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Abstract

The gambler’s uin problem is an exciting application of probability
theory which is generally used to analyze various practical scenarios
like the security of bitcoin protocol. In this article, we provide a com-
plete analysis of the formalization of the gambler’s ruin problem in
Isabelle/HOL. First, we present a comprehensive background and pen-
and-paper calculation. Second, we summarise how to quantify the gam-
bler’s ruin problem and prepare all necessary intermediate conclusions.
Third, we explain the difficulties we faced during the final formalization
and analyze the strategies to overcome these barriers. Our final re-
sult: The recursive probability equation aims to establish the complete
quantitative analysis of random walks and assist others in developing
advanced probability analysis based on what we endeavour here.

1 Introduction

Since proof assistants have been developed and become increasingly convenient to use, formalizing various math-
ematical branches to secure our basis of mathematics becomes more and more popular and influential. Due to
the broad influence of probability theory, the formalization of different applications related to it attracts not
only mathematicians but also other experts from economics and computer science.

What we formalize in Isabelle/HOL[4] is one of the most well-known problems about random walks application:
Gambler’s Ruin Problem. It asks about the probability of winning through random,unlimited gambling. In the
following paper, we report on quantifying the problem and formalizing all the probability analysis involved.
Basically, our work consists of four parts:

• Pen-and-paper introduction and analysis of the gambler’s ruin problem(Section 2)

• Formalization of the gambler’s ruin model(Section 3)

• Formalization of the necessary intermediate conclusions (Section 3.4)

• Formalization of final goal: the recursive probability equation (Section 3.5)

2 Gambler’s Ruin Problem

2.1 Problem introduction

Karl Sigman describes the gambler’s ruin problem as follows[1]:
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Let N ≥ 2 be an integer and let 1 ≤ i ≤ N−1. Consider a gambler who starts with an initial fortune of $i
and then on each successive gamble either wins $1 or loses $1 independent of the past with probabilities
p and q = 1 − p respectively. Let Xn denote the total fortune after the nth gamble. The gambler’s
objective is to reach a total fortune of $N, without first getting ruined (running out of money). If the
gambler succeeds, then the gambler is said to win the game. In any case, the gambler stops playing
after winning or getting ruined, whichever happens first.

Tom Leighton and Ronitt Rubinfeld further generalize, in their lecture notes of random walk[2], the problem
into one-dimensional random walk model1 as below:

This problem is a classic example of a problem that involves a one-dimensional random walk. In such
a random walk, there is some value, say the number of dollars we have, that can go up or down or stay
the same at each step with some probabilities. In this example, we have a random walk in which the
value can go up or down by 1 at each step.1

2.2 Basic calculation of Gambler’s Ruin Problem

According to the description above, we could formalize the gambler’s ruin problem as a one-dimensional model
below.

Assume we start with n > 0 and randomly walk of +1 with the possibility of p or −1 with the possibility of
1− p, then we end this game once we get m > n or 0. The possibility of reaching m from initially n without any
stop is what we want to calculate and formalize in the end.

Let Pn be the possibility of successfully reaching m with initial n. Then it is fairly easy to derive the equations:

Pn = pPn+1 + (1− p)Pn−1 if 0 < n < m

P0 = 0

Pm = 1

Proof: P0 = 0 since we have already ruined with initial 0. Pm = 1 since we’ve already won with initial m.
Let E be the events that first step is plus 1. Let initial denotes the initial number and target denotes the target
ending number, then:

Pn = Pr(target = m|init = n)
= Pr(target = m|init = n

∧
E)Pr(E|init = n) + Pr(target = m|init = n

∧
E)Pr(E|init = n)

= pPr(target = m|init = n+ 1) + (1− p)Pr(target = m|init = n− 1)
= pPn+1 + (1− p)Pn−1

3 Formalization of Gambler’s Ruin Problem

In Gambler Ruin Problem.thy, we will construct the formalization of a specific random walk model coordinated
with gambler’s ruin problem.

3.1 Theory Infinite Coin Toss Space

In order to construct the formal model in gambler’s ruin problem, we start with the existing formalization in the
Theory Infinite Coin Toss Space[5] which constructed the probability space on infinite sequences of independent
coin tosses.

locale infinite_coin_toss_space =

fixes p::real and M::"bool stream measure"

assumes p_gt_0: "0 ≤ p"

and p_lt_1: "p ≤ 1"

and bernoulli: "M = bernoulli_stream p"

The only concept that needs to be elaborated here is bernoulli assumption. ′a stream is the type of infinite
sequence with all elements of type ′a. The bernoulli stream is a stream measure with space Ω composed of all
the elements of type bool stream, power set A filled with all the measurable subsets under this specific measure
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and measure function µ produced by infinite Cartesian product. All the probability of occurrence of elements in
a specific set m can be described as the measure value of m if and only if m is the measurable set of this bernoulli
stream M. In fact, it is set up by producting countable measures of boolean space with measuring {True} to
p and {False} to 1 − p. Despite the complicated and tedious construction of the bernoulli stream, we make a
specific diagram 2here to clarify the structure and mechanism of the bernoulli stream M which we will mention
later frequently.

Figure 1: One-Dimensional Random Walk Figure 2: Construction of bernoulli stream

3.2 Gambler model

fun (in infinite_coin_toss_space) gambler_rand_walk_pre:: "int ⇒ int ⇒ int ⇒ (nat ⇒ bool stream ⇒
int)" where
base: "gambler_rand_walk_pre u d v 0 w = v"|

step1: "gambler_rand_walk_pre u d v (Suc n) w = ((λTrue ⇒ u | False ⇒ d) (snth w n)) +

gambler_rand_walk_pre u d v n w"

fun (in infinite_coin_toss_space) gambler_rand_walk:: "int ⇒ int ⇒ int ⇒ (enat ⇒ bool stream ⇒
int)" where
"gambler_rand_walk u d v n w = (case n of enat n ⇒ (gambler_rand_walk_pre u d v n w)|∞ ⇒ -1)"

The function gambler ran walk extends the fourth parameter by adding ∞ as new input. We define it
because we found it very tough to describe the position where the specific random walk stops, for the first time,
by reaching the threshold if the natural number is the only allowed input as what gambler ran walk pre defines.
Since some infinite random walks will never stop, we must allocate ∞ as the input coordinated with those non-
stop cases and extend the type of steps from nat to enat. Nevertheless, if someone wants to base their further
analysis on our endeavour here, please be cautious of or even avoid discussing the case that the initial number
and target number is negative since we map ∞ to -1. The lemma exist demonstrates that non-stop random
walks will never succeed in reaching the target, which is the best explanation why we assign −1 as the output of
∞ in gambler ran walk.

locale gambler_model = infinite_coin_toss_space +

fixes geom_proc::"int ⇒ bool stream ⇒ enat ⇒ int"

assumes geometric_process:"geom_proc init x step = gambler_rand_walk 1 (-1) init step x"

begin

3.3 Basic functions

Here we define all the basic functions which will play an important role in the further probability analysis.

• Fun reach steps describes all the steps where the input random walk reaches the threshold {0, target}

• Fun stop at describes the first step in the reach steps sets, which means exactly the stopping point in
gambler’s ruin problem. Note that, here the type of output has been extended to enat, which means
stopping point will be ∞(equivalent to non-existence)

• Fun success describes the random walk reaching the target number rather than ruining at stopping point
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3.4 Important intermediate conclusions

In this section, we will specify many necessary intermediate lemmas to lay a solid foundation for further analysis.
Regardless of plenty of complex lemmas formalized, there are two significant things we pursue:

• Trying to clarify that our definition for gambler rand walk is reasonable by proving the abnormal situation
doesn’t exist:

– lemma exist demonstrate that the weird situation where random walk succeeds at ∞ will disappear
once we set target to be positive, which is the reason why we set -1 as the output of ∞ over function
geom proc

• Demonstrating the ways we count are independent with the numeral results we calculate:

– lemma additional1 states that the reaching number doesn’t change if we want to calculate from the
second step

– lemma conditional2 states that whether a random walk succeeds or not doesn’t change if we calculate
from second step

– lemma fst true plus one states that we add 1 to initial number if first step is true.

– lemma conditional set equation states that the set where all random walk in it succeeds and their first
step are True doesn’t change if we calculate from second step.

3.5 Probability equation

In this section, we start to analyse the probability of successful random walk. There are two lemmas which
pose enormous difficulty and deserve more explanation from different aspects: Lemma success measurable and
Lemma semi goal true

probability of win is the function describing the possibility of successful random walks with initial number
and target number as inputs

fun probability_of_win::"int ⇒ int ⇒ ennreal"where
"probability_of_win init target = emeasure M {x∈ space M. success init x target}"

3.5.1 Successful random walk set is measurable

First, we introduce this most challenging lemma we have met during this model formalization. Lemma
success measurable asserts that successful random walks set under the assumption ”0 ≤ initialnumber ≤
targetnumber” is a measurable set for measure M.

On the one hand, the lack of discrete analysis library might have been the most significant factor causing
the trouble here. Since the probability theory has been set up based on the measure theory, every specific set
must be proved to be measurable concerning fixed measure before we calculate the probability of the set, which
severely hinders most scholars and experts from formalizing the security analysis related to the probability since
it is extremely difficult to prove why your set is measurable. That is precisely why our endeavour matters to
provide an example to overcome the difficulty.

On the other hand, the chaos given from the gambler’s ruin model itself leads to a large part of difficulties
here. The topological space where we base our discussion here is the infinite Cartesian product which makes our
formalization deteriorate since it tends to be more challenging to clarify the topology on the infinite Cartesian
product. The function success we rely on is not the easy one to construct(see our discussion in section 3.3). Its
complex definition increases the difficulties when we handle the measurability.

we will briefly explain here the way we prove this lemma since it is nontrivial even for pen-and-paper proof.

• Lemma finite stake measurable states that for the function (λw. stake n w) listing the first n steps of
random walk, the preimage of a finite set is measurable for measure M.

• Lemma finite image states that sets filled with all bool lists of fixed length n is finite.
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• Lemma success measurable2 is the most important intermediate lemma prepared for lemma
success measurable. It clarifies that any list in the image of successful random walk over function stake
will never contain another shorter list corresponding to another successful random walk, which sets up the
bijection between successful random walks stopping at fixed-step and preimage of successful bool list with
identical length.

• Lemma success measurable1 demonstrates that a set of successful random walks is a countable union of
sets of successful random walks stopping at some step.

Combining theses 4 lemmas together proves the set of successful random walks is measurable.
These lemmas are surprisingly hard to prove. Honestly,the successful formalization of this part cannot be

accomplished without the current stochastic process theory library established just in 2021 by Mnacho Echenim,
the author of theory infinite coin toss space.

3.5.2 Probability of successful random walk with its first step True

The lemma semi goal true is the second difficulty we have overcome during the model formalization. It asserts
that the probability of sets of successful random walk with first step True is equal to probability of sets of random
walk times probability of sets of successful random walk with initial number plus 1.

According to the definition of measure value of subset in the infinite Cartesian product, we need to calculate
a sequence of measure value of simple measurable sets constructed by multiplying its infinite projections and
carefully drives to the limit of that sequence as the measure value we desire. As everyone knows, this approach
is not feasible since the set we measure is too irregular to find the sequence of simple measurable sets to cover
it. So how to calculate such an irregular measurable set?

Here we briefly explain the deduction. The following two lemmas are the most important intermediate
conclusion we prepare:

• Lemma semi goal1 states the equation between the measure value of set of successful random walks cal-
culated from either first step or second step, which facilities our prepare for the function with first step as
input and measure value as output.

• Lemma semi goal2 final declares the function we set up in lemma semi goal1 can be calculated in integral
prefectly.

Thanks to the lemma emeasure stream space provided by Mnacho Echenim, the author of
infinite coin toss space, we can finally use the integral rather than tediously break down the countable
product to calculate the probability. The things we cooperate to formalize here are providing the function for
the integral (lemma semi goal1) and proving its relevant properties(lemma semi goal2 final). Although our
formalization went well after establishing this two lemmas, it still took us more than two weeks to accomplish
the lemma semi goal true

3.5.3 Final goal: establish the recursive probability equation

The final probability equation we want to formalize:

Pn = pPn+1 + (1− p)Pn−1

lemma Recursive_probability_equation:

fixes init target

assumes "0 < init" "init < target"

shows"probability_of_win init target = p * (probability_of_win (init + 1) target) + (1 - p) *

(probability_of_win (init - 1) target)"

〈proof 〉
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4 Conclusions

It seems that the difficulties of formalizing the gambler’s ruin problem are beyond our initial imagination. By
describing and explaining what we endeavour to construct through all the chapters, we have experienced this
arduous but exciting formalization journey again. Fortunately, we succeed in formalizing all the quantitative
probability analysis of this model and resolving the difficulties such as securing the measurability of sets calculated
later and calculating the measure value of the sets by integral equation. Our success will not come true without
many excellent existing entries like theory Infinite Coin Toss Space and our persistence.

The difficulties we faced arise from multiple aspects. However, the two most critical aspects are the incon-
venience originating from the problem itself and the lack of appropriate entries and libraries preparing enough
discrete probability analysis. Honestly, we have no desire to establish such a perfect library of discrete probabil-
ity analysis ultimately. However, we hope that our contribution here could offer an example for other excellent
scholars when they face a similar challenge like us in the future.

5 Future work

The short-term goal shortly is formalizing the complete security analysis of the bitcoin mechanism. In the
bitcoin whitepaper, Satoshi proposed the link between Gambler’s ruin problem and sn attacker model of bitcoin
network[3]:

The probability of an attacker catching up from a given deficit is analogous to a Gambler’s Ruin
problem. Suppose a gambler with unlimited credit starts at a deficit and plays potentially an infinite
number of trials to try to reach breakeven. We can calculate the probability he ever reaches breakeven
or that an attacker ever catches up with the honest chain.

So the next step for us is trying to apply our well-prepared gambler’s ruin model to the security analysis of
the bitcoin network by formalizing the analysis of the attacker model there. Since right now all the fundamen-
tal models and mathematical tools have been formalized in AFP libraries[4] and our work here, We have the
confidence to accomplish this goal before the end of internship at around 27th August.
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