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Abstract. Reasoning about data structures requires powerful logics sup-
porting the combination of structural and data properties. We define a
new logic called Mso-D (Monadic Second-Order logic with Data) as an
extension of standard Mso on trees with predicates of the desired data
logic. We also define a new class of symbolic data tree automata (Sdtas)
to deal with data trees using a simple machine. Mso-D and Sdtas are
both Turing-powerful, and their high expressiveness is necessary to deal
with interesting data structures. We cope with undecidability by encod-
ing Sdta executions as a system of CHCs (Constrained Horn Clauses),
and solving the resulting system using off-the-shelf solvers. We also iden-
tify a fragment of Mso-D whose satisfiability can be effectively reduced
to the emptiness problem for Sdtas. This fragment is very expressive
since it allows us to characterize a variety of data trees from the litera-
ture, solving certain infinite-state games, etc. We implement this reduc-
tion in a prototype tool that combines an Mso decision procedure over
trees (Mona) with a CHC engine (Z3), and use this tool to conduct sev-
eral experiments, demonstrating the effectiveness of our approach across
different problem domains.

1 Introduction

Reasoning about linear or tree-like data structures requires very expressive logics
that allow combining structural and data properties. Logical characterizations of
common data structures often impose restrictions on the structural part, which
are intertwined with constraints on the data part. For example, in a binary search
tree (Bst) the data values are organized in the form of a binary tree, where the
numerical value associated with each node is greater than or equal to all the
values stored in its left sub-tree and smaller than all those in its right sub-tree.
Logical characterisations of data structures may also require the calculation of
measures concerning parts of the structure such as size or height. Think of red-
black trees (Rbt), a type of Bst with additional constraints, such as “every path
from a given node to any of its descendant leaves goes through the same number
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of black nodes”. Similarly, for AVL trees we need to impose that the heights of
the sub-trees rooted in the children of any node differ by a maximum of one.

As a first contribution, we define a new logic called Mso-D (Monadic Second-
Order logic with Data) as an extension of standard Mso on binary trees with
data constraints. The Mso component of the logic allows us to express structural
properties, while the data constraint component allows us to impose properties
on the data associated with the nodes. Constraints on data are expressed by
predicates from a desired data logic that is completely agnostic to the underly-
ing tree structure. We connect the two components by means of uninterpreted
functions that map each node of the tree to a data item. An example of an
Mso-D formula that defines Bsts is:

∀x . ∀y .
( (

pathl(x, y)→ val(x) ≥ val(y)
)
∧
(
pathr(x, y)→ val(x) < val(y)

) )
, (1)

where x and y are first-order variables ranging over the set of nodes, path l(x, y)
(resp., pathr(x, y)) is an Mso formula expressing that “y is in the left (resp.,
right) sub-tree of x”, and val is an uninterpreted function that maps each node
of the tree to an integer.

As a second contribution, we define a new class of symbolic data tree automata
(Sdtas) to recognize languages of data trees using a simple machine. Such au-
tomata perform a bottom-up computation starting from the leaves of the data
tree. The state of an Sdta is represented by the value of a set of state variables,
whereas the data trees recognized by the automaton carry another set of alpha-
bet variables. The transitions of an Sdta are expressed by joint constraints over
state and alphabet variables. For example, Bsts attach to each node a single
alphabet variable, say val , holding the numerical value of that node. An Sdta
recognizing Bsts will use additional state variables to check that the data tree
is indeed a Bst. In this case, two state variables are sufficient to achieve this
goal: one holding the minimum and one holding the maximum value stored in
the sub-tree rooted in the current node. Similarly, Sdtas can be designed to
recognize the classes of Rbts and AVL trees.

We have to deal with undecidable problems when reasoning about data trees
using Mso-D or Sdtas, and this is unavoidable if we want to (a) handle trees
with data from infinite domains, and (b) relate data from different nodes. These
two features make Sdtas Turing-powerful since they can encode executions of
two-counter machines. A similar argument holds for the satisfiability problem of
Mso-D, since we can write a formula that allows us to relate data in consecutive
nodes. By prohibiting the propagation of unbounded information between nodes,
the decidability of relevant decision problems can be recovered (see [11,12] for
an account on this). However, these features are both essential to deal with data
structures such as Bsts, Rbts, AVL trees, Heaps, etc.

A way to cope with undecidability is to encode the executions of an Sdta
as a system of CHCs (Constrained Horn Clauses) or, equivalently, as a CLP
(Constraint Logic Program) [26], and solve the system using efficient off-the-
shelf tools. Systems of CHCs correspond to a restricted class of first-order logic,
and are a versatile formalism for representing and solving a variety of program
verification or model checking problems, including those regarding sequential,
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concurrent, and functional programs. Efficient algorithms have been proposed
for solving systems of CHCs, often leveraging or generalizing techniques de-
veloped in the context of automatic program verification [21,22,2]. As a result,
CHCs are often used as an intermediate representation in a variety of verification
and synthesis tools [6,18,20,23,25,27,29,35]. Here, we follow a similar approach
to solve the emptiness problem for Sdtas, and this offers several advantages.
First, it provides a separation of concerns, allowing users of our framework to
focus only on aspects related to the tree data structure at hand, while giving
CHC solver developers a clean framework that can be instantiated using various
model checking algorithms and specialized decision procedures. Furthermore, by
expressing CHCs in the standard SMT-LIB language, one can take advantage
of different CHC engines, whose performance keeps improving year-over-year, as
witnessed by the competition on constrained Horn clauses CHC-COMP [19].

As a third contribution, we show several results linking the Mso-D satisfi-
ability problem to the emptiness of Sdtas, and thus to the problem of solving
a CHC system. A fundamental theorem for the class of regular (word or tree)
languages states that a language is regular if and only if it is Mso-definable, i.e.,
definable by a closed formula (i.e., a sentence) of standard Mso [4,5,15,42,40,14].
Here, we show that if we allow Mso-D data predicates to talk only about the
data of a single node, the satisfiability problem can be reduced to the emptiness
of Sdtas. Furthermore, both decision problems are decidable in this case [11].
Moreover, we identify a larger undecidable syntactical fragment of Mso-D where
the above reduction can still be performed. Namely, we give an effective reduc-
tion when the Mso-D formula is of the form ∃x∀y . ϕ(x,y), where ϕ can contain
additional quantifiers and each data constraint in ϕ is either unary, or accesses
the data in a bounded neighborhood of the nodes referred to by x and at most
one of the variables of y. We show that this fragment is very expressive as it
allows us to characterize a variety of tree data structures from the literature,
solve certain infinite-state games, and handle many other potential applications.

As a fourth and final contribution, we have implemented the reduction for the
syntactic Mso-D fragment described above in a prototype tool that combines
an Mso decision procedure over trees (Mona [28]) with a CHC engine (of the
SMT solver Z3 [37,24]). Using this tool we have conducted several experiments
to demonstrate the effectiveness and the practicality of our approach.

Organization of the paper. The rest of the paper is organized as follows. Sec. 2
defines data trees, while Sec. 3 introduces the Mso-D logic. Sec. 4 deals with
the definition of Sdtas, and Sec. 5 shows that the emptiness problem for Sdtas
is undecidable in general but can be solved by off-the-shelf CHC engines. Sec. 6
shows a reduction from the Mso-D satisfiability problem to the emptiness of
Sdtas, for the Mso-D fragment ∃x∀y . ϕ(x,y). Section 7 describes our proto-
type implementation and summarises our experimental evaluation. Related work
and concluding remarks can be found in Sec. 8 and 9, respectively.
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2 Data Trees

Here we formally define data trees. We deal with trees that are finite in size and
labeled with data from possibly infinite domains. We consider only binary trees
(i.e., trees of arity 2) to keep notation to a minimum. However, the methods and
approaches presented in the paper apply to any class of trees of fixed arity.

We will use N to denote the set of all natural numbers, Z to stand for the
set of integers, and B to represent the set {0, 1}. For a number n ∈ N, we write
[n] to denote the interval {1, . . . , n}.

Words. An alphabet is a finite set of symbols. A word w over an alphabet Σ
is a finite (possibly empty) sequence w = a1a2 . . . an where ai ∈ Σ for i ∈ [n].
We denote with |w| the length of the sequence of symbols forming w. The empty
word, denoted by ε, is the word formed by no symbol. We denote the set of all
words over Σ by Σ∗. A language L over Σ is any subset of Σ∗. A prefix (resp.
suffix) of a word w is either ε, or any sequence a1 . . . aj (resp., aj . . . an), for some
j ∈ [n]. Given two words a = a1a2 . . . an and b = b1b2 . . . bm, their concatenation
denoted ab, is the word a1a2 . . . anb1b2 . . . bm. Given a word w ∈ Σ∗ and a
language L ⊆ Σ∗, we define Ext(w,L) as the language of all words w′ such that
ww′ is a word in L, i.e., Ext(w,L) = {w′ | ww′ ∈ L}.

Trees. A binary tree T , or simply a tree, is a finite and prefix-closed subset of
{0, 1}∗. We call the elements of T nodes, and the node identified by ε the root
of T . The edge relation is defined implicitly: for d ∈ {0, 1}, if v and vd are both
nodes of T , then (v, vd) is an edge of T . Further, if d is 0 (resp., 1) we say that
vd is the left (resp., right) child of v, and v is the parent of vd. A leaf is a node
with no children, while an internal node is a node that is not a leaf. The height
of T is maxt∈T |t|. The sub-tree of T rooted at a given node t ∈ T is Ext(t, T ).
Further, Ext(t, T ) is a left (resp., right) sub-tree of t if t = t′0 (resp., t = t′1),
for some t′ ∈ T . The k-th level of a tree T consists of the sequence of all t ∈ T ,
with |t| = k, sorted in ascending lexicographic order. Further, the k-th level of
T is filled left to right if it is a prefix of the k-th level of {0, 1}∗.

Data signatures. Data signatures are like structured data types (a.k.a. records)
in programming languages: a data signature S is a set of pairs {id i : typei}i=1...n.
Common types of interest include bounded or unbounded integers (denoted by
int and Z, resp.), floating point rationals and real numbers (float and R), the
Boolean type B and the bit vectors of length k. If a signature contains a single
field whose type is a finite alphabet Σ, we call that signature an enumeration.
An evaluation ν of a data signature S is a map that associates each field name
id in S with a value of the corresponding type, denoted by ν.id . We denote by
L(S) the set of all evaluations of S, also called the language of S.

Data Trees. A data tree with data signature S, or an S-tree, is a pair (T, λ)
where T is a tree and λ is a labelling function that maps each node t ∈ T into an
evaluation of S, i.e., λ(t) ∈ L(S). Another way of looking at data trees is to think
of them as a traditional tree data structure where the data λ(t) associated with
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each node t is structured. Thus, to simplify the notation when λ is clear from the
context, we adopt a C-like notation to refer to the value of fields associated with
tree nodes: if t is a tree node and id is a field of S, we write t.id as a shorthand
for λ(t).id . If the data signature is an enumeration, we recover the traditional
notion of Σ-labelled tree.

Many data structures from the literature can be seen as data trees. Below
we give a high-level description of well-known data structures [9]. In addition to
using them for motivating purposes, we will also use them as running examples.

Example 1 (Binary Search Trees). A Bst is a binary tree where each node stores
a key taken from a totally ordered set, with the property that the key stored in
each internal node is greater than or equal to all the keys stored in the node’s
left subtree, and smaller than those in its right subtree. Thus, an appropriate
signature for data trees representing Bsts is {val : Z}. ut

Example 2 (Red-black Trees). An Rbt is a binary tree where each internal node
stores a numerical value, satisfying the binary search tree property. The leaves
do not contain keys or data and they represent a NIL pointer. Each node has
a color (red or black), and the following properties hold: (i) every leaf is black,
(ii) if a node is red then both its children are black, and (iii) every path from a
given node to a descendent leaf contains the same number of black nodes.

Note that while the color is a piece of information stored in the node, the
black height can instead be computed on demand. Thus, the signature for data
trees representing Rbts may be {val : Z, is black : B}. ut

Example 3 (Max-Heap). A Max-Heap is a binary tree where each node stores
a key taken from a totally ordered set, say Z, and can be described as an S-
tree (T, λ) where S is a data signature consisting of a single integer field, say
{key : Z}, that obeys the following two constraints: (i) (shape property) T is
almost complete, i.e., all its levels are complete, except the last one, that is filled
from left to right; and (ii) (heap property) the value stored in each node is greater
than or equal to the values stored in the node’s children.

3 Monadic Second-Order Logic with Data

In this section, we introduce our Mso-D logic to express properties of data
trees. We define Mso-D by extending the standard Monadic Second-Order logic
on (enumeration) trees (a.k.a. Mso) with constraints on the Data.

Data constraints are formulas in first-order logic (Fol) with equality (here
we use standard Fol syntax and semantics [34]). However, since data trees
may involve different data types, we will consider formulas with many-sorted
signatures as opposed to the classical unsorted version. Specifically, we deal
with formulas of a many-sorted first-order theory D with sorts data1, . . . , datan.
For each datai, we allow a theory Ddatai

whose function symbols have type
datani → datai and whose relation symbols have type datami → B, for some n
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and m. For example, each of these theories can be the theory of arithmetic, reals,
arrays, etc. From now on, we may refer to D as the data theory of Mso-D.

We also introduce a finite set of connecting function symbols, denoted F ,
which we use to extend the Mso component of our logic with data. Let nodes be
the sort of the Mso component. Then, each f ∈ F is an uninterpreted function
symbol with type nodes → datai, for some i ∈ [n]. These functions allow us
to model fields that we associate with each node in the tree. In particular, we
say that f ∈ F models a field of an S-tree if f is also the name of a field in
S. Otherwise, f may serve the purpose of endowing tree nodes with extra data
fields without these being present in the labels of the data tree. This is a very
useful feature for characterizing tree data structures, e.g., we can use bh ∈ F to
logically characterize the black height of nodes in Rbts, even if that information
is not part of the data signature of Rbts.

We are now ready to formally define the syntax of Mso-D over S-trees with
data theory D and connecting functions F . We fix countable sets of propositional
variables (denoted by p), first-order node variables (denoted by x, y, etc.), and
node-set variables (denoted by X,Y, etc.). We assume that D includes relation
symbols Drel. We also assume that the symbols in D, the variable names, and
the symbols in F do not overlap. Since D is imported in Mso-D unchanged we
do not report its definition here. The remaining components of the syntax of
Mso-D(D,F ,S) are defined by the following grammar:

Node terms: t
def
= x | t.left | t.right

Formulas: ϕ
def
= p | t1 = t2 | t ∈ X | ∃x . ϕ | ∃X .ϕ | ¬ϕ | ϕ ∧ ϕ

| r(f1(t1), . . . , fk(tk)) r ∈ Drel, f1, . . . , fk ∈ F

where r and f1, . . . , fk are well-typed, i.e., there is an index i such that the type
of r is dataki , and for every j ∈ [k], fj has type nodes → datai. We denote the
set of all variables occurring in ϕ by Var(ϕ).

An interpretation of a formula ϕ is a pair (Tλ, I), where Tλ is an S-tree
(T, λ), and I interprets the remaining symbols of the logic. We interpret the
D-component of our theory as we would interpret D in isolation. Assume that
D is the chosen interpretation of D, with underlying universes Di for sort datai.
Also, I maps each function symbol f in F with type nodes → datai to a concrete
function I(f) : T → Di. Moreover, if f is also the name of a field in S, then we
require that I(f) coincides with the value of the field f in each node of the tree,
i.e., I(f)(v) = λ(v).f , for every v ∈ T . The satisfaction relation depends also on
D, but we omit it here because we consider it fixed.

We interpret the variables in Var(ϕ) by mapping each of them into a subset
of nodes of T with the following properties: (i) first-order variables are assigned
singletons, and (ii) propositional variables are assigned either all nodes (encoding
true) or no node at all (encoding false). For a set of nodes S ⊆ T and a (first- or
second-order) variable α ∈ Var(ϕ), we denote by I[S/α] the function that maps
α to S, and agrees with I on all the other variables. Node terms are interpreted
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as follows:

I(t) =


I(x) if t = x

I(s)0 if t = s.left and I(s)0 ∈ T
I(s)1 if t = s.right and I(s)1 ∈ T
I(s) otherwise.

Notice that the .left and .right operators stutter on leaves, that is, for all leaves
v it holds v = v.left = v.right .

The satisfaction relation Tλ, I |= ϕ is so defined.

Tλ, I |= p iff I(p) = T
Tλ, I |= t1 = t2 iff I(t1) = I(t2)
Tλ, I |= t ∈ X iff I(t) ⊆ I(X)
Tλ, I |= r(f1(t1), . . . , fk(tk)) iff D(r)( I(f1)(I(t1)), . . . , I(fk)(I(tk)) )
Tλ, I |= ¬ϕ iff Tλ, I 6|= ϕ
Tλ, I |= ϕ1 ∧ ϕ2 iff Tλ, I |= ϕ1 and Tλ, I |= ϕ2

Tλ, I |= ∃x . ϕ iff there exists v ∈ T such that Tλ, I[{v}/x] |= ϕ
Tλ, I |= ∃X .ϕ iff there exists S ⊆ T such that Tλ, I[S/X] |= ϕ

We say that Tλ satisfies ϕ, denoted Tλ |= ϕ, if there is an interpretation
I such that Tλ, I |= ϕ. We define the language of trees satisfying an Mso-D
sentence in the usual way. An Mso-D sentence is a formula with no free variables.
We define the set of all S-trees Tλ satisfying an Mso-D(D,F ,S) sentence ϕ by
L(ϕ), i.e., the set of all S-trees Tλ such that Tλ |= ϕ. A language of trees L
is Mso-D(D,F ,S) definable if there exists an Mso-D(D,F ,S) sentence ϕ such
that L = L(ϕ).

We recover standard Mso when S is an enumeration and D includes a unary
relation ra for each a ∈ Σ, whose interpretation is {a}.

Undecidability of the Satisfiability Problem. The satisfiability problem for a given
Mso-D(D,F ,S) sentence ϕ asks whether L(ϕ) is empty. Let D be the theory
of linear integer arithmetic. It is easy to model an execution of any given 2-
counter machine using a unary data tree whose signature has two fields of type
N to model the counters, and an enumeration field to keep track of the current
instruction. Each machine configuration is represented by a node, and we can
impose constraints in our logic so that two consecutive nodes in the tree model a
machine transition. Likewise, we can also express the property of a halting com-
putation in our logic. Thus, the satisfiability of the Mso-D logic is undecidable,
even though the underlying data logic D is decidable. Of course, by choosing
a finite domain for the interpretation of the underlying data logic, we regain
decidability in that the problem matches that of the standard Mso.

Examples. We now show various examples to illustrate the expressiveness of
Mso-D. We will use the usual predefined abbreviations to denote the remain-
ing propositional connectives (ϕ1 ∨ ϕ2 and ϕ1 → ϕ2), the universal quanti-

fier (∀α . ϕ def
= ¬∃α .¬ϕ), x 6= y

def
= ¬(x = y), and the conditional expression
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(ϕ ?ϕ1 : ϕ2)
def
= (ϕ∧ϕ1)∨ (¬ϕ∧ϕ2). Finally, the following standard Mso predi-

cates will come in handy: child(x, y), root(x), leaf (x), and path(x, y).

Example 4 (Mso-D characterization of Bsts). We define the characteristic prop-
erty of Bsts on data trees with data signature {val : Z}. We first introduce the
auxiliary predicate path l(x, y) (resp., pathr(x, y)) with the meaning “y is in the
left (resp., right) sub-tree of x”. Using these predicates, we define the Mso-D
sentence (1) that says that all values in the left sub-tree of a node x contain
values that are smaller than the value in x, and similarly for the right sub-tree.

To demonstrate the use of connecting functions to model auxiliary node fields,
we give an alternative way to characterize Bsts. We introduce two auxiliary
connecting functions: min and max . We impose constraints to ensure that for
each node x in the tree min(x) and max(x) are the minimum and maximum
values of the sub-tree rooted in x, respectively. It is straightforward to see that
we can impose the Bst property by relating the values in each node with min
and max in their children as follows:

ψbst
def
= ∀x .

( (
x 6= x.left ?min(x) = min(x.left) ∧max (x.left) ≤ val(x)

: min(x) = val(x)
)
∧(

x 6= x.right?max (x) = max (x.right) ∧min(x.right) > val(x)

: max (x) = val(x)
) )

. ut

Example 5 (Mso-D characterization of Rbts). We can also express the defining
properties of red-black trees as follows:

(a) Every leaf is black: ∀x . leaf (x)→ is black(x).
(b) If a node is red, both its children are black:

∀x . (¬is black(x))→
(
is black(x.left) ∧ is black(x.right)

)
.

(c) Every path from a node to a leaf contains the same number of black nodes.
We encode this property as the consistency of the black height data field bh:

∀x . ∀y .
( ( (

is black(x) ∧ child(y, x)
)
→ (bh(y) = bh(x)− 1)

)
∧
( (
¬is black(x) ∧ child(y, x)

)
→ (bh(y) = bh(x))

)
∧
( (

leaf (x) ∧ is black(x)
)
→ bh(x) = 1

)
∧
( (

leaf (x) ∧ ¬is black(x)
)
→ bh(x) = 0

) )
. ut

Extended models. Since we are going to build automata corresponding to for-
mulas with free variables, it is convenient to encode the variable interpretation
in the tree itself, by expanding the data signature with an extra Boolean flag
for each free variable. The flag corresponding to a free variable will be set to 1
in the node(s) that belong to the interpretation of that variable. In detail, for a
given interpretation (Tλ, I), assume that Var(ϕ) = {α1, . . . , αn}, we can define
an extended tree (T, λE) with data signature SE = S ∪ {a1, . . . , an : B}, where
λE(u)(ai) = 1 iff u ∈ I(αi). Conversely, from an extended tree we can extract the
corresponding variable interpretation. For such an extended tree we can write

Tλ
E |= ϕ without mentioning I.
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4 Symbolic Data-Tree Automata

In this section, we define a new class of tree automata called Symbolic Data-Tree
Automata. They generalize traditional bottom-up finite tree automata as they
work with data trees. Furthermore, they are symbolic because the alphabet and
set of states are defined using evaluations of data signatures, and its transition
function is defined through constraints3 involving states and alphabet.

Definition 1 (Symbolic Data-Tree Automata). A symbolic data-tree au-
tomaton, or Sdta for short, A is a tuple (SΣ ,SQ, ψF , Ψ∆) where:

– SΣ is the alphabet data signature defining the tree alphabet Σ = L(SΣ);
– SQ is the state data signature defining the set of states Q = L(SQ);
– ψF is a unary constraint defining the set of final states F ⊆ Q, i.e., the set

consisting of all elements q ∈ Q such that ψF (q) evaluates to true;
– Ψ∆ is a tuple of four transition constraints:

ψlr (ql, qr, σ, q), ψl(ql, σ, q), ψr(qr, σ, q), ψleaf (σ, q),

where ql, qr, and q are variables of type SQ, and σ is of type SΣ.

A accepts SΣ-trees. A tree (T, λ) is accepted by A if there is a total function
π : T → Q such that for every node t ∈ T the following holds:

– t has both children, and ψlr

(
π(t0), π(t1), λ(t), π(t)

)
holds;

– t has only the left child, and ψl
(
π(t0), λ(t), π(t)

)
holds;

– t has only the right child, and ψr
(
π(t1), λ(t), π(t)

)
holds;

– t is a leaf, and ψleaf

(
λ(t), π(t)

)
holds;

– ψF
(
π(ε)

)
holds.

The language of A, denoted L(A), is the class of all SΣ-trees accepted by A. ut

We recover standard tree automata when both data signatures SΣ and SQ
are enumerations. In that case, we call A an enumeration tree automaton and
we denote it as (Σ,Q, F,∆), where Σ = L(SΣ), Q = L(SQ), and so on.

Example 6 (Symbolic Data-Tree Automaton for Max Heap). We define an Sdta
Abmh where L(Abmh) is the set of all max heaps. The state data signature of
Abmh is {h : N, f : B, val : N}. We use the h field to store the height of the
sub-tree rooted in the node, the f field to store whether the sub-tree rooted
in the node is complete with the last level completely filled, and val stores the
node’s data value. The transition data constraints are as follows:

ψleaf (σ, q)
def
= q.h = 1 ∧ q.f ∧ q.val = σ.val

ψl(ql, σ, q)
def
= ql.h = 1 ∧ q.h = 2 ∧ ¬q.f ∧ σ.val ≥ σl.val ∧ q.val = σ.val

ψlr (ql, qr, σ, q)
def
= (ql.h− 1 ≤ qr.h ≤ ql.h) ∧

(
q.f ↔ (ql.f ∧ qr.f ∧ ql.h = qr.h)

)
∧
(
¬ql.f → (qr.h < ql.h ∧ qr.f)

)
∧
(
¬qr.f → (qr.h = ql.h ∧ ql.f)

)
∧ σ.val ≥ ql.val ∧ σ.val ≥ qr.val ∧ q.val = σ.val .

3 We use the term constraint to denote a generic predicate con(x1, . . . , xk) in which
the type of variable xi is some data signature Si. We deliberately leave the definition
of the constraints unspecified, and specify them only when it is necessary to do so.
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For each leaf, we set the height field h to 1, the field f to true, and copy the label
of the node into the state field val . Note that all sub-trees of a complete tree are
still complete trees. Thus, if a node has only the left child, this child must be a
leaf, and we set the parent node’s fields accordingly. A node with only the right

child leads to a violation of the shape property, thus ψr(qr, σ, q)
def
= false. Finally,

we consider the case where the node has both children. Here ψlr constrains the
fields of the state data signature to guarantee their invariants. Specifically, the
first two lines enforce the shape property while the last line enforces the heap
property and copies the value of the label into the state field val . To conclude,
we define ψF as a tautology. However, if, for example, we wanted to accept only

max heaps of height at least 100 we could have defined ψF (q)
def
= (q.h ≥ 100). ut

5 Solving the Emptiness problem for Sdtas

The emptiness problem for Sdtas consists in determining whether the tree lan-
guage recognized by a given Sdta A is empty, i.e., whether L(A) is empty. We
first prove that the emptiness problem for Sdtas is undecidable, and then show
that it can be reduced to the satisfiability of a system of constrained Horn clauses
(CHCs), for which increasingly efficient off-the-shelf semi-procedures exist.

It is well known that the emptiness problem for tree automata is decidable [8].
However, as explained for Mso-D in Sec. 3, as soon as the state data signa-
ture involves an unbounded data domain (such as integers or reals) and basic
arithmetics (e.g., increment and test for zero), the emptiness problem becomes
undecidable. Thus, we have the following.

Theorem 1. The emptiness problem for Sdtas is undecidable.

We cope with this negative result by providing a reduction to the satisfiability
of a system of CHCs, when the transition constraints of the automaton are
defined through quantifier-free first-order logic formulas.

Constrained Horn Clauses. We fix a set R of uninterpreted fixed-arity rela-
tion symbols, which represent the unknowns in the system. A Constrained Horn
Clause, or CHC for short, is a formula of the form H ← C ∧B1∧· · ·∧Bn where:

– C is a constraint over some background theory that does not contain any
application of predicates in R;

– for every i ∈ [n], Bi is an application p(v1, . . . , vk) of a relation symbol p ∈ R
to first-order variables v1, . . . , vk;

– H is the clause head and, similarly to Bi, is an application p(v1, . . . , vk) of a
relation symbol p ∈ R to the first-order variables, or false;

– the first-order variables appearing in the signature of the predicates and
constraints are all implicitly universally quantified.

A finite set H of CHCs is a system, and it corresponds to the first-order
formula obtained by putting all its CHCs in conjunction. We assume that the
semantics of constraints is given a priori as a structure. A system H with relation
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symbols R is satisfiable if there is an interpretation to each predicate in R that
makes all clauses in H valid.

It is a well-known result from constraint logic programming that every system
of CHCs H has a unique minimal model that can be computed as the fixed-point
of an operator derived by the clauses of H [16,26]. This property, which allows
us to use a fixed-point semantics for CHC systems, to justify the correctness of
the reduction defined below (i.e., Theorem 2).

h(q) ← ψlr (ql, qr, σ, q) ∧ h(ql) ∧ h(qr)

h(q) ← ψl(ql, σ, q) ∧ h(ql)

h(q) ← ψr(qr, σ, q) ∧ h(qr)

h(q) ← ψleaf (σ, q)

false ← ψF (q) ∧ h(q)

Reduction. We give a linear
time reduction from the empti-
ness problem for Sdtas to the
satisfiability of systems of CHCs.
Let A = (SΣ ,SQ, ψF , Ψ∆) be
an Sdta with Ψ∆ = (ψlr , ψl, ψr,
ψleaf ), ql, qr and q be structured
variables of type SQ, σ be a struc-
tured variable of type SΣ , and h(q) be an uninterpreted predicate. We map A
into the CHC system HA formed by the CHCs shown on the right.

Theorem 2 (Emptiness). Let A be an Sdta. Then, L(A) is empty if and only
if HA is satisfiable.

6 From Logic to Automata

In this section, we describe a reduction from the satisfiability problem of Mso-D
to the emptiness problem of Sdtas, when the Mso-D formula ϕ is a sentence
in the following form:

ϕ = ∃x1, . . . , xn .∀y1, . . . , ym . θ, (2)

where each data constraint of the formula θ, say r(f1(t1), . . . , fk(tk)), satisfies
one of the following:

– r is unary (i.e., k = 1), or
– r depends only on variables x1, . . . , xn and at most one of the variables
y1, . . . , ym, i.e., Var(t1, . . . , tk) ⊆ {x1, . . . , xn, yi}, for some i ∈ [m].

Notice that θ may contain other quantifiers, but the additional quantified vari-
ables can occur only inside unary data constraints. Moreover, it is easy to see that
this fragment is closed under positive Boolean combinations (i.e., conjunctions
and disjunctions).

This fragment strictly includes the Mso logic with data defined in [11] for
data words, which only allows unary data constraints. Below we show that the
added expressivity can be used to define and verify properties of a variety of data
structures, including those from Examples 4 and 5, and infinite-state games.

In our reduction, we first construct a standard finite-state tree automaton
over a finite alphabet (Sec. 6.1), which we then convert to an Sdta (Sec. 6.2).
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6.1 Building the enumerated tree automaton

The first step in our reduction from Mso-D to Sdtas is to convert the Mso-D
formula ϕ of type (2) into a formula ϕ′ in standard Mso by abstracting away all
data constraints. We distinguish two types of data constraints. Global constraints
refer only to the data of the existentially quantified variables xi; on a given data
tree, once the interpretation of those variables is chosen, each global constraint is
either true or false: it is a global property of the tree. Local constraints, instead,
additionally refer to a variable, say z, that is not one of {x1, . . . , xn}; even if the
interpretation of {x1, . . . , xn} is fixed, the truth of such constraints depends on
the interpretation of z. Accordingly, we replace each data constraint in θ, say
r(f1(t1), . . . , fk(tk)), as follows:

Global constraints. If Var(t1, . . . , tk) ⊆ {x1, . . . , xn}, we replace all occurrences
of the data constraint with a new propositional variable p. We denote by
p1, . . . , ph all such propositional variables.

Local constraints. Otherwise, there is a unique variable z ∈ Var(t1, . . . , tk) that
is not one of {x1, . . . , xn}. We then introduce a new free second-order variable
C, and replace each occurrence of the above data constraint with the clause
z ∈ C. We denote by C1, . . . , Cl all the second-order variables introduced in
this process.

Besides the above substitutions, in the resulting Mso formula we leave variables
x1, . . . , xn free, so that the models of the formula will carry the interpretation of
those variables as extra bits in the node labels (recall the discussion on extended
models in Sec. 3). We thus obtain the following Mso formula:

ϕ′
def
= ∀y1, . . . , ym . θ′. (3)

Since ϕ′ has no data constraints, we can take its data signature to be empty.

Example 7. Consider the formula ψbst from Example 4 that defines Bsts using
auxiliary data min and max . Since it uses a single universal quantifier, it belongs
to the syntactic fragment (2). For the sake of simplicity, consider a stronger
formula ψ′bst forcing internal nodes to have two children (a.k.a. a full Bst):

ψ′bst
def
= ψbst ∧ ∀y . full tree(y), where

full tree(y)
def
=

(
¬leaf (y)→ (y.left 6= y ∧ y.right 6= y)

)
.

Now, consider the following true property of full Bsts: the successor of an
internal node is the left-most leaf in its right sub-tree. The following formula
states the opposite of that property:

ψsucc
def
= ∃x1, x2, x3 .

((
val(x1) < val(x2) < val(x3)

)
∧

¬leaf (x1) ∧ leaf (x3) ∧ left only path(x1.right , x3)
)
.



Reasoning about Data Trees using CHCs 13

It is easy to see that ψ′bst ∧ ψsucc is equivalent to a formula ψ in our fragment:

∃x1, x2, x3 . ∀y .
((

val(x1) < val(x2) < val(x3)
)
∧ ¬leaf (x1) ∧ leaf (x3)

∧ left only path(x1.right , x3) ∧ full tree(y)

∧
(
y 6=y.left ? min(y)=min(y.left) ∧max (y.left)<val(y) : min(y)=val(y)

)
∧
(
y 6=y.right ? max (y)=max (y.right) ∧min(y.right)>val(y) : max (y)=val(y)

)
.

The conversion outlined above turns ψ into the following Mso formula:

∀y .
(
p1 ∧ ¬leaf (x1) ∧ leaf (x3) ∧ left only path(x1.right , x3) ∧ full tree(y)

∧
(
y 6= y.left ? y ∈ C1 : y ∈ C2

)
∧
(
y 6= y.right ? y ∈ C3 : y ∈ C4

) )
,

where proposition p1 corresponds to the global constraint val(x1) < val(x2) <
val(x3), the second-order variable C1 corresponds to the local constraint min(y) =
min(y.left)∧max (y.left) < val(y), and variables C2 – C4 correspond to the other
data constraints in ψbst. ut

We now apply the standard Mso construction to ϕ′, leading to a bottom-
up finite-state tree automaton Aϕ′ on the alphabet Σ = {0, 1}n+h+l, accepting
all finite trees that represent interpretations satisfying ϕ′. The alphabet is Σ
because n + h + l is the total number of free variables in ϕ′: n first-order vari-
ables xi, h propositional variables pi (corresponding to global constraints), and
l second-order variables Ci (corresponding to local constraints). We recall the
formal statement of this construction below, for more details see [41] and [8].

Theorem 3. For all Mso formulas ϕ′ on the empty data signature, with free
first-order variables x1, . . . , xn, propositional variables p1, . . . , ph, and second-
order variables C1, . . . , Cl, there is a deterministic bottom-up tree automaton on
the alphabet {0, 1}n+h+l whose language consists of all extended trees T such
that T |= ϕ′.

Simplifying assumptions. To simplify the presentation of the following con-
structions, we make two simplifying assumptions. First, we assume that all
terms appearing in data constraints are variables, and not composite terms like
x.left .right . Dropping this assumption is technically simple and omitted due to
space constraints. Second, we assume that all connecting functions f appearing
in data constraints correspond to fields in S. Sentences that satisfy the second
assumption have a unique interpretation I, because they have no free variables
and the connecting functions must be interpreted as the functions extracting the
corresponding field from each node. We discuss how to remove this restriction
in Sec. 6.3.

We now establish a relation between Σ-trees accepted by Aϕ′ , and data trees
on the data signature S defined by ϕ. Denote by (a1, . . . , an, b1, . . . , bh, c1, . . . , cl)
the generic element of Σ. Given a Σ-tree (T, σ) and a variable xi in ϕ′, we define
node(σ, xi) to be the unique node u ∈ T such that the ai component of σ(u) is
1. In words, the function node picks the position in the tree where the Σ-tree
activates the bit ai.



14 M. Faella, G. Parlato

Definition 2. Consider an Mso-D sentence ϕ of the form (2) on the data
signature S, and let I be its unique interpretation. We say that a Σ-tree (T, σ)
and an S-tree (T, λ) are consistent iff for all nodes u ∈ T the following hold:

1. For all i ∈ [h], let rglbi
(
f1i (α1

i ), . . . , f
ji
i (αjii )

)
be the global constraint from ϕ

corresponding to the propositional variable pi from ϕ′. Recall that under the
simplifying assumptions each αji is one of x1, . . . , xn, and each f ji is one of
the names of the fields of S. Then, σ(u)(bi) = 1 iff the following holds

D(rglbi )
(
I(f1i )(node(σ, α1

i )), . . . , I(f
ji
i )(node(σ, αjii ))

)
.

2. For all i ∈ [l], let rloci
(
g1i (β1

i ), . . . , gkii (βkii ), gi(zi)
)

be the local constraint from

ϕ corresponding to the second-order variable Ci from ϕ′. Recall that each βji
is one of x1, . . . , xn, and each gji (as well as gi) is one of the names of the
fields of S. Then, σ(u)(ci) = 1 iff the following holds

D(rloci )
(
I(g1i )(node(σ, β1

i )) , . . . , I(gkii )(node(σ, βkii )) , I(gi)(λ(u))
)
.

The following result states the fundamental relationship between ϕ and Aϕ′ .

Theorem 4. Let ϕ be an Mso-D sentence of the form (2) on the data signature
S, and let Aϕ′ be the corresponding tree automaton described above. For all data
trees (T, λ) with data signature S, the following are equivalent:

1. it holds Tλ, I |= ϕ, where I is the unique interpretation of ϕ;
2. there exists a tree (T, σ) ∈ L(Aϕ′) s.t. (T, λ) and (T, σ) are consistent.

6.2 Building the symbolic data tree automaton

We now convert the tree automaton from the previous section into an Sdta that
accepts all and only the data trees satisfying the original Mso-D formula ϕ.

Intuitively, the Sdta mimics the behavior of the tree automaton, and in
doing so, it enforces the data constraints contained in ϕ. The information about
which constraints should be true and which should be false at every node is
encoded in the alphabet Σ = {0, 1}n+h+l of the tree automaton. In detail, if
(a1, . . . , an, b1, . . . , bh, c1, . . . , cl) is a generic symbol from the alphabet, the bi’s
encode the truth value of the global constraints, and the ci’s encode the truth
value of the local constraints. However, the data on which to evaluate those
constraints comes from different sources. The global constraints are evaluated
only on the guessed data for the existentially quantified variables x1, . . . , xn,
whereas the local constraints also access the data of the current node.

Finally, the ai component of the alphabet encodes the actual position of
each xi in the current tree (i.e., ai is 1 only in the node that is the interpretation
of xi). So, when ai = 1 the symbolic automaton checks that the guessed data
evaluation for xi corresponds to the data in the current node.

Let Aϕ′ = (Σ,Q, F,∆) be the tree automaton from Sec. 6.1, we now define
the Sdta Aϕ = (S,SQ, ψF , Ψ∆). First, notice that the alphabet data signature
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S coincides with that of the original Mso-D formula. We then set the state data
signature SQ to {state : Q} ∪ {id i : type | (id : type) ∈ S, i = 1 . . . n}, i.e., SQ
contains an enumerated data field representing the state of the tree automaton
Aϕ′ , and n copies of each data field in S. These copies are used to store the
guessed data evaluations for the existentially quantified variables xi from (2).
For a symbolic state q ∈ L(SQ) and i ∈ [n], we denote by q[xi] the i-th projection
of q on S, i.e., the evaluation that assigns to each field id in S the value q.id i.
The acceptance constraint ψF (q) is simply defined as q.state ∈ F .

Regarding the transition constraints Ψ∆, we will focus only on the case of
nodes with two children, since the other cases are similar. Let (sl, sr, a, s) be a
transition in Aϕ′ , where a = (a1, . . . , an, b1, . . . , bh, c1, . . . , cl) ∈ Σ. We add the
following implicant to the transition constraint ψlr :{

ql.state = sl ∧ qr.state = sr ∧ q.state = s (4a)

∧
∧

i∈[n]

(
q[xi] = ql[xi] ∧ q[xi] = qr[xi]

)
∧

∧
{i | ai=1}

(
q[xi] = σ

)
(4b)

∧
∧
i∈[h]

[
(bi = 1)↔ D(rglbi )

(
q[α1

i ].f1
i , . . . , q[α

ji
i ].f ji

i

)]
(4c)

∧
∧
i∈[l]

[
(ci = 1)↔ D(rloci )

(
q[β1

i ].g1i , . . . , q[β
ki
i ].gki

i , σ.gi
)] }

(4d)

=⇒ ψlr (ql, qr, σ, q) .

The above conjuncts can be explained as follows: (4a) mimics the state change
in the discrete transition, the first part of (4b) states that the n copies of the
data fields held by the symbolic automaton are uniform over the whole tree,
the second part of (4b) additionally states that the i-th copy of the data fields
coincides with the data σ in the unique node where the discrete automaton
prescribes ai = 1, (4c) enforces the i-th global constraint rglbi in all nodes where
the discrete automaton prescribes bi = 1, and finally (4d) enforces the local
constraints when the ci component of the discrete alphabet is 1.

Theorem 5. Let ϕ be an Mso-D sentence of the form (2) and let Aϕ be the
corresponding Sdta described above. We have L(ϕ) = L(Aϕ).

6.3 Supporting auxiliary data

So far, we have assumed that all connecting function symbols f appearing in the
data constraints correspond to fields in S. In other words, all data constraints
refer to data fields that are present in the trees. However, our logic also supports
connecting function symbols that do not correspond to fields in the data signa-
ture. In that case, the interpretation is free to assign any value to f(u), for each
node u in the data tree. Thus, the Sdta Aϕ must accept a data tree if there
exists an interpretation for those functions that satisfies the formula. To achieve
this effect, let {fi}i=1...k be the set of connecting function symbols occurring in
ϕ and not corresponding to data fields in S, where fi has type nodes → datai.
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CHC solverMso-D formula (2) Data signature
and constraints

Mso formula (3) Mona
Tree automata
to CHCs (new)

SMT-LIB format

Fig. 1: Architecture of the prototype implementation. Dashed transformations
are performed manually, but could be automated by an Mso-D parser.

Define the extended data signature

S ′ = S ∪ {fi : datai}i=1...k.

We enrich the state data signature of Aϕ as follows:

SQ = {state : Q} ∪ {namei : type | (name : type) ∈ S ′, i = 0 . . . n}.

Compared to the original definition from Sec. 6.2, we store an extra copy of
the data fields, identified by index 0, representing the data in the current node.
Moreover, all copies include the auxiliary data fields. It is straightforward to
adapt the constraint Ψ∆ from Sec. 6.2 to support such auxiliary data fields.

7 Implementation and Experiments

We implemented a prototype toolchain supporting our framework as shown in
Fig. 1. Instead of developing an Mso-D parser, we provide an Mso formula al-
ready in the form (3), and supply the data constraints and the data signature for
the formula in a separate file, directly in the SMT-LIB format. Next, we convert
the Mso formula into an equivalent tree automaton, and in turn into a system of
CHCs (as described in Sec. 5). We used Z3 v4.8.10 (64bit for Windows 10) [36]
as the CHC solver, and Mona v1.4 [28] as the Mso-to-automata translator. The
only new piece of code required by this implementation is the converter from
the Mona tree automaton format to CHCs in the SMT-LIB language, which
is a simple one-to-one textual transformation. For the experiments, we used a
dedicated machine with 16GB of physical memory and an AMD Ryzen 7 2700X
clocked at 3.7Ghz, running Windows 10.

7.1 Proving Properties of Tree Data Structures

Consider the property of full Bsts described in Example 7, namely that the
successor of an internal node is the left-most leaf in its right subtree. We sub-
mitted to our tool the conjunction ψ′bst ∧ ψsucc, which would be satisfied only
by a full Bst where the successor of an internal node is not the left-most leaf
in its right subtree (property Successor). Once the formula is converted into a
system of CHCs, the SMT solver proves satisfiability of the system (and hence,
unsatisfiability of the original formula) in less than a second.



Reasoning about Data Trees using CHCs 17

Example Mso-D property Number of CHCs Result Time (Z3)

Rbts BlackHeight 76 unsat 0.3”
Full Bsts Successor 945 unsat 0.2”

Cinderella

Stepmother(1.0)

23,387

sat 3’
Stepmother(1.5) sat 7’ 41”
Stepmother(1.8) sat 11’ 56”
Stepmother(2.0) unsat 1h 54’
Stepmother(3.0) unsat 1h 16’

Table 1: Mso-D satisfiability experiments (Sec. 7).

For Rbts, we consider the property that there exists an internal node whose
black height is less than half of its height (property BlackHeight). Our ap-
proach can prove that this property is unsatisfiable on Rbts in less than a second.
Both experiments are summarized in Table 1.

7.2 Solving an Infinite-State Game

Our approach can be used to solve certain infinite-state games, such as the
Cinderella-Stepmother game [3,1]. In this software synthesis benchmark, two
players share n buckets, each holding up to c units of water. The buckets are
positioned in a circle and are initially empty. The game is played in a discrete
sequence of turns: when it is Cinderella’s turn, she can empty two adjacent
buckets. When it is the Stepmother’s turn, she can pour water into any subset of
buckets, for a total of 1 unit of water. If any of the buckets overflows, Stepmother
wins. If the game continues forever with no overflows, Cinderella wins. It can
be described as an infinite-state turn-based two-player game of infinite duration
with a safety objective (for Cinderella). Notice how not only the game state-space
is infinite, but so are the moves available to Stepmother at each step.

Given values for the parameters n and c, we build an Mso-D formula ϕn,c
that is satisfiable if and only if Stepmother wins the game with those param-
eters. The formula holds true on finite trees representing winning strategies of
Stepmother. In other words, a tree that satisfies ϕ tracks all possible game plays
where Stepmother pours water according to a specific deterministic plan and
Cinderella takes all possible moves. Due to space constraints, further details on
the encoding are deferred to an extended version of this paper.

In our experiments, we fixed the number of buckets n to 5 and checked
the satisfiability of ϕ5,c for various values of the capacity c. In Table 1, we
denote by Stepmother(c) the formula ϕ5,c. Bodlaender et al. [3], among their
comprehensive analysis of this game, show that for n = 5, the minimum capacity
for which Cinderella wins the game is c = 2 (see Table 1 in [3]). Their proof for
this case is manual. Other cases were settled with the help of an SMT solver,
using invariants based on non-trivial insights on the reasonable strategies of
Stepmother. On the contrary, our encoding based on Mso-D employs only the
rules of the game, with no further constraints on the players’ moves.
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Our setup successfully solves the game for various values of the capacity. The
time needed by the SMT solver is very uneven, ranging from three minutes to
a maximum of almost two hours for c = 2. That is explained by the fact that
c = 2 is the hardest case for Cinderella to win the game. Therefore, proving
that property requires building a complex winning strategy for Cinderella. Such
strategy is embedded in the proof of unsatisfiability, and extracting it would
be an interesting exercise beyond the scope of the present paper. When the
capacity moves away from the critical threshold in either direction, the solving
time visibly decreases.

8 Related Work

Our work is related to many works in the literature in different ways. In addition
to the works already mentioned in the introduction, here we focus on those that
seem to be closest to the results presented in this paper.

Automata on infinite alphabets. Symbolic finite automata (SFAs) [44] and sym-
bolic tree automata (STAs) [43] replace the traditional finite alphabet by a
decidable theory of unary predicates over a possibly infinite domain. They pred-
icate over data words and trees, but they do not support storing, comparing,
or combining data from different positions in the model, as that leads quickly
to undecidability. Symbolic register automata [10] extend SFAs by storing data
values in a set of registers. They retain decidability of the emptiness problem by
only allowing equality comparisons between registers and input data.

Recently, Shimoda et al. [39] introduced symbolic automatic relations (SARs)
as a formalism to verify properties of recursive data structures. While both
Mso-D and SARs rely on CHCs as a backend, they differ in motivation and
purpose. SARs aim at encoding specific properties of interest in a way that
reduces the verification effort of the underlying CHC solver, whereas Mso-D is
intended to provide a high-level language that can be compiled into CHCs.

Decidable logics with data extensions. In [11], D’Antoni et al. design an extension
of WS1S on finite data sequences where data can be examined with arbitrary
predicates from a decidable theory, similarly to the capabilities of SFAs. They
develop custom representations and algorithms to efficiently solve the satisfi-
ability problem by reducing it to the emptiness of SFAs. Colcombet et al. [7]
study a decidable fragment of Mso with data equality, called rigidly guarded
MSO∼, where data equality constraints of the type val(x) = val(y) can only
be checked on a single y-position for each x-position. Constraint LTL [13] is
another decidable logic for infinite data words, where data in different positions
can be compared for equality and for order. Segoufin [38] provides a wider, albeit
slightly outdated, perspective on decidable data logics and automata.

Logics for automated reasoning about heap-manipulating programs. Similarly to
Mso-D, Strand [32] is a logic that combines Mso on tree-like graphs with the
theory of integers. Although Strand has a fragment that admits a decidable and
efficient decision procedure, it is not sufficiently expressive to state properties
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of classic data structures such as the balancedness of a tree. Also it does not
allow solving the Cinderella-Stepmother game. Dryad logic [33] is a quantifier-
free logic supporting recursion on trees, that is deliberately undecidable but
admits a sound, incomplete, and terminating validity procedure, based on natural
proofs [30]. Dryad recursive definitions could be expressed by our Sdtas that
uses the theories of integers and integer (multi)sets; vice versa, proof techniques
developed for Dryad could be used to check the emptiness of (some) Sdtas.

Infinite-state games. Many infinite-state reachability games like the Cinderella
game of Sec. 7.2 can be encoded in Mso-D, including all the reachability games
used in the experiments performed by Farzan and Kincaid [17]. In that paper,
the authors present a fully automated but incomplete approach for the (undecid-
able) class of linear arithmetic games. Our approach is incomparable to theirs:
on the one hand, the approach proposed in Sec. 7.2 does not extend to all linear
arithmetic games, because it assumes that one player has a bounded number of
moves; on the other hand, we could easily handle games whose transition rela-
tions is not limited to linear arithmetic. Another related approach is presented
by Beyene et al. [1], who reduce infinite-state games to CHCs extended with
existential quantifiers. Such existential quantifiers are handled with the help of
user-provided templates.

9 Conclusions and Future Directions

We presented Mso-D and Sdtas as extensions of Mso on trees and finite-state
tree automata, respectively, for the purpose of reasoning about data trees. We
have shown that these are versatile and powerful models for reasoning about
relevant problems, outside the realm of classical automata theory. We believe
that the key idea, namely separating the structural properties of interest from
the data constraints, makes it easier to reason about challenging problems.

Several future directions are interesting. First, we may want to investigate
theoretical questions about Sdtas, such as closure properties, and whether we
can reduce classical automata decision problems to solving a system of CHCs.
In addition, it will be interesting to identify more expressive Mso-D fragments
that can be reduced to the emptiness of Sdtas.

Secondly, we believe that our results have applications to other areas in veri-
fication. We have conducted preliminary studies defining extensions of LTL with
data (LTL-D) and, by using the framework developed in this paper and closure
properties of Sdtas, obtained LTL-D model checking algorithms for (recursive)
programs using scalar variables. Our approach is limited to finite runs only, so it
will also be interesting to see how we can extend it to infinite trees and games.

Finally, (enumeration) trees can be used to encode executions of different
classes of automata, such as concurrent pushdown automata or concurrent queue
systems. It will be interesting to see if our approach can help lift the results of [31]
to the corresponding class of concurrent programs.
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