
EasyChair Preprint
№ 3907

SPARCLE: Stream Processing Applications over
Dispersed Computing Networks

Parisa Rahimzadeh, Jinsung Lee, Youngbin Im, Siun-Chuon Mau,
Eric C. Lee, Bradford O. Smith, Fatemah Al-Duoli,
Carlee Joe-Wong and Sangtae Ha

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 18, 2020

SPARCLE: Stream Processing Applications over
Dispersed Computing Networks

Parisa Rahimzadeh∗, Jinsung Lee∗, Youngbin Im†, Siun-Chuon Mau‡, Eric C. Lee‡,
Bradford O. Smith ‡, Fatemah Al-Duoli §, Carlee Joe-Wong¶ and Sangtae Ha∗

∗ University of Colorado Boulder, {parisa.rahimzadeh, jinsung.lee, sangtae.ha}@colorado.edu
† UNIST, ybim@unist.ac.kr

‡ CACI, {siun-chuon.mau, eric.lee, bradford.smith}@caci.com
§ System & Technology Research, fatemah.alduoli@stresearch.com

¶ Carnegie Mellon University, cjoewong@andrew.cmu.edu

Abstract—In this paper, we propose SPARCLE, a novel
scheduling system offering network-aware polynomial-time task
assignment and resource allocation algorithms for stream pro-
cessing applications in dispersed computing networks. In partic-
ular, we address two major challenges. The first one concerns the
assignment of both computation and transport tasks comprising
a stream processing application to computing nodes and commu-
nication links of the network, respectively, in order to maximize
the application’s processing rate. The second one concerns the
resource allocation of multiple stream processing applications to
satisfy their requested QoE. Our experimental results on a real
image stream processing application and extensive simulations
show that SPARCLE can increase the application’s processing
rate by 9× and 3×, compared to the cloud computing case and
state-of-the-art algorithms, respectively.

Index Terms—Stream processing, Edge computing, Dispersed
computing

I. INTRODUCTION

“Big” data is becoming increasingly available in many ap-
plication domains, driving the widespread adoption of machine
learning techniques for data processing and analysis [24].
Such an emerging trend leads to the advent of a new data
processing paradigm called stream processing, which can col-
lect and process continuous big data streams with distributed
computation running on a large cluster of machines. Examples
of such data streams are from sensors, mobile devices, and
online social media such as Facebook, while examples of such
distributed processing engines are Apache Flink [3], Spark
[4], Storm [5], etc. Up to now, stream processing applications
have been typically deployed on large-scale and centralized
cloud environments (e.g., datacenters). However, in addition
to the growing amount of data, the enhanced capability in end
devices and the deployment of edge services are now moving
the computation to the edges of the network.

Dispersed computing is an emerging distributed computing
paradigm where heterogeneous network nodes in proximity
voluntarily share their resources (e.g., computing power, stor-
age space, and network bandwidth) to carry out substantial
amount of computation, storage, communication, and man-
agement [23]. This is a suitable computing scenario especially
when sending the data to cloud servers is problematic due to
the limited bandwidth of the access network, high latency or

security/privacy concerns. In such scenarios, applications gen-
erally cannot access a single cluster with enough computing
resources to process their data, and thus may instead need to
integrate resources at multiple nearby devices. However, run-
ning these computations over a dispersed network requires new
resource allocation and application placement algorithms that
can address several unique challenges: constrained network
connectivity, heterogeneous available resources, and dynamic
network conditions caused by failures or device mobility
across discrete nodes in the dispersec computing network,
which is in stark contrast to servers co-located in a well-
connected datacenter.

It is particularly challenging to run stream processing ap-
plications on dispersed computing systems. These applications
require computing nodes to analyze a continuous stream of
data produced by sources such as sensors and social networks.
Such stream processing applications generally consist of mul-
tiple smaller computation tasks (CTs) with different resource
requirements and dependencies, which can be modeled with
a Directed Acyclic Graph (DAG) [22], [26], [29]. To account
for transporting data between consecutive CTs, we define a
transport task (TT) representing the traffic between hosts of
two consecutive CTs in the DAG. While the performance
effects of TTs in a datacenter environment is negligible due to
reliable connectivity, they can significantly impact application
QoE in a dispersed computing network.

In order to run stream processing applications on dispersed
computing networks, we need a scheduler to place each of their
CTs on nodes, or Networked Computing Point(s) (NCP), in the
network and each of their TTs on links between these nodes.
Existing schedulers used in Apache Spark [4] or Kubernetes
[1] rely on heuristics for a straightforward implementation and
are not network-aware. Thus, these schedulers do not consider
certain important costs for stream processing applications
such as those of transporting data between computing nodes.
In particular, scheduling those applications over dispersed
computing networks faces several new challenges.
• First, this assignment algorithm should not only be task

dependency-aware, but it also should be computing net-
work topology-aware. The placement of CTs affects the
links on which we must place TTs, and the available

Approved for public release; unlimited distribution. Not export controlled per ES-FL-013119-0028. 1

computation and communication resources of computing
nodes and links, respectively, must be considered. The
need to consider the network topology considerably com-
plicates the resource allocation problem as it introduces
couplings between where different CTs are placed.

• Second, in stream processing, a task is repeated con-
tinuously on different incoming data units. Thus, in
addition to placing the tasks on nodes and links, we
must decide the application processing rate to ensure
that the computing network is not overwhelmed. This is
particularly challenging when multiple applications with
different priorities and requested QoE are sharing the
network. Some applications may need a guaranteed rate,
while others are satisfied with any offered rate.

• Finally, the dynamic condition of the computing network
affects the QoE of applications. Elements of the comput-
ing network may fail, or have intermittent availability due
to mobility. The proposed algorithms must consider these
dynamics as well.

In this paper, we design SPARCLE, a network-aware sched-
uler for stream processing applications. This is the first paper
to propose and evaluate a system that both assigns tasks to
devices (considering both computation and transport tasks)
and allocates resources to them, for heterogeneous stream
processing applications in dispersed computing networks. Our
extensive experiments and simulations show the performance
improvement by SPARCLE-based dispersed computing, com-
pared to cloud computing and other state-of-the-art algorithms.

Since changing the placement of existing applications in-
troduces potentially significant task migration costs, an appli-
cation’s task placement cannot be changed when new applica-
tions arrive, but the resources allocated to an application may
be changed. Thus, we propose to solve the task assignment
problem first and then solve for the optimal resource allocation
given these assignments. We predict the available resources
for each application to be placed, based on its priority and the
priorities of previously placed applications, and use them in
our proposed task assignment algorithm for that application.
Next, given that the placement of applications is known,
we solve the resource allocation optimization problem to
obtain the exact resource allocation for each application. Our
contributions with SPARCLE can be summarized as follows:

• Our polynomial-time network-aware task assignment al-
gorithm to maximize the stable processing rate of an ap-
plication is both network topology and task dependency-
aware and can consider multiple resource types.

• We consider both single and multiple Best-Effort and
Guaranteed-Rate stream processing applications.

• To best of our knowledge, this is the first work to optimize
multiple task assignment paths in order to guarantee the
offered QoE to applications.

• In addition to extensive simulations, we have imple-
mented and evaluated SPARCLE in our experimental
testbed with an image stream processing application.
Experimental results show that SPARCLE can increase an

application’s processing rate by 9× and 3×, compared to
the cloud computing case and state-of-the-art algorithms,
respectively. Interestingly, we also show that dispersed
computing with SPARCLE could be beneficial even with
high bandwidth access links, where cloud computing is
expected to perform better.

The rest of the paper is organized as follows. In §II, we
present related work. §III describes our models for dispersed
computing networks and stream processing applications. In
§IV, we present SPARCLE’s problem formulation and detailed
algorithms. §V evaluates the performance of SPARCLE via
experiment and simulations. §VI concludes the paper. All
proofs can be found in the extended version [7].

II. RELATED WORK

There is a vast literature on task assignment, scheduling,
and resource allocation algorithms for cloud-based stream
processing [14], [16], [22], [29], [33], which can be run on
platforms like Apache Flink [3], Spark [4], and Storm [5].
Mobile cloud computing can also partition applications with
high processing demands into different tasks to be executed
on the application initiator mobile device or in the cloud,
e.g., [20], [30]. In contrast, we focus on stream processing
in dispersed computing networks, where existing cloud-based
or mobile cloud computing algorithms may not be able to
handle the challenges of the dispersed computing network like
heterogeneous computing devices, failure or unavailability of
network elements, and limited connectivity.

The task assignment problem that we consider generalizes
Virtual Network Embedding (VNE). The VNE problem deals
with how a virtual network structure can be embedded on a
physical network topology [12], [13], [21]. The virtual nodes
and the substrate nodes in this line of work are equivalent
to computation tasks and NCPs in our work, respectively. The
main difference between VNE and our task assignment work is
that in VNE the resource requirements of each virtual network
element are given and fixed, while in our work we optimize
the input rate of each stream processing application, so the
computation and communication requirement of tasks of an
application will change with the application’s input processing
rate. This extra degree of freedom can considerably complicate
the already difficult VNE problem.

On the other hand, several works have studied stream
processing applications in dispersed computing networks [9],
[10], [25], [31]. In particular, [31] investigates general models
and architectures of streaming applications, including IoT
stream query and analytics, real-time event monitoring, net-
worked control in industrial automation, and mobile crowd-
sourcing in the fog architecture. [9] formulates the operator
placement algorithm as an integer linear programming, con-
sidering maximization of different utility functions. However,
their algorithm is not network-aware, as the data transport
placement between operators on network links is not being
optimized. In contrast, SPARCLE is designed to conduct
network-aware task assignment and resource allocation for
multiple heterogeneous stream processing applications with

Approved for public release; unlimited distribution. Not export controlled per ES-FL-013119-0028. 2

𝐶𝑇#

𝐶𝑇$ 𝐶𝑇%𝐶𝑇&
𝑇𝑇#

𝑇𝑇$ 𝑇𝑇&

consumer
object

detection
object

classification

data source 1

Images

1 human
1 dog

dog
human𝐶𝑇'

data source 2𝑇𝑇'
Images

camera1

camera2

objects classes

Fig. 1. An example of a stream processing application for multiple viewpoint
object classification.

QoE requirements, which can further reflect network element
failure and intermittency, limited network connectivity, and
task graph dependencies.

The problem considered here is a new generalization of
the joint-routing-and-rate control of end-to-end data flows,
e.g., [28], to that of stream processing applications defined by
task graphs. The generalized problem is convex if continuous
load-balancing over all multipaths is allowed and only Best-
Effort service is considered. In this work, we trade convexity
for the accommodation of Guaranteed-Rate applications and
for the avoidance of full-multipath tracking complexity. The
only decentralized approach to full-multipath load-balancing
that does not require explicit tracking of each paths that we
are aware of is that of back-pressure, e.g., [15]. However its
generalization to task graphs is not yet tackled and that would
be complementary to this work.

III. APPLICATION AND NETWORK MODELS

A. Stream Processing Application Model

We consider multiple heterogeneous stream processing ap-
plications that arrive over time and need to be placed on
the computing network. Each stream processing application is
modeled by a DAG (denoted by G), which shows the process
steps of the application’s computation tasks (CTs). The data
transport between neighbor CTs is modeled by another type
of task, called a transport task (TT). CTs, denoted by the set
C, are modeled by vertices in the task graph G, and TTs,
denoted by the set T, are the edges. Each task is associated
with a resource requirement vector specifying the resources
required to process one data unit, e.g., CPU cycles or the
average amount of memory required per data unit for a CT
and the average number of bits required per data unit for
a TT. We use a

(r)
i to denote the amount of resource type

r required to process one data unit of task i. We suppose
that each application has one/multiple originating CT(s) (i.e.,
unique vertex/vertices with no incoming links) that represent
the data source(s). The processing rate of an application j, xj ,
measured in data units per second, is the end-to-end rate from
all data sources to all destinations.

Figure 1 illustrates the task graph of a stream processing
application for multiple-viewpoint object classification. In this
example, data sources CT1 and CT21 are two cameras sending
stream of images, taken from different angles, as data units in
the source for this application. The transport tasks TT1 and
TT2 represent the raw image streams sent to the next CT. The

1Both data source and result consumers can be assumed as CTs with
possibly zero resource requirements with predetermined hosts.

Task Host(s)

𝑪𝑻𝟏
(data source 1)

𝑵𝑪𝑷𝟏

𝑪𝑻𝟐
(data source 2)

𝑵𝑪𝑷𝟑

𝑪𝑻𝟓
(result consumer)

𝑵𝑪𝑷𝟒

𝑪𝑻𝟑,𝑪𝑻𝟒 𝑵𝑪𝑷𝟐
𝑻𝑻𝟏 𝑳𝟏
𝑻𝑻𝟐 𝑳𝟔	& 𝑳𝟏
𝑻𝑻𝟒 𝑳𝟐

The shown task assignment
path with red dashed line table

Fig. 2. An example of the computing network (solid line), and an example of
a task assignment path for the example task graph shown in Figure 1 (dashed
line): The task assignment in the example (left) is listed in the table (right).

computation task CT3 detects objects using images of different
angles and sends out the found objects through TT3. In the
next computation task, CT4, a classification algorithm is used
to classify each incoming object. Then, the classified results
are delivered to the result consumer CT5 by TT4.

Our goal is to satisfy the required QoE of the stream
processing applications, which we define in terms of their
processing rate and availability, based on which applications
can be categorized into two groups as follows:
• Best-Effort (BE) applications do not have a minimum

processing rate requirement, and will achieve higher
QoE with higher processing rates. They may have an
availability (having at least one working task assignment
path) requirement. In order to consider their fairness, we
associate a priority Pj for each BE application j ∈ J,
which denotes the application’s relative importance com-
pared to other BE applications in the system.

• Guaranteed-Rate (GR) applications have a minimum pro-
cessing rate requirement for a specific portion of time
(e.g., 2 images/sec in 90% of the time). Therefore,
a min-rate availability is defined for GR applications,
which shows the portion of time that the processing rate
requirement is satisfied.

B. Dispersed Computing Network Model

We model the computing network with a graph2, where the
computing nodes (i.e., NCPs in the set N) are vertices and
links (in the set L) are the edges of this graph (cf. Figure 2).
The computation capacity of each computing node includes
the computation capabilities (e.g., CPU cycles per second or
Hz) of that NCP; we denote the capacity as C(r)

j for a given
resource type r on NCP j. The communication capacity of
each link includes the communication capabilities (e.g., link
bandwidth) of that link and is denoted by C (b)

j for link j.
Furthermore, in order to take into account the dynamics of
the computing network elements, we assume each network
entity j may fail or be unavailable independently during its
operation with a failure probability Pfj .

One placement of all CTs of an application on NCPs and all
TTs on corresponding links of a computing network is called

2We can model the computing network with either an undirected or a
directed graph, if the bandwidth of the links between two nodes is shared
or not shared in different directions, respectively.

Approved for public release; unlimited distribution. Not export controlled per ES-FL-013119-0028. 3

-available resources
-previous app placement

BE app 𝐽

Availability: 𝐴#
priority: 𝑃#

predict available
resources using (5)

task assignment (Alg. 2)

placement of app 𝐽

Admission
Control

Min-rate Availability: 𝐴#
Min rate: 𝑅#

GR app 𝐽
Dispersed computing

network

check QoE

resource
allocation

repeat until QoE is met

1

2

3

5
Solve (4) for BE apps4

Fig. 3. An overview of SPARCLE system, which supports both BE applica-
tions with priorities and GR applications.

one task assignment “path”. A stream processing application
may have more than one path. Figure 2 captures one example
path with dashed lines on the computing network, given the
application described in Figure 1. In what follows, we consider
the presence of multiple stream processing applications. Appli-
cations arrive over time and should be provided one/multiple
task assignment paths, in case their QoE requirements can be
met and be rejected otherwise.

IV. SPARCLE DESIGN AND ALGORITHM

In this section, we explain a general problem formulation
for stream processing applications in a dispersed computing
network. Then, we present SPARCLE, a new system offering
polynomial-time task assignment and resource allocation al-
gorithms. Figure 3 shows how SPARCLE operates to support
both BE applications and GR applications together.

• In the “task assignment”, we deal with the placement of
CTs and TTs of an application on NCPs and links to find
one “task assignment path” for one application.

• In the “resource allocation”, we deal with multiple
applications. We find the required number of task as-
signment paths for each application and the amounts of
computation/communication resources allocated to each
application, to satisfy its QoE, considering its priority.

A. Task Assignment Problem

Assume that the tasks of an application are already assigned
to NCPs and links of the computing network. We must
then constrain the input rates (which determine the resources
allocated for each application) so that no NCP or link exceeds
its resource capacity. The processing time of one data unit in
the CT i hosted on NCP j is maxr

a
(r)
i

C
(r)
j

, i.e., the resources

required to process one data unit divided by the resource
capacity of the host NCP, where the maximum is taken over
all resource types r ∈ R. Similarly, the transmission time of

a data unit for a TT i′ hosted on link j′ is
a
(b)
i′

C
(b)
j′

, where a(b)
i′ is

the number of bits of each data unit of TT i′ and C(b)
j′ is the

bandwidth of the link j′.

For an incoming data unit from the data source, all CTs and
TTs are executed one-by-one based on the application’s task
graph. For example, in the task graph shown in Figure 1, object
detection is performed on raw images and then recognized
objects are classified in the object classification task. We
can model this process by a queueing network, where each
incoming data unit is an incoming customer and the queueing
nodes are CTs and TTs. If task i is the only task placed on
the computing network element (NCP or link) j, the service
rate of each customer at the queueing node corresponding

to task i is minr∈R
C

(r)
j

a
(r)
i

, i.e., the inverse of the completion
time defined above. The customers are routed in this queueing
network based on the orders imposed by the task graph G. A
feasible task assignment and rate allocation will then ensure
that this network is stable (i.e., with bounded queue lengths
and hence limited delays). The input data rate (processing rate)
of this application should then be less than the service rate
of the slowest server (the bottleneck NCP or link) [8]. In

other words, we constrain x ≤ minj∈N∪L
r∈R

C
(r)
j∑

i∈tasks placed on j a
(r)
i

.

This holds for all task assignment paths of an application and
the total processing rate of an application is the summation of
the rate of all task assignment paths.

For instance, for the task assignment shown in Fig-
ure 2, if there is only one resource type (e.g., CPU cy-
cles per second for NCPs and bandwidth for links) the
processing rate of this application should satisfy x ≤
min(

CNCP2

aCT3
+aCT4

,
CL2

aTT4
,
CL6

aTT2
,

CL1

aTT1
+aTT2

). This constraint can
be written as Rx ≤ C, where R is a vector with size |N|+ |L|,
which includes the sum of the loads on different computing
network components. Thus, R = [0, aCT3 +aCT4 , 0, 0, aTT1 +
aTT2 , aTT4 , 0, 0, 0, aTT2 , 0, 0]. Also, C is network elements’
capacity vector, C = [CNCP1

, CNCP2
, CNCP3

, CNCP4
, CL1

,
CL2

, CL3
, CL4

, CL5
, CL6

, CL7
, CL8

]. In order to find one task
assignment path which maximizes the processing rate of an
application, we need to solve

maximize
Y

min
j∈N∪L
r∈R

C
(r)
j∑

i∈C∪T yi,ja
(r)
i

(1a)

subject to ∑
j∈N

yi,j = 1,∀i ∈ C, (1b)

{
yTTk,l = 1,∀l ∈ P
yTTk,l′ = 0,∀l′ /∈ P

, if


yi,j = 1

yi′,j′ = 1

G(i, i′) = {TTk}
P ∈ P(j, j′)

, ∀i, i′ ∈ C,

(1c)
yi,j ∈ {0, 1}, ∀i ∈ C ∪ T,∀j ∈ N ∪ L, (1d)

where Y is the decision variable vector and yi,j = 1 if the
computation/transport task i is placed on NCP/link j and 0
otherwise. The objective function in (1a) is the bottleneck
processing rate. Based on the constraint (1b), each CT should
be assigned to exactly one NCP. The constraint in (1c)
considers the dependency of tasks in the task graph G: if

Approved for public release; unlimited distribution. Not export controlled per ES-FL-013119-0028. 4

CT i is placed on NCP j and CT i′ is placed on NCP j′,
where CTs i and i′ are neighbors in the task graph G, which
are connected by only the TT k (G(i, i′) = {TTk}), the TT
k should be placed on all the links on the selected path (P)
among all paths between two host NCPs j and j′ (P(j, j′)).

Theorem 1. The task assignment problem in (1) is NP-hard.

We use the intuition behind the greedy algorithm proposed
for optimizing placement of independent operations on homo-
geneous machines [17], [18], to derive a heuristic algorithm
for our task assignment problem with dependent tasks and het-
erogeneous NCPs/links to maximize the processing rate. Our
polynomial-time greedy dynamic ranking algorithm to solve
the general task assignment problem with limited-bandwidth
links and heterogeneous NCPs are detailed below.

B. Task Assignment Algorithm

The request for different heterogeneous applications is
submitted into the system and their tasks are placed on the
computing network, by SPARCLE. The complete dynamic
ranking task assignment algorithm of SPARCLE is presented
in Algorithm 2. In our task assignment algorithm, tasks of an
application are placed one at a time and a dynamic ranking
algorithm is used to select the CT to be placed next. For each
unplaced CT (denoted by the set Cu) (line 7), we consider
placing the task at different host NCPs (line 9) and examine
the effect of the CT and corresponding TTs placements on
the processing rate bottleneck. To check the placement of CT
i on NCP j, the new processing rate imposed by NCP j would

be minr∈R
C

(r)
j

a
(r)
i +

∑
i′′ yi′′,ja

(r)

i′′
. In addition, if the input/output

of CT i is received from/sent to another CT i′ (i.e., CTs i
and i′ are neighbors based on the task graph G) via the TT
k (G(i, i′) = {TTk}), and the CT i′ is previously placed on
another NCP j′ (h(i′) = j′), then the TT k will be placed
on all the links on the best path between NCP j and NCP j′

(P ∗k(j, j′)), and the processing rate imposed by these links
would be minl∈P∗k(j,j′)

C(b)
l

a(b)
k +

∑
i′′ yi′′,la

(b)
i′′

. This is also the case
for all the already placed reachable CTs of CT i. That is, if
CTs i and i′ are reachable CTs with the set of TTs G(i, i′)
between them, we know that at least one TT in the set G(i, i′)
will be placed on a link in the path between NCP j and NCP
j′. Therefore, the new processing rate γi,j imposed by placing
CT i on NCP j is

γi,j = min(min
r∈R

C
(r)
j

a
(r)
i +

∑
i′′ yi′′,ja

(r)
i′′

,

min
i′∈νi

l∈P∗k(j,j′)

C (b)
l

a(b)
k +

∑
i′′ yi′′,la

(b)
i′′

), (2)

where νi is the set of placed reachable CTs of CT i and
k ∈ G(i, i′). We next describe how to compute the best path
P ∗k(j, j′) in (2) and how to use this new bottleneck processing
rate in the task assignment algorithm.

Algorithm 1: The modified Dijkstra algorithm to find
the best path from NCP j to NCP j′ for TT k
(P ∗k(j, j′)) in GW .

1 Nu ← N
2 φ[v] ← −∞ , ∀v ∈ GW

3 φ[j] ← +∞
4 while Nu 6= ∅ do
5 v ← argmax

i∈Nu
φ[i]

6 if v == j′ then
7 return prev /* prev is the P ∗k(j, j′) path */
8 break

9 Remove v from Nu

10 for u ∈ neighbors of v do
11 if min(φ[v],weight[v, u]) > φ[u] then
12 φ[u]=min(φ[v],weight[v, u])
13 prev[u] = v

Finding the best path. Algorithm 1 summarizes how to
find this best path. The best path3 to place the TT k is defined
based on the already placed TTs on links, which is the path
with maximum newly imposed bottleneck on the processing
rate by its links, so

P ∗k(j, j′) = argmax
P (j,j′)

min
l∈P (j,j′)

C (b)
l

a(b)
k +

∑
i′′ yi′′,la

(b)
i′′

. (3)

We use a modified Dijkstra algorithm to find this best path in
polynomial time. First, we make a weighted graph (GW) with
the computing network graph topology, where NCPs in N are
the vertices and links in L are the edges. The weight of the link
l from NCP v to NCP u is weight[v, u]= C(b)

l

a(b)
k +

∑
i′′ yi′′,la

(b)
i′′

. φ(v)
is the processing rate bottleneck on the path from node j to
node v, which is initialized as −∞ at first (line 2), and updated
inside the algorithm (line 12). The best path P ∗k(j, j′) is then
the path from NCP j to NCP j′ with maximum minimum
weight on the links along the path.

Ranking the CTs. After finding γi,j for all j ∈ N using
(2), the best host for the CT i is the NCP which imposes the
maximum new processing rate, j∗i = argmax

j
γi,j (line 15 in

Algorithm 2). We use the metric γi,j∗i , in order to rank CTs,
to decide which CT should be placed first. This metric shows
the new processing rate, if CT i is now placed on its best host.
Therefore, the CT with the minimum imposed bottleneck on
the processing rate (i.e., i∗ = argmax

i
γi,j∗i) is selected to be

placed first on its best host NCP j∗ (line 16 in Algorithm
2). It is noteworthy that as the parameter γi,j depends on the
previously placed neighbor CTs of CT i, the ranking of CTs
may change every time a CT is placed; hence, this algorithm
is a dynamic ranking algorithm.

The time complexity of the proposed algorithm is polyno-
mial in terms of the sizes of both computing network and task
graph as follows.

3Note that the best path between any two NCPs depends on the TT that we
are planning to place (by a(b)

k in (3)) and also it may be different in different
steps of the task assignment algorithm, since it depends on the already placed
TTs on links (by yi′′,l in (3)).

Approved for public release; unlimited distribution. Not export controlled per ES-FL-013119-0028. 5

Algorithm 2: SPARCLE’s dynamic ranking task as-
signment algorithm with heterogeneous NCP and
limited-bandwidth links.

1 Cu ← C
2 Cp ← ∅
3 yCTsrc,src ← 1 /* place all source CTs on data sources */
4 yCTsnk,consumer ← 1 /* place all sink CTs on result consumers

*/
5 add CTsrc and CTsnk to Cp and remove from Cu

6 while Cu 6= ∅ do
7 for i ∈ Cu do
8 νi ← the set of reachable CTs of CT i in Cp

9 for j ∈ N do
10 for i′ ∈ νi do
11 j′ ← h(i′)
12 k ← argminya

(b)
y , y ∈ G(i, i′)

13 Use Algorithm 1 to find P ∗k(j, j′)

14 find γi,j using (2)

15 j∗i ← argmax
j

γi,j /* find the best host for CT i */

16 i∗ ← argmin
i

γi,j∗i /* find the highest rank CT */

17 yi∗,j∗ ← 1 /* place the highest rank CT on its best host
*/

18 add i∗ to Cp and remove from Cu

Theorem 2. The task assignment algorithm in Algorithm 2
will run in cubic time in terms of the network and task graph
size, in the worst case (O(|N|3|C|3)).

C. Resource Allocation Problem

We determine the amount of resources each application
receives in the computing network to satisfy the requested
QoE of accepted applications. This is done by determining
two variables: the number of task assignment paths of an
application and the amount of allocated NCP/link resources
to each application (controlled by its processing rate).

Relation with task assignment problem. We solve the task
assignment and the resource allocation problems separately
for BE and GR applications. However, it is important to
note that in order to make sure that the answers to these
problems are compatible with the joint solution of the general
problem, they cannot be treated as completely independent.
In particular, when the assignment algorithm is considering
a potential placement of an application’s tasks, the potential
service rate for this application must be evaluated considering
the resources that this application will receive on different
NCPs/links in presence of other applications. Therefore, we
should predict the assigned resources for different BE ap-
plications with different priorities, before solving the task
assignment problem for them. Note that this should be done
after subtracting all the resources occupied by all previously
placed GR applications.

Problem for BE applications. To reflect relative impor-
tance of different BE applications in the set J, we formulate
the resource allocation optimization problem that achieves

weighted proportional fairness between them as:

maximize
X

∑
i∈J

Pi log(xi)

subject to RX ≤ C,
(4)

where xi is the processing rate obtained by the BE application
i. This convex optimization problem can be easily solved.

In order to satisfy the requested availability of BE ap-
plications, given the failure probabilities of NCPs/links,
one/multiple task assignment paths can be designated for each
application. We need to find the required number of task
assignment paths for each BE application (the loop in steps 2
& 3 in Figure 3) to ensure that at least one of these task
assignments is functional for the target ratio of time (i.e.,
availability). After this, the rate of each task assignment path
is determined in step 4 of Figure 3.

Problem for GR applications. GR applications have a min-
imum rate requirement for a specific portion of time. Since the
processing rate of GR applications should be guaranteed, the
resources used by the GR applications won’t be shared with
other later-coming applications. Thus, for a GR application J ,
we need to find the required number of task assignment paths
Npathj to guarantee the availability AJ of this minimum rate
RJ (Min-rate availability), which can be formulated as

minimize Npathj

subject to P(r ≥ RJ) ≥ AJ , (5)

where r is the effective aggregate processing rate of all Npathj
paths. For instance, if paths do not have any intersection, r =∑
i ripi, where pi is the probability of path i working and ri

is the rate of a path i.

D. Resource Allocation Algorithm

We explain how we incorporate the output of the aforemen-
tioned task assignment algorithm into our general solution for
BE applications. Then, we describe resource allocation and
admission control for GR applications.

Algorithm for BE applications. We first consider the
problem of allocating resources to BE applications, assuming
that the task assignment of applications has been done by
Algorithm 2. Referring back to our original optimization
problem in (4), in order for taking into account the presence
of multiple applications and allocation of computing network
resources to heterogeneous BE applications (e.g., in terms of
task graph or priority), we need to predict the amount of
resources a BE application will receive after it is placed.

Theorem 3. After the task assignment, the minimum allocated
computation/communication resources assigned to an applica-
tion placed on an NCP/link by solving (4) is proportional to
its priority.

We use Theorem 3 to predict the approximate available
resources of all NCPs/links for the BE application to be
placed, to avoid the complexity of solving (4) with both task
assignment (R) and resource allocation (X) variables. The

Approved for public release; unlimited distribution. Not export controlled per ES-FL-013119-0028. 6

complete task assignment and resource allocation steps for
BE applications are shown in Figure 3.

For each application J with priority PJ , we first predict the
available resources of NCPs and links considering their hosted
tasks of previously placed applications based on

Cpred
n ← PJ∑

J′∈Jn PJ′
Cn, (6)

where Jn is the set of all placed applications on NCP/link n,
and then we use Algorithm 2 to find the task assignment for
each application J with the new Cpred

n values for NCP/link n.
For example, assume an application a has tasks placed on an
NCP n with capacity Cn. When placing application b with
priority twice the priority of application a (i.e., Pb = 2Pa),
the resources of NCP n available to application b will be
Cpred
n = 2

3Cn in the task assignment algorithm (Algorithm 2).
Finally, getting the placement of all present BE applications
as input, the optimization problem in (4) with rate variables is
solved to get the exact processing rates for all BE applications.
Importantly, using this prediction, we alleviate the effect of the
arrival order of different applications and each application gets
resources based on its priority independent of its arrival time.

Moreover, in the resource allocation, we need to find
the required number of task assignment paths for each BE
application so that it can satisfy the availability requirement.
The number of paths for each BE application is increased until
the requested availability is met. The availability estimation is
obtained using the probabilistic analysis of the case that one
of the found paths is working (BE application availability def-
inition), considering the possible overlap between paths. For
example, for the task assignment path shown in Figure 2, the
availability of the application is

∏
j∈{used NCPs/links}(1 − Pfj).

If we add another path, the availability estimation will be done
considering the possible overlap between paths (done in step
3 shown in Figure 3).

Algorithm for GR applications. Unlike BE applications,
GR applications request for a target processing rate for specific
portion of time. For example, a GR image processing appli-
cation can request the processing rate of RJ = 10 images/sec
in at least AJ = 90% of the time. At each iteration, we find
one path for a GR application using Algorithm 2. In the ith
iteration, found paths in the set φ has rates {r1, r2, r3, ..., ri}.
In this case, the subset-sum problem is solved to find all
the subsets of this set which sum up to at least the required
processing rate of the GR application (set φR). After finding
all subsets, we need to find the probability that the paths in
the set is working, while all other paths are failed, which is
not straightforward when considering the overlaps of paths.
Therefore, the min-rate availability of the GR application is∑

s∈φR

P
(
p ∈ s working & p ∈ (φ \ s) failed

)
. (7)

If this value is less than the requested application availability,
we need to add more paths and repeat this process until
the required availability of the GR application is satisfied.

If the requested QoE of the application cannot be met, the
application is rejected.

Note that to obtain more than one task assignment path
for an application, Algorithm 2 should be repeated with
updated available capacities for NCPs and links. For instance,
suppose that for an application J Algorithm 2 is used to find
the first task assignment path ({yi,j}i∈C∪T,j∈N∪L) with the

processing rate r1 = min r∈R
j∈N∪L

C
(r)
j∑

i′ yi′,ja
(r)

i′
. Then, to find the

second task assignment path for this application, we update
the available capacities of NCPs and links by subtracting
the resources that the first assignment path took. Thus, the
resource type r available capacity of NCP or link j would be
C

(r)
j − r1

∑
i′ yi′,ja

(r)
i′ , which is used in Algorithm 2 in the

next iteration. This process can be repeated to find an arbitrary
number of task assignment paths for each application, until the
requested QoE is met or the application is rejected.

It is worth noting that considering polynomial-time task
assignment algorithm, limited maximum number of task as-
signment paths for applications, and convexity of (4), the
whole complexity of SPARCLE algorithm is polynomial-time.

V. PERFORMANCE EVALUATION

In this section, we present both experimental and simula-
tion results of deploying SPARCLE in dispersed computing
networks with various topologies and subtask graphs. For
performance comparison with SPARCLE, we implement the
following state-of-the-art algorithms.

(i) T-Storm [29]. This algorithm places tasks on NCPs so as
to minimize the added inter-node traffic, but unlike SPARCLE,
it does not consider heterogeneous resource capacities.

(ii) VNE [12]. This uses a topology-aware node ranking
algorithm to rank the nodes in the computing network and
CTs of the application. Unlike our problem, the resource
requirements of each virtual network element in VNE is fixed.

(iii) GS/GR. In the Greedy Sorted (GS) and Greedy Ran-
dom (GR) algorithms, we use a similar placement algorithm as
SPARCLE, but the CTs’ placement is based on their resource
requirements and randomly, respectively, not considering the
connecting TTs’ resource requirements.

(iv) HEFT [27]. This algorithm uses the heuristic greedy
algorithm to place CTs on NCPs. Tasks are given a priority
based on their upward rank and then placed on their host
NCPs, which will result in the earliest finish time of each
task.

(v) Random. In this task assignment, the CTs of application
are assigned randomly on NCPs of the network.

A. Experimental Results
Our testbed models the dispersed computing network shown

in Figure 4. The assumed network parameters are reported in
Table I. We have used a real image stream processing appli-
cation using OpenCV [6] in our experimental evaluation. This
proof-of-concept experiment demonstrates the improved per-
formance of dispersed computing using SPARCLE compared
to cloud computing as well as the superiority of SPARCLE
compared to other state-of-the-art algorithms.

Approved for public release; unlimited distribution. Not export controlled per ES-FL-013119-0028. 7

Cloud

𝑁𝐶𝑃$ 𝑁𝐶𝑃% 𝑁𝐶𝑃& 𝑁𝐶𝑃'

𝑁𝐶𝑃(

𝑁𝐶𝑃)

Field

Cloud BW

Field BWField BW

Field BW Field BWField BWField BW

Fig. 4. Experimental testbed for dispersed computing network.

TABLE I
DISPERSED COMPUTING NETWORK PARAMETERS.

Network element Capacity
Cloud CPU 4*3.8 (GHz)
Field CPU 3000 (MHz)
Cloud BW 100 (Mbps)

For large scale evaluation, we conduct an experiment using
Mininet [2]. With Mininet, we can create a virtual network,
which runs the real kernel, switch, and application code, on
a single machine [2]. Our emulator first reads the experiment
scenario file describing NCPs and their CPU capacities, links,
and their bandwidths, routing paths, and the CT/TT require-
ments. Then it creates the virtual network according to the
scenario, runs the experiment, and reports the performance
results. We use the network topology shown in Figure 4. We
use a face detection application with a task graph and task
parameters shown in Figure 5 and Table II, respectively. For
the TTs, we utilize the Linux scp command. The processing
rate results using different task assignment algorithms along
with cloud computing-based processing rates are depicted in
Figure 6. We observe that SPARCLE can follow the optimal
task assignments (which is found by exhaustive search) in all
tested cases. We also find that SPARCLE outperforms existing
algorithms such as HEFT, T-Storm, and VNE algorithms as
well as cloud computing The processing rate achieved by
SPARCLE can have about 300%, 63%, and 1350% improve-
ment compared to the HEFT, T-Storm, and VNE algorithms,
respectively. This improvement becomes dramatic when the
field bandwidth is limited, as neither HEFT nor T-Storm jointly
considers link and NCP resources.

Consistent with what is expected, when the field bandwidth
is limited (e.g., 0.5 Mbps), the achieved processing rate by

TABLE II
FACE DETECTION APPLICATION PARAMETERS.

Task Resource requirement
resize 9880 (MC/image)

denoise 12800 (MC/image)
edge detection 4826 (MC/image)
face detection 5658 (MC/image)

raw image transport 3.1 (MB/image)
resized image transport 182 (kB/image)

denoised image transport 145 (kB/image)
edge map transport 188 (kB/image)

detected faces transport 11 (kB/image)

denoise
data

source

raw images

resized images

face

det.

consumer

edge maps

detected faces

denoised images

edge

det.

resize

Fig. 5. The real face detection application for experimentation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0.5 10 22

Jo
b

 p
ro

ce
ss

in
g

 r
a

te

Field bandwidth (Mbps)

GDR
HEFT

T-Storm
VNE

Cloud optimal

optimal

optimal

SPARCLE
HEFT
T-Storm
VNE
Cloud

Ap
pl

ic
at

io
n

pr
oc

es
si

ng
 ra

te

Fig. 6. Experimental results for face detection application’s processing rate.
Although better performance is expected for dispersed computing scheme in
limited field bandwidths compared to cloud computing, the SPARCLE-based
dispersed computing can increase by 23% in high bandwidths (e.g., 22 Mbps).

using dispersed computing is about 9 times better than the
cloud computing’s achieved processing rate. If we increase
the field bandwidth to 10 Mbps, SPARCLE only uses the
cloud, which is the optimal choice. Interestingly, if we keep
increasing the field bandwidth (e.g., 22 Mbps), SPARCLE-
based dispersed computing can still be beneficial with the
improvement of 23% in the processing rate, compared to the
cloud computing scenario.

B. Simulation Results

1) Setup: We consider two task graphs, a linear task graph
and a diamond task graph, which are commonly used in the
literature and real industry applications [22]. Figure 7 depicts
those task graphs. We also use three different topologies for the
dispersed computing network (star, linear, and fully connected)
which are consistent with typical IoT scenarios [32].

For extensive comparison of different algorithms, we con-
sider three cases: link-bottleneck case, NCP-bottleneck case,
and balanced case. In the link-bottleneck case, the connecting
links of the computing network have very limited commu-
nication resources compared to the resource requirements of
the TTs, but the NCPs have a 10x larger ratio of available
resource capacity to the CTs’ computation resource require-
ments. So, the computing network links are the bottleneck
in the application processing rate. Conversely, in the NCP-
bottleneck case, the NCPs are the bottleneck: they have very
limited computation resources compared to the computation
resource requirements of the CTs, but the link bandwidths are
sufficient for the applications’ TTs. Finally, in the balanced
case, both NCPs and links can be the bottleneck in the

Approved for public release; unlimited distribution. Not export controlled per ES-FL-013119-0028. 8

𝑇𝑇" 𝑇𝑇# 𝑇𝑇$ 𝑇𝑇% 𝑇𝑇&𝐶𝑇" 𝐶𝑇# 𝐶𝑇$ 𝐶𝑇% 𝐶𝑇& 𝐶𝑇(

data
source consumer

(a) A linear task graph.

𝐶𝑇#

𝐶𝑇$ 𝐶𝑇% 𝐶𝑇& 𝐶𝑇'

𝐶𝑇(𝐶𝑇)

data
source

consumer

𝑇𝑇# 𝑇𝑇$ 𝑇𝑇%
𝑇𝑇&

𝑇𝑇' 𝑇𝑇(𝑇𝑇)
𝑇𝑇* 𝑇𝑇+

𝑇𝑇#,

𝐶𝑇*

𝑇𝑇## 𝑇𝑇#$

𝑇𝑇#% 𝑇𝑇#&

(b) A diamond task graph.

Fig. 7. Two commonly found task graphs in real applications.

 0

 0.2

 0.4

 0.6

 0.8

 1

25 percentile 50 percentile 75 percentile

G
D

R
 r

a
te

/o
p

tim
a

l r
a

te

NCP bottleneck case
balanced case

link bottleneck caseSP
AR

C
LE

 ra
te

/o
pt

im
al

 ra
te

25
percentile

75
percentile

50
percentile

(a) Linear network

 0

 0.2

 0.4

 0.6

 0.8

 1

25 percentile 50 percentile 75 percentile

G
D

R
 r

a
te

/o
p

tim
a

l r
a

te

NCP bottleneck case
balanced case

link bottleneck case

25
percentile

75
percentile

50
percentile

SP
AR

C
LE

 ra
te

/o
pt

im
al

 ra
te

(b) Fully-connected network

Fig. 8. The 25, 50, and 75 percentiles of the application processing rate
achieved by SPARCLE over optimal rate (including the linear task graph,
fully-connected and linear network topologies). SPARCLE almost always
finds the optimal rates.

application processing rate. To assess the effect of resource
sharing between multiple applications, we initially consider
assigning the tasks of only one stream processing application
to the computing network and then report our results for
hosting multiple stream processing applications.

2) One stream processing application: First, we suppose
that there is only one stream processing application (consisting
of multiple tasks) that needs to be placed on the computing
network; thus, we only consider the task assignment as the
application does not share resources. We find that the SPAR-
CLE algorithm achieves a near-optimal processing rate with
high energy efficiency, particularly in the link-bottleneck case.

Processing rates. Figure 8 depicts the 25, 50, and 75
percentiles of the ratio of SPARCLE’s processing rate to the
optimal processing rate obtained by exhaustive search for the
three cases of NCP-bottleneck, balanced, and link-bottleneck.
We observe that the SPARCLE task assignment algorithm can
achieve very close performance to the optimal processing rate.
Here, we have used a linear task graph with four CTs on linear
and fully-connected network topologies.

Energy efficiency. We define the energy efficiency as the
number of data units processed using a unit amount of energy.
We use a realistic energy consumption model for different
computing devices, based on previous works. The energy drain
in smaller computing devices like a smartphone is mostly
due to CPU, WiFi and cellular network transmissions, screen
power, etc. The CPU energy consumption rate can be assumed
to be proportional to CPU utilization [11], and the uplink and
downlink data transmission energy drain rate over LTE or WiFi
are proportional to the uplink and downlink data transmission
rates, respectively [19].

0

0.05

0.1

0.15

0.2

0.25

balanced
 case

NCP-bottleneck
 case

link-bottleneck
 case

En
er

gy
 e

ffi
ci

en
cy

GDR
GR
GS

Random
T-Storm

VNE

SPARCLE
GR
GS
Random
T-Storm
VNE

Fig. 9. Energy efficiency comparison in three different cases (Linear task
graph, linear network topology). The average energy efficiency using SPAR-
CLE can be improved by more than 53% compared to GS or GR algorithm.

1 2
0

2

4

0

0.5

1

1 path 2 paths0

2

4

0

0.5

1

Ag
gr

eg
at

e
pr

oc
es

si
ng

ra

te
 (d

at
a

un
it/

se
c) Availability

App requested availability

Processing rate
Availability

(a) The availability and aggregate
processing rate of a BE application.
The application requested availability
is provided with 2 paths.

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
in

-ra
te

 a
va

ila
bi

lit
y

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
1 path 2 paths 3 paths

Requested min-rate availability

(b) The min-rate availability of a GR
application with increasing number
of paths. The application requested
min-rate availability is with 3 paths.

Fig. 10. Availability of BE and min-rate availability of GR applications in
presence of failure versus the number of task assignment paths.

Figure 9 presents the average energy efficiency in the
three different bottleneck scenarios. Although we do not
specifically optimize for energy usage, SPARCLE improves
the average energy efficiency compared to other algorithms.
In the balanced case, the energy efficiency of SPARCLE is
improved by about 126%, 190%, and 59% compared to the
Random, T-Storm, and VNE algorithms, respectively. This
dramatic improvement is due to the SPARCLE algorithm’s
giving a higher rank to CTs whose neighbors are already
placed, especially in the link-bottleneck case, where the energy
efficiency is improved by more than 53% compared to the GS
or GR algorithm. Therefore, when the bandwidth is limited,
these CTs will be placed first on their best NCP host, which
is likely the same host as their neighbors (unless other CTs
support a higher processing rate). Concentrating CTs on fewer
NCPs reduces transmission energy and thus is generally better
in terms of energy efficiency as well as latency.

QoE. For QoE evaluation, we consider the failure events of
computing network elements (NCPs/links). In order to show
how increasing the number of task assignment paths will help
meet the requested QoEs of different BE and GR applications,
we investigate two cases of BE and GR applications with a
linear task graph. Here, we assume that the failure probability
of links of the considered star computing network is 2%.

Figure 10(a) shows the aggregate processing rate of the BE
application as well as the availability of the application with
increasing number of paths. The availability of the application
is 0.85 with a single task assignment path, which cannot satisfy
the requested application availability of 0.9. However, adding

Approved for public release; unlimited distribution. Not export controlled per ES-FL-013119-0028. 9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
rate

0

0.2

0.4

0.6

0.8

1
C

D
F

of
 ra

te GDR
GR
GS
Random
T-Storm
VNE

rate

C
D

F
of

 ra
te SPARCLE

GR
GS
Random
T-Storm
VNE

C
D
F

(a) The NCP-bottleneck case. The SPARCLE and
the GS algorithms are equivalent in the NCP-
bottleneck case.

0 0.2 0.4 0.6
rate

0

0.2

0.4

0.6

0.8

1

C
D

F
of

 ra
te

GDR
GR
GS
Random
T-Storm
VNE

rate

C
D

F
of

 ra
te

Sparcle
GR
GS
Random
T-Strom
VNE

SPARCLE
GR
GS
Random
T-Storm
VNE

C
D
F

(b) The link-bottleneck case. While the application
processing rate achieved by the Random, T-Storm,
and VNE algorithms are always less than 0.15, the
achieved processing rate by SPARCLE is more than
0.15 in about 90% of the time.

0 0.05 0.1 0.15 0.2
rate

0

0.2

0.4

0.6

0.8

1

C
D

F
of

 ra
te

GDR
GR
GS
Random
T-Storm
VNE

rate

C
D

F
of

 ra
te

Sparcle
GR
GS
Random
T-Strom
VNE

SPARCLE
GR
GS
Random
T-Storm
VNE

C
D
F

(c) The balanced case. The average of the achieved
processing rate by SPARCLE is about 82%, 69%,
22%, 17%, and 8% better than the random, T-
Strom, GS, GR, and VNE task assignment algo-
rithms, respectively.

Fig. 11. The CDF of the processing rate of one task assignment for different cases (Diamond task graph, star network topology).

one more path increases the application availability to 0.94,
so SPARCLE lets the application be placed on two paths on
the dispersed computing network.

Next, we consider a GR application with a requested mini-
mum rate of 2.7 (data units/sec) and a min-rate availability
of 0.85. The first path found by SPARCLE has a process-
ing rate 2.67 (data units/sec), while the second path has
a processing rate 1.2 (data units/sec). In order to satisfy
the QoE, both of these paths should be working, with a
probability of 0.78, which does not satisfy the requested min-
rate availability. The third found path has a processing rate
0.42 (data units/sec). Thus, the first path and either one of
the second or the third path should be working, in order to
satisfy the min-rate availability. The increase of the min-rate
availability versus the total number of task assignment paths
is shown in Figure 10(b).

Diamond task graph. We now report the results for
applications with diamond task graphs, as shown in Figure
7(b), and star dispersed computing networks with eight NCPs.
Since the diamond task graph has more TTs and CTs than the
linear one, the assignment problem is now more complicated;
and we obtain different results for the three bottleneck cases.
First, we assume there is only one resource type, e.g., CPU
cycles per second for NCPs and bandwidth for links. The CDF
of the maximum stable processing rate achieved by different
algorithms for the NCP-bottleneck case is shown in Figure
11(a). As expected, in this bottleneck case, the SPARCLE
and the GS algorithm have the same performance. That is,
the bottleneck processing rate (γi,j in Algorithm 2) depends
only on NCP capacities, not on link capacities, and thus the
SPARCLE algorithm will rank the CTs in the order of their
resource requirements, just as the GS algorithm does.

For the link-bottleneck case, the CDF of the application
processing rate achieved by different algorithms is depicted in
Figure 11(b). While the application processing rate achieved
by the Random, T-Storm, and VNE algorithms are always less
than 0.15, our SPARCLE algorithm’s achieved processing rate
is more than 0.15 about 90% of the time. More importantly,
the performance difference between SPARCLE, GR, and GS

algorithms shows the effectiveness of the dynamic CT ranking
algorithm used in SPARCLE. The average processing rate
achieved by SPARCLE is increased by 30% compared to the
GS algorithm, which uses the same task assignment algorithm,
but orders the CTs by their resource requirements only, which
shows the importance of considering relevant TTs in Sparcle.

Lastly, Figure 11(c) shows the CDF of the processing rate
for the balanced case. In terms of the achieved processing
rate, the improvement by SPARCLE is about 82%, 69%, 22%,
17%, and 8%, from the random, T-Storm, GS, GR, and VNE
task assignment algorithms, respectively. From the result, we
confirm that SPARCLE can assign the tasks of the application
effectively using the dynamic ranking algorithm based on both
available resources of NCPs and links.

The case with more resource types. We extend to the case
where there are more than one computation resource type for
CTs, e.g., CPU and memory requirements. Figure 12 depicts
the 25 and 75 percentiles of the application processing rate
using different task assignment algorithms in two cases of
NCP memory-bottleneck and link-bottleneck. As shown, with
more than one resource type, the performance of the GS and
VNE algorithms is drastically degraded. SPARCLE instead
uses a dynamic ranking algorithm, which takes into account
all resource requirement types of CTs and TTs.

3) Multiple stream processing applications: Now we look
at the scenario with multiple BE and GR stream processing
applications being hosted in the computing network. Let’s
assume two BE applications with diamond task graphs that
are placed on a star computing network with eight NCPs. We
consider the balanced case and show the achieved objective
function in (4) in Figure 13, when application 1 has higher
priority (P1 = 2P2). The SPARCLE algorithm outperforms
all of the baselines in this case, as well.

We evaluate the presence of multiple GR stream processing
applications. Here, each GR application has either a diamond
or a linear task graph, and a random requested processing rate.
Figure 14 depicts the total processing rate of the admitted
GR applications using different task assignment algorithms.
As shown, the total processing rate of admitted applications
is considerably increased using the SPARCLE algorithm for

Approved for public release; unlimited distribution. Not export controlled per ES-FL-013119-0028. 10

0

0.1

0.2

0.3

0.4

memory-bottleneck
25 percentile

memory-bottleneck
75 percentile

link-bottleneck
25 percentile

link-bottleneck
75 percentile

R
at

e

GDR
GR
GS

Random
T-Storm

VNE

SPARCLE
GR
GS
Random
T-Storm
VNE

Fig. 12. The 25 and 75 percentile of the application
processing rate for the case with multiple resource
types (Diamond task graph, star network topology).

-12 -10 -8 -6 -4
objective function

0

0.2

0.4

0.6

0.8

1

C
D

F
of

 th
e

ob
je

ct
iv

e
fu

nc
tio

n GDR
GR
GS
Random
T-Storm
VNE

C
D

F
of

 th
e

ob
je

ct
iv

e
fu

nc
tio

n

objective function

SPARCLE
GR
GS
Random
T-Storm
VNE

C
D

F

utility
Fig. 13. The CDF of the utility in (4), where
P1 = 2P2, achieved by different algorithms
(Star network topology).

0
0.2
0.4
0.6
0.8

1
1.2
1.4

to
ta

l a
cc

ep
te

d
jo

bs
'

 p
ro

ce
ss

in
g

ra
te

s

GDR T_Storm Random VNEGSGRSPARCLE GR GS T-Storm Random VNE

To
ta

l a
cc

ep
te

d
ap

ps
’

pr
oc

es
si

ng
 r

at
e

Fig. 14. The total processing rate of admitted GR
applications. (Diamond and line task graphs, star network
topology).

task assignment, indicating that more applications are admitted
with the SPARCLE algorithm than with our benchmarks.

VI. CONCLUSION

In this paper, we presented SPARCLE, a scheduling system
framework consisting of polynomial-time dynamic ranking
task assignment and resource allocation algorithms for stream
processing applications in dispersed computing networks.
In particular, we showed that optimally assigning tasks to
elements in dispersed computing networks and allocating
resources to be shared among multiple stream processing
applications are both challenging, non-trivial generalizations
of classical optimization problems. Based on these gener-
alizations, we devised a new polynomial-time algorithm to
solve these problems. Through extensive evaluations and sim-
ulations, we demonstrated that SPARCLE outperforms other
state-of-the-art algorithms in terms of both achievable process-
ing rate and energy efficiency. Considering computing network
resource fluctuation is our future work.

REFERENCES

[1] Scheduler Algorithm in Kubernetes. https://github.com/eBay/
Kubernetes/blob/master/docs/devel/scheduler algorithm.md, 2015.

[2] Mininet. http://mininet.org/, 2018.
[3] Apache Flink. https://flink.apache.org, 2019.
[4] Apache Spark. https://spark.apache.org, 2019.
[5] Apache Storm. https://storm.apache.org/index.html, 2019.
[6] Open Source Computer Vision Library. https://opencv.org/, 2019.
[7] SPARCLE: Stream Processing Applications over Dispersed Computing

Networks. https://tinyurl.com/ufjfcf4, 2020.
[8] M. Bramson. Stability of Queueing Networks. Springer, 2008.
[9] V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli. Optimal operator

placement for distributed stream processing applications. In Proceedings
of the ACM International Conference on Distributed and Event-Based
Systems, 2016.

[10] N. Chen, Y. Chen, Y. You, H. Ling, P. Liang, and R. Zimmermann. Dy-
namic urban surveillance video stream processing using fog computing.
In Proceedings of IEEE International Conference on Multimedia Big
Data (BigMM), 2016.

[11] X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta, and R. Vannithamby.
Smartphone energy drain in the wild: Analysis and implications. In
Proceedings of ACM SIGMETRICS, 2015.

[12] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang.
Virtual network embedding through topology-aware node ranking. ACM
SIGCOMM Computer Communication Review, 41(2):38–47, Apr. 2011.

[13] G. Chochlidakis and V. Friderikos. Mobility aware virtual network
embedding. IEEE Transactions on Mobile Computing, 16(5):1343–1356,
May 2017.

[14] T. Das, Y. Zhong, I. Stoica, and S. Shenker. Adaptive stream processing
using dynamic batch sizing. In Proceedings of ACM Symposium on
Cloud Computing, 2014.

[15] A. Eryilmaz and R. Srikant. Joint congestion control, routing, and mac
for stability and fairness in wireless networks. IEEE Journal on Selected
Areas in Communications, 24(8):1514–1524, 2006.

[16] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch.
Integrating scale out and fault tolerance in stream processing using
operator state management. In Proceedings of the ACM SIGMOD, 2013.

[17] L. Ghalami and G. Daniel. Scheduling parallel identical machines
to minimize makespan:a parallel approximation algorithm. Journal of
Parallel and Distributed Computing, 2018.

[18] R. L. Graham. Bounds on multiprocessing timing anomalies. In SIAM
Journal on Applied Mathematics, volume 17, pages 416–429, Mar. 1969.

[19] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck.
A close examination of performance and power characteristics of 4g lte
networks. In Proceedings of ACM MobiSys, 2012.

[20] J. Kwak, Y. Kim, J. Lee, and S. Chong. Dream: Dynamic resource and
task allocation for energy minimization in mobile cloud systems. IEEE
Journal on Selected Areas in Communications, 33(12):2510–2523, Dec.
2015.

[21] N. Ogino, T. Kitahara, S. Arakawa, and M. Murata. Virtual network
embedding with multiple priority classes sharing substrate resources.
Computer Networks, 112:52–66, 2017.

[22] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell. R-storm:
Resource-aware scheduling in storm. In Proceedings of the Annual
Middleware Conference, 2015.

[23] L. Pu, X. Chen, J. Xu, and X. Fu. D2d fogging: An energy-efficient
and incentive-aware task offloading framework via network-assisted d2d
collaboration. IEEE Journal on Selected Areas in Communications,
34(12):3887–3901, Dec. 2016.

[24] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng. A survey of machine
learning for big data processing. EURASIP Journal on Advances in
Signal Processing, 2016(1):67, May 2016.

[25] E. G. Renart, J. Diaz-Montes, and M. Parashar. Data-driven stream
processing at the edge. In Proceedings of IEEE International Conference
on Fog and Edge Computing (ICFEC), 2017.

[26] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura. Serendipity:
Enabling remote computing among intermittently connected mobile
devices. In Proceedings of ACM MobiHoc, 2012.

[27] H. Topcuoglu, S. Hariri, and M. Wu. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE
Transactions on Parallel and Distributed Systems, 13(3):260–274, Mar.
2002.

[28] J. Wang, L. Li, S. H. Low, and J. C. Doyle. Cross-layer optimization
in tcp/ip networks. IEEE/ACM Transactions on Networking (TON),
13(3):582–595, 2005.

[29] J. Xu, Z. Chen, J. Tang, and S. Su. T-storm: Traffic-aware online
scheduling in storm. In Proceedings of IEEE ICDCS, 2014.

[30] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan. A framework for
partitioning and execution of data stream applications in mobile cloud
computing. SIGMETRICS Perform. Eval. Rev., 40(4):23–32, Apr. 2013.

[31] S. Yang. Iot stream processing and analytics in the fog. IEEE
Communications Magazine, 55(8):21–27, Aug. 2017.

[32] I. Yaqoob, E. Ahmed, I. A. T. Hashem, A. I. A. Ahmed, A. Gani,
M. Imran, and M. Guizani. Internet of things architecture: Recent
advances, taxonomy, requirements, and open challenges. IEEE Wireless
Communications, 24(3):10–16, Jun. 2017.

[33] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Discretized streams:
An efficient and fault-tolerant model for stream processing on large
clusters. In Proceedings of USENIX HotCloud, 2012.

Approved for public release; unlimited distribution. Not export controlled per ES-FL-013119-0028. 11

https://github.com/eBay/Kubernetes/blob/master/docs/devel/scheduler_algorithm.md
https://github.com/eBay/Kubernetes/blob/master/docs/devel/scheduler_algorithm.md
http://mininet.org/
https://flink.apache.org
https://spark.apache.org
https://storm.apache.org/index.html
https://opencv.org/
https://tinyurl.com/ufjfcf4

	Introduction
	Related Work
	Application and Network Models
	Stream Processing Application Model
	Dispersed Computing Network Model

	SPARCLE Design and Algorithm
	Task Assignment Problem
	Task Assignment Algorithm
	Resource Allocation Problem
	Resource Allocation Algorithm

	Performance Evaluation
	Experimental Results
	Simulation Results
	Setup
	One stream processing application
	Multiple stream processing applications

	Conclusion
	References

