝜎 = ∏ 𝜎𝑙𝑖

𝑎𝑙𝑖𝑙𝑖∈𝑆 , 𝑎𝑙𝑖
= ∏ 𝑙𝑖/(𝑙𝑖 − 𝑙𝑗)𝑙𝑖∈𝑆,𝑙𝑗∈𝑙𝑖

or 



receive a group signature directly and verify it by: 𝑒(𝑔1, 𝜎) =
𝑒(𝑃𝐾, 𝐻0(𝑚)) , where 𝑒  is a non-degenerate, efficiently 
computable, bilinear pairing. 

B. An issue in protocol Joint-Feldman 

In Protocol Joint-Feldman [1], only if number of complaints 
is greater than t can we mark the key generator as disqualified. 

This implies that if the number of complaints is equal to or less 

than t, the key generator still qualifies. The question then arises 

concerning the nodes that complain against it. They do so 

because they do not receive the share, or receive an incorrect 

share, and thus cannot aggregate a correct private key. Thus 

letting the key generator qualify means letting the complainers 

out of the game. If we use this rule to deal with Table Ⅲ, all 
key aggregators are out. To solve this, we can simply delete 

columns D, E, and F and get a 6*3 table, which means that we 

have six players in the 𝑛 + 2 epoch and each aggregates three 

shares. Although we lose half of key aggregators, at least the 

game can continue. 

TABLE III.  A CASE WHERE ALL KEY GENERATORS HAVE BEEN 

COMPLAINED AGAINST 

Send 

Recv A B C D E F 

A       

B       

C       

D       

E       

F       

But if we change the rule to simply eliminate all key 

generators that have been complained against, it is problematic 

in some cases. See Table Ⅳ, E and F are two malicious nodes 

that are eventually left as the only qualified key generators; if 

they are controlled by a malicious party, the party can predict 

all random numbers because it controls all private keys. 

TABLE IV.  TWO MALICIOUS NODES COMPLAIN AGAINST ALL OTHER 

KEY GENERATORS 

Send 

Recv A B C D E F 

A       

B       

C       

D       

E       

F       

C. Simple way to deal with approval table 

A simple method is to iterate the unit at the diagonal, to find 

the unit of which the row and the column contain the most “” 

units, then delete the row and the column, keep doing this until 

there is no “” unit in the whole table. 

D. Security analysis of DKG algorithm 

Though the simple way can solve the issue mentioned in 
Section Ⅴ.B, if we analyze the protocol in the Byzantine 
environment, which means the adversary can corrupt all 
generators to obtain all coefficients, or control enough sibyl 
nodes to figure out all the coefficients of all the generators, the 
simple method is not secure enough, thus we state three 
conditions: 

1) [Liveness] The number of remaining key aggregators 
should be equal or greater than t. 

2) [Safety] All qualified key generators should not be 
controlled by a malicious party. 

3) [Safety] There should not be t or more than t key 
aggregators controlled by a malicious party. 

The reason for Condition 1) is clear, as otherwise, the group 

signature cannot be recovered. The Condition 2) and 3) are in 

response to collusion attack. However, it is hard to judge a 

participant is controlled by an adversary or not, but with 

premise of BFT, we can find a way to judge them 

Premise of BFT Malicious stakes should be less than 1/3 of all 

the staked money. 

Using this premise, we can deduce Conditions 2) and 3) to: 

2)  [Safety] Stake belonging to the remaining key generators 

should be no less than 1/3 of the total stakes 

3) [Safety] There should not be t key aggregators have 

stakes less than 1/3 of the total stake 

In this way, we could use concrete figure to measure, to 

eliminate the possibility that a malicious party control all the 

key generators or control more than t key aggregators. 

E. Using the knapsack model to deal with approval table 

To handle a “” unit, deleting the column decreases the 
possibility that Condition 2) is met, while deleting the row 
decreases the possibility that Condition 1) is met.  

Conditions 1) and 2) are analogous to conditions of volume 
and the value in the 0-1 knapsack problem. We consider that 
each column in the approval table is like an item in the knapsack 
model. Its value is the stake of the key generator of that column 
and its volume is the number of “” that the column has. While 
the 0-1 knapsack problem is to find a solution whereby the 
knapsack is filled with columns with the highest total value, the 
knapsack problem in our model is to find a solution that reaches 
a target total value with the minimal total volume. 

We call the method used to deal with the approval table the 
“Handle Complaints Algorithm." The goal is to eliminate all “” 
units from the table. It is described in §A 

The algorithm can obtain a solution if there is one, it might 
not be the most optimal one, that is, the minimum possible total 
volume of items in the knapsack that could satisfy a goal total 
value, for we use greedy approximation algorithm to obtain the 
result. That is not a problem, as long as the result is indeed a 
solution and every node run in the algorithm can get the same 



result. If the algorithm ends with failure, all configurations of 
the threshold group members stay unchanged. 

F. Commitment region 

Handle Complaints Algorithm guarantees only Conditions 
1) and 2), below, we show how to guarantee Condition 3). 

If we simply let all staked nodes to participate in DKG 
process, the system will be vulnerable to sibyl-attack. Currently 
we set the barrier of becoming a staked node to that it should 
stake at least 1/1000 of the whole chain’s coins. A malicious 
party can split his deposit into multiple accounts and stake on a 
huge amount of nodes, once he stakes 𝑡 nodes, he controls 𝑡 
key aggregators, thus Condition 3) is violated. To reject those 
sibyl nodes. We can define a region of beginning blocks of each 
epoch, we call it the commitment region, where each proposer 
is allowed attach its commitments into the block, and the block 
proposer itself becomes a key generator and a key aggregator. 
Condition 3) can be satisfied by setting a commitment length 𝑛 
close to threshold 𝑡 (see §B). In each epoch, When the 𝑖𝑡ℎ block 
proposer 𝑃𝑖 in the commitment region is going to make a block, 
it generates a random polynomial function containing t 
coefficients, and generates t commitments for each coefficient, 
then it includes the commitments into the block. When its block 
has been committed by consensus, it computes shares 𝑠𝑖𝑗 = 𝑓𝑖(𝑗) 

mod q for player 𝑃𝑗, in which 𝑗 = 1, … , 𝑛 and 𝑃𝑗 is the 𝑗𝑡ℎ block 
proposer in the commitment region. It waits five heights to send 
the shares, as other nodes may not receive the commitment 
block immediately, and thus they cannot verify the shares. 

There might be duplicate block proposers within the 
commitment region. In this case, we treat them as different 
share recipients but as the same key generator. 

We treat different block proposers as the same key generator 
because they constitute one physical node, and there is no need 
for them to generate two random polynomial functions and let 
the aggregators aggregate them because this complicates the 
implementation to no benefit. We treat the block proposers as 
different share recipients because if we consider them as the 
same share recipient, the number of malicious nodes will not 
follow a binomial distribution. 

For the shares need to be encrypted and sent to the recipient, 
we need another asymmetric encryption algorithm, such as 
ECC, to use the recipient’s public key to encrypt the share, so 
that the nodes in the middle cannot peek into the data of share. 
Duplicate nodes that are logically different key aggregators are 
physically one node. Therefore, multiple shares sent to it are 
encrypted by the same public key of ECC of the recipient node. 
In the 𝑛 + 2 epoch, this node acts as different threshold group 
members and sends multiple signature slices at each height. 

The received shares of each epoch are stored in a data file 

“dkg-state.json”, the file also stores the coefficients generated 

at the start of this epoch, and the private key from the 
aggregated shares of last epoch. This file is stored when a new 

share is received and verified, and at the start of each. 

VI. CONTINUOUS KEY ROTATION 

A. Continuous Share Exchange process 

We define Share Exchange Process as that which includes 
proposing a commitment block, broadcasting shares, verifying 
shares and broadcasting approvals, building up an approval 
table and running the Handle Complaints Algorithm to obtain a 
new threshold group of epoch 𝑛 + 2 , i.e. the implementation 
of Step 1 to 4 in Section Ⅴ.A on blockchain. We define the 
Signature Process as at each height every threshold group node 
generates a signature slice and every node tries to recover the 
group signature, i.e. the implementation of Step 5 to 6 in 

Section Ⅴ.A. The two processes overlap in the time base. The 
Share Exchange process in epoch 𝑛 involves preparing for the 
DKG signature process in epoch 𝑛 + 2; because it determines 
the group’s public key and private key, and the aggregated 
private key of each threshold group node of epoch 𝑛 + 2. 

Fig. 3. The overlapping of the two prosesses 

At the end of every epoch, each node runs Handle 

Complaints Algorithm to obtain a new threshold group of epoch 

𝑛 + 2. Each node in the group uses aggregated shares as its 

private key, computes the public key of every other threshold 

group node and the group public key based on the commitments 
of the qualified key generators. If the Handle Complaints 

Algorithm fails (it cannot eliminate all “” units  from the given 

approval table), the threshold group and the group public key in 

epoch 𝑛 + 2  remain unchanged from those in the previous 

epoch 𝑛 + 1. This is a minor case since if the network is good 

and all shares are received and verified, the approval table of 

each epoch should always be full filled. 

Fig. 4. Cases in which the Handle Complaints Algorithm of one epoch fails 

The first Share Exchange process still relies on synchronous 

communication. It is executed when the chain starts, we assume 

that no complaint is generated because the initial nodes when 

we launch the chain should be ones that we deploy ourselves, 

they must be honest nodes. If a node has verified all shares sent 

to it, it broadcasts a FINISH message. If a node has gathered 𝑛 
FINISH messages, it finishes the first Share Exchange process 

and switches to the consensus process. We assume that all 
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shares are eventually verified by every node, if a network issue 

arises, we simply relaunch the chain. 

B. Independent true random number flow 

In Section Ⅰ, we mentioned that we want to obtain an 
“independent true random number flow” that is irrelevant to the 
blocks data. But to implement distributed key rotation, we still 
rely on consensus to ensure that each participant has the same 
view of the approval table. Thus the participant can choose to 
send or not send an approval to affect the approval table, and 
affect the random number flow. Since it still cannot predict the 
random numbers, this is safe. 

If the premise of 𝑛 ≥ 3𝑓 + 1 is violated, i.e. the chain is 
possible to be forked by malicious voters. Since random 
number flow is irrelevant to blocks data, it doevs not fork, it can 
determine proposer priority list and voters of later heights, thus 
we can rely on independent true random flow to solve the forks. 

But the random number flow in our implementation is not 
fully independent to the blocks data, if the chain forks, the 
approval table forks as well, this will cause the random numbers 
in epoch 𝑛 + 2 begin to fork. That is the reason that we set new 
threshold group take effect in epoch 𝑛 + 2. The epoch 𝑛 + 1 is 
supposed to detect the forks and choose one. To prevent long-
range attack [16], the change of validators should not take effect 
in the next epoch, so does the change of threshold group 
members in our protocol. 

The random number of each height cannot be used to select 
a subset of validators from the full set, because it undermines 
the premise of BFT (see §C). 

VII. EXPERIMENTAL DATA 

Compare performance with Tendermint, the performance in 
our protocol should be slower, because of the extra network 
load of the shares and approvals in each epoch, and the 
signature slices at each height. Our contribution is not to boost 
performance but to obtain better security. 

We formulated a system of twelve validator nodes using 
Tendermint with the continuous DKG process. The average 
time to commit an empty block is approximately two seconds, 
and each block carries 10,000 transactions that takes three to 
four seconds. We compared it with a Tendermint cluster 
without implementing DKG and obtained nearly identical 
latency. This is because Tendermint requires two steps of 
voting and collecting. Recovering a group signature needs only 
one step of sending signature slices and collecting them, and 
this step can be performed simultaneously or ahead of the 
prevote step of Tendermint. So group signature is often 
recovered earlier than n-f precommits are collected. The shares 
and approval messages broadcasted in network can occupy 
some bandwidth. But if they are placed in an epoch length of 
200 blocks, the effect is acceptable. 

What’s more important of the experiment is to show the 
proposers priority and validators of each height are randomly 
selected, rather than followed by a predicted pseudo-random 
sequence. The experimental data in §F shows that the total 
counts of a node be selected as proposer in a range of blocks is 
proportional to its stake, as shown in §E. 

VIII. APPLICATIONS 

Other than generating random numbers on blockchain, VSS 
protocol is also used to enhance the security of the wallet [18], 
and in electronic voting [20], and in the setup phase of the 
zkSNARKs protocols, such as Groth16 [13] and Plonk [14]. 
While Groth16 needs setup for each program, Plonk needs only 
one universal setup, in the premise that there is at least one 
honest participant that does not collude to deduce the group 
secret. The schema of continuous key rotation fits for the 
systems that consider the group secret in the initial setup phase 
could be leaked, and the group members can change, thus a new 
setup phase is needed because the new joined member does not 
trust the public parameters generated by the old ones. 

IX. CONCLUSION 

We propose a modified DKG protocol on blockchain based 
on the consensus algorithm Tendermint. 

The enhancement to Dfinity is: continuously execute the 

exchange of the shares in every epoch, rather than only on the 

start of the chain. Threshold group members are selected from 

all staked nodes, thus they are updated if staked nodes change. 

Even if the staked nodes don’t change, the coefficients of the 
polynomials of each key generator are regenerated each epoch, 

thus the group public key and the aggregated private key of each 

threshold group member of the DKG protocol are rotated in 

each epoch. It is difficult for the attacker to continuously learn 

the updated polynomials of each participant in each epoch, the 

security of the distributed system is then enhanced. 

The contribution to DKG protocol is: we present a way to 

execute it on blockchain in asynchronous and Byzantine 

environment, we consider the participants may collude to 

compute the group private key and take measures to prevent it. 
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APPENDIX 

A. HANHLE COMPLAINTS ALGORITHM 

 

 

 

 

Input: An 𝑛 ∗ 𝑚 approval table with threshold t. 

Output: A 𝑗 ∗ 𝑘 sub-table with no “” unit, where 𝑗 ≥ 𝑡 and the total stake of the k columns should surpass 1/3 
of the total stake. 

We perform the following steps to find the solution: 

Step 1. Put the columns with zero “” into the knapsack. Now the volume of the knapsack is still 0, but it has 

a total value. 

Step 2. Check if the total value meets Condition 2, that is, the total value surpass 1/3 of all stakes. If it does: 

The algorithm ends successfully. The solution is a n*k table, which has k columns that have no complaint. 

Otherwise: Delete the columns with more than t  “” unis, then goto Step 3. 

Step 3. For each column c := range the remaining columns { 

We define: 

Additive columns of c:= the other columns that have no “” due to the deletion of the “” rows of c (e.g., 

in.Table Ⅴ, column F's additive columns are B, D, and J) 

An item is an abstract concept; it is the column c itself and its additive columns. We call c the main 

column of this item. 

The item’s value is the sum of stakes of the column c itself and its additive columns 

The item’s volume is the number of “”units in column c 

The item’s ratio := its value/its volume  

} 

Note that although different items have different main columns, their additive columns may overlap, (e.g, 

The items in Table Ⅴ are {B}, {D}, {F,{B,D,J}}, {H,{B,D}},and {J} ) 

Sort items by their ratios.  If the ratios of two items are equal, sort them by the address of the node of the 

main column. 

Put the top item into the knapsack, which means placing the columns of this item into the knapsack and 

deleting rows with “”of the main column of this item 

Step 4. Check if the knapsack meets Condition 1 and 2, that is:  

If the total volume of knapsack has exceeded the limit, goto Step 5  

Otherwise: 

If the total value in the knapsack has reached the target value, the algorithm ends with success, return: 

the columns in the knapsack as the qualified set Q and the remaining rows as the threshold group 

members.  

Otherwise: Modify the volumes and values of the remaining items (because after the deletion of some 

rows, the volumes of the remaining columns may decrease), then repeat Step 3 and Step 4. 

(Step 3 and 4 are akin to depth-first search in a binary tree. When it reaches the leaf of a path and has not 

found a solution, it needs to go backward and try other paths. Every node is a choice between placing a 

column into knapsack and not) 

Steps 5. This step is the backtracking step in the recursive algorithm. It sends the search back to higher tree 

nodes. It tries not to put the item into the knapsack and tries the next item in the sorted list, then goto Step 4 to 

check the result.  

Keep the depth-first search until it finds a solution or ends the search without a solution, which means that the 

algorithm fails. 



An example of executing the algorithm is given below: 

TABLE V.  AN INPUT APPROVAL TABLE 

 Slots 3 1 2 2 1 1 1 7 18 4 

 Send 

Recv A B C D E F G H I J 

A           

B           

C           

D           

E           

F           

G           

H           

I           

J           

 Total slots=40, target value=40 × 1/3=12, t=5 

Table Ⅵ is the execution process that handles the 
approval table in Table Ⅴ 

TABLE VI.  AN EXAMPLE OF EXECUTING HANDLE COMPLAINTS 

ALGORITHM 

Step Items in 

knapsack 

Sorted remaining items by 

their ratios 

Total 

Value 

Total 

Volume 

Delete

d Rows 

1 A,C,E,G 

J: 4/1 = 4  

F: (1 + 1 + 2 + 4)/3 = 8/3 

H: (7 + 1 + 2)/5 = 2 

D:  2/1 = 2 

B: 1/1 = 1 

7 0  

2 7 ≥ 12? N.  Goto Step 3. Put J to knapsack 

3 

A,C,E,G,J H: (7 + 1 + 2 + 1)/5 = 2.2   

F: (1 + 1 + 2)/2 = 2 

D: 2/1 = 2 

B: 1/1 = 1 

11 1 G 

4 11 ≥ 12? N ; 1 > 5? N; Goto Step 3. Put H and B,D,F into knapsack 

3 
A,B,C,D,E,

F,G,H,J  22 6 
A,B,C,

D,E,G 

4 6 > 5? Y; Goto Step 5. Revert last putting, change to put F and B,D into napsack 

5 A,B,C,D,E,

F,G,J 

 15 3 C,E,G 

The algorithm ends successfully. The remaining key generators are A, B, C, D, E, F, G, J. 

The remaining key aggregators are A, B, D, F, H, I, J.  

B. CHOOSING AN APPROPRIATE COMMITMENT LENGTH 

Let 𝑛 be the length of the commitment region, in which 
each block proposer has a lower than 1/3 probability to be a 
malicious one. We use 𝑝 to represent the probability, and m 
to represent the number of malicious key aggregators in the 
region. Then, m follows a binomial distribution 𝐵(𝑛, 𝑝), and 
the cumulative distribution function 𝐶𝐷𝐹(𝑡, 𝑛, 𝑝) stands for 
the probability of 𝑚 < 𝑡 . Given an acceptable failure 
probability ρ and threshold 𝑡, we can deduce the maximum 
length of the region 𝑛 such that CDF(𝑡, 𝑛, 𝑝)< ρ: 

TABLE VII.  MAXIMUM LENGTH OF COMMITMENT REGION FOR A 

THRESHOLD 𝑡 

−𝐥𝐠𝛒 𝒑 𝒏 𝒕 

10 1/5 47 30 

12 1/4 36 30 

12 1/4 56 40 

12 1/3 47 40 

If we set 𝑡 = 40, we can choose 𝑛 from [47,56). 

C.  ANALYSIS OF MINIMAL NUMBER OF SELECTIONS TO GET 

A QUALIFIED SUBSET 

To use a random number to select a subset of validators 

for consensus, we need to ensure that the subset also satisfies 

the premise of BFT: Less than 1/3 of the subset’s voting 

power is malicious. A validator’s voting power is equal to the 

number of times it has been selected. To ensure this in terms 
of probability, the analysis is similar to that in (§B). Let n be 

the total number of selections. Each selection has a lower than 

1/3 probability to obtain a malicious validator. We use p to 

represent the probability and m to represent the total voting 

power of the malicious validators in the subset. Then, m 

follows a binomial distribution 𝐵(𝑛, 𝑝) and the cumulative 

distribution function 𝐶𝐷𝐹(𝑛/3, 𝑛, 𝑝)  stands for the 

probability of 𝑚 < 𝑛/3 . Given an acceptable failure 

probability ρ ,  we can deduce the minimal number of 

selections n such that 𝐶𝐷𝐹(𝑛/3, 𝑛, 𝑝) <  𝜌: 

TABLE VIII.  MINIMAL NUMBER OF SELECTIONS TO GET A QUALIFIED 

SUBSET BASED ON DIFFERENT PROBABILITIES TO GET MALICIOUS NONE IN 

A SELECTION 

−𝒍𝒈𝝆 𝒑 𝒏 

12 1/5 600 

10 1/4 1200 

12 1/4 2000 

If there are 𝑢 staked accounts, and their stakes are evenly 
distributed, the probability that an account is not selected in 

n selections is 𝐶𝑢
1 ∗ (𝑢 − 1

𝑢⁄ )
𝑛
. If 𝑢 = 100 and 𝑛 = 2000, 

this is 1.86 × 10−7. 

It thus turns out that if u is far smaller than n, the subset 
is often equal to the full set, the scale of the nodes doing 
consensus is not reduced, but voting powers are randomly 
assigned to them. 

D. EXAMPLES SHOWING THE PSEUDO-RANDOM SEQUENCE 

OF THE PROPOSER IN TENDERMINT 

TABLE IX.  AN EXAMPLE OF 4-NODE PRIORITY INCREMENT IN 

TENDERMINT 

 A: Power 20 B:Power 18 C:Power 12 D:Power 10 

Initial Priority 20 18 12 10 

1st proposer is A (max is 20) 20-60=-40 18 12 10 

All increase -40+20=-20 18+18=36 12+12=24 10+10=20 

2nd proposer is B (max is 36) -20 36-60=-24 24 20 

All increase -20+20=0 -24+18=-6 24+12=36 20+10=30 

3rd proposer is C (max is 36) 0 -6 36-60=-24 30 

TABLE X.  AN EXAMPLE OF 4-NODE PRIORITY INCREMENT IN 

TENDERMINT 

 A: Power 99 B: Power 1 

Initial Priority 99 1 

1st proposer is A (max is 99) 99- 100=-1 1 

All increase -1+99=98 1+1=2 

2nd proposer is A(max is 98) 98-100=-2 2 

All increase -2+99=97 2+1=3 

3rd proposer is A(max is 97) 97-100=-3 3 

E. EXPERIMENTAL DATA 



TABLE XI.  EXPERIMENTAL DATA 

   Round 

slots 1 2 3 4 

7 205 201 215 203 

7 211 202 209 207 

14 419 403 417 412 

14 421 410 423 411 

22 615 624 611 621 

22 627 611 623 617 

29 832 822 831 828 

29 839 838 835 829 

44 1251 1260 1255 1257 

44 1255 1259 1254 1241 

58 1660 1698 1658 1703 

58 1665 1672 1669 1671 

We make the stakes of the twelve nodes 1, 1, 2, 2, 3, 3, 4, 

4, 6, 6, 8, 8 × 1010, and their slots are equal to their stakes 
divide 1/1000 of whole money of the system, as there are 

other initial accounts, so their slots in the stake table are 7, 7, 

14, 14, 22, 22, 29, 29, 44, 44, 58, 58. We do four rounds of 

tests, each round is 10’000 blocks, and see the probability of 

each node be selected as proposer is more or less proportional 

to their slots. 


