
EasyChair Preprint

№ 1271

Tactile Inspection of Concrete Deterioration in

Sewers with Legged Robots

Hendrik Kolvenbach, Giorgio Valsecchi, Ruben Grandia,
Antoni Ruiz, Fabian Jenelten and Marco Hutter

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 3, 2019
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Abstract We present a tactile inspection approach for legged robots which allows

for evaluating concrete deterioration in medium to large-sized sewers. The legged

robot, to this end, executes a well-defined scratching motion with one limb on the

sewer floor. Inertial and Force/Torque sensors implemented in specially designed

feet capture the resulting vibration. The data is used with concrete deterioration

estimates from professional sewer inspectors to train a support vector machine. We

achieved deterioration level estimates within three classes of over 92% accuracy.

The dataset, which we recorded during a field test campaign in the sewers of Zurich

is made publicly available.

1 Introduction

The swiss sewage system has a total length of over 130000 km and presents a sig-

nificant communal investment. Maintaining the sewers is crucial for public health,

but also imposes a considerable cost upon the municipalities. Reports from devel-

oped countries indicate that most sewage systems have reached half of the average

expected lifetime of 80 years. Thus, the focus is shifting towards maintenance and

renovation [1]. As a first step towards maintenance, cost-effective and accurate in-

spection is essential to assess the state of the sewer system.

Sewers have been built successively, with parts of the system being over 100

years old. This process results in a large variety of used materials, sizes, and shapes.

Categorization can be made into medium to large sewers, with an inner diameter of

more than 800 mm and small sewers, with a diameter down to 100-150 mm. Large

sewers are typically made from concrete or masonry and account for around 10%
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of the network [2]. Small sewers are typically made from concrete, stoneware or

plastics and account for the remaining 90%. Overall, the majority of sewers is made

from reinforced and unreinforced concrete, accounting for almost 40% of all sewers

[3]. Although the vast majority of small sewers are of a circular or oval shape, most

of the larger ones are jaw-shaped, rectangular or of irregular shape.

The rate of deterioration varies and depends on the design and usage of the sew-

ers. Relevant factors are flow rate, slope, wastewater composition, cleaning inter-

vals, and more [4]. An omnipresent disintegration mechanism acting on concrete

in sewers is microbial induced corrosion (MIC) [5]. This type of corrosion occurs

when sulfate-reducing bacteria found in the biofilm produce Hydrogen sulfide from

wastewater, which is absorbed on the moist surfaces of the sewers and creates sul-

furic acids. These acids react with the alkaline minerals in the concrete, which leads

to the creation of large, expansive minerals and ultimately the loss of structural in-

tegrity [6].

The current inspection approaches vary depending on the diameter, material,

shape and expected damage to the sewer. For example, small pipes are prone to

experience clogging or leaking in contrast to large sewers. Thus, visual inspection

is performed by tethered pipe-inspection robots, which crawl through the sewer and

sometimes carry tools for removing clogs. Many of such small-scale robots exist

and are commercially available [7].

So far, medium to large sewers are inspected by humans with the goal of manu-

ally assessing the deterioration level. To assess the deterioration level of the concrete

in medium-large sewers, inspectors check the roughness of the concrete visually and

tactilely with their hands and feet. As the highest deterioration occurs in the center

of the sewer, which is often covered by a biofilm and wastewater, purely visual

assessment fails to predict the deterioration reliably. Humans have the advantage

to adapt to irregular sewer shapes and can move through pipe diameters down to

800 mm.

However, the inspection tasks at nominal environmental conditions (slippery

ground, flowing water, dirty, damp, occasional narrow spaces) are monotonous, dan-

gerous and carry health-risks [3]. Additionally, vast safety precautions such as gas

measurements and blocking off large areas of a sewage system before inspection

have to be taken, which potentially disrupt the network. Overall, the inspection task

presents an excellent opportunity for versatile service robots.

Only a few inspection robots for medium to large diameter sewers have been

developed until today. SVM-RS from the Fraunhofer Institute for Factory Operation

and Automation is a combined cleaning and inspection robot [8]. The robot weighs

3500 kg, has a size of 3500 x 1500 x 1500 mm (L x W x H) and a reach of 1200 m.

Various cameras, ultrasonic sensors, structured light line scanners, and temperature

sensors are implemented. Redzone robotic’s Responder is a 300 kg, tracked plat-

form which can be deployed in sewers with a diameter from 915-6000 mm and has

a reach of up to 1000 m [9]. The robot is equipped with cameras, laser sensors and

ultrasonic sensors for inspection. A robot by the Nanyang Technological University

allows for underground excursions in tunnels with a minimum diameter of 3000 mm

and lengths up to 400 m [10]. The robot uses cameras and a laser profiler.
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The typical method for detecting concrete damages helped by a robot is through

an operator who interprets the acquired camera images and ultrasonic or laser sen-

sor data. All robots are tethered and tend to get bigger with increasing operational

range due to the required power for pulling the cable. For some of the systems, the

deployment through a common utility hole seems questionable. Because of the lim-

ited range, traversing through oddly shaped sewers and junctions is not considered.

An interesting robot in this context is Pure technology’s SmartBall, which is a free-

swimming robot that can be deployed in a water stream and scans the sewer with

ultrasonic sensors to find leaks [11]. However, it has no means of controlling its path

and depending on the sewer shape the deployment and capture might be tricky.

We propose the usage of autonomous legged robots to inspect large and medium-

sized sewers. Legged robots are relatively small, have high mobility in a complex

human-made environment and can adapt their posture to inspect areas of interest

[12] [13]. Similar to humans, the robot can probe the environment tactilely by using

its limbs, as we have shown in previous work [14] [15].

As part of our contribution, we have successfully deployed the autonomous

quadruped robot, ANYmal [16], in the sewers of Zurich1 (Figure 1). With the help of

specially designed sensor-equipped feet, we collected a large dataset by performing

an inspection motion with one limb of the robot 355 times. The ground truth of the

concrete deterioration was provided by sewer inspection professionals to complete

the dataset. Later on, we were assessed the level of concrete deterioration with high

accuracy using supervised machine learning techniques. Our approach only uses

sensors employed in the foot, works reliably on different surface conditions, and

outputs the current state, without the need for manual sensor signal interpretation.

Fig. 1 Depiction of ANYmal

with custom feet deployed in

the sewers of Zurich.

1 https://youtu.be/fdGKRgVYAtg
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This paper is structured as follows. First, we describe the robot with a focus on the

foot design in Sec. 2. The tactile inspection motion is explained in Sec. 3. Next,

we present the field tests in the sewers and the creation of the dataset in Sec. 4.1.

The classification approach and the results are presented in Sec. 4.2 and Sec. 4.3

respectively. Finally, we conclude the work in Sec. 5.

2 Hardware description

ANYmal is a 30 kg quadruped robot driven by twelve series elastic actuators mounted

at the joints. The dimensions of the robot are 800 mm x 600 mm x 700 mm when

standing and 800 mm x 600 mm x 400 mm with tucked up legs, which allows de-

ployment through a common utility hole. The kinematic structure of the robot is

designed to achieve an extensive range of motion, allowing it to overcome obsta-

cles and manipulate the environment. ANYmal can operate partially or fully au-

tonomously with on-board batteries. The battery allows the system to traverse up to

3.6 km with a trotting gait at 0.5 m/s on a single charge. Optionally, the robot can be

recharged without human interaction by a docking station if long-term autonomy is

needed [17].

We designed sensor-equipped, adaptive feet to enhance locomotion on rough and

slippery terrains encountered in the sewers while measuring local ground inclina-

tion and superficial properties. Similar to the rest of the robot, the feet have to be

sufficiently robust to operate continuously in a challenging environment. The design

is based on the adaptive foot proposed in previous work of our group [18], which

consists of a large flat contact surface that can comply to the local ground inclination

without interfering with the kinematics of the leg.

With a possible inclination of the terrain of up to 25°, the range of motion (ROM)

for ground compliance is set to 50° around the pitch- and 30° around the roll axis.

Since each leg only allows for hip abduction/adduction, hip flexion/extension and

knee flexion/extension, the foot compliance around yaw prevent slipping while turn-

ing. With a weight of 314 g (including cabling and connectors), it is lighter than both

the original point foot and the previous adaptive foot. Figure 2a illustrates the sub-

assemblies of the foot, which are described in the following.

1) Foot sole: The sole has a surface area of 60 cm2 (100 mm x 60 mm) and is

made from an off-road rubber tire featuring 5 mm studs for increased traction (Fig-

ure 2b). The sole is connected to a metal rim by clamping, which avoids peeling and

gluing issues. A damping foam placed between the rubber sole and the metal struc-

ture reduces the peak loads resulting from impact forces during walking. An acetal

slider avoids the foot getting stuck on overhanging edges and retains the metal rim.

2) Pivot joint: The pivot joint features a lightweight universal joint with inte-

grated end stops to provide the required ground compliance. It is surrounded by an

Ester Polyurethane rubber tube of Shore A70 that provides the retaining force to

reset the foot to its initial position after deflection.
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(a) Sub-assemblies of the foot

(b) Bottom view of the foot

(c) Side view of the foot

Fig. 2: Overview of the newly developed foot for sewer inspection.

3) Force sensor: A custom, in-house developed 6-axis force/torque sensor2 is

placed above the pivot joint to measure the forces acting on the foot. It consists of

a force sensing element with strain gauges. The sensor is lightweight and robust

and allows sensing up to 1000 N along the z-axis and 400 N along the x and y-axis.

The maximum torque the sensor can sense is specified as 10 Nm. The accuracy lies

within 1.5% of the measured value while the repeatability lies below 0.05%. The

sensor is temperature compensated to minimize drift during operation.

4) Custom electronics: The electronics of the foot consists of two IMUs (MPU-

9250), a force sensor and a microcontroller board. One of the IMUs is located in the

sole, while the other is integrated with the PCB in the shank. Both the IMUs and the

force sensor are connected to the microcontroller via the serial peripheral interface

bus (SPI). The IMUs are read out with 1 kHz and force measurements are obtained

with 400 Hz. The microcontroller board is connected to the robot via EtherCAT

and powered through the auxiliary 12 V power line. The custom 6-axis force/torque

features a PCB with analog-to-digital converters (ADCs) and a microcontroller that

processes the analog signals of the strain gauges. Sensor data is recorded on the

high-level side at 400 Hz.

2 https://www.botasystems.com/
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5) Shank: The carbon fiber shank connects the foot to the knee of the robot. The

shank is sealed and features a conical slider for protection of the force sensor.

6) Sealing: The joint is protected by thick bellows (visible in Figure 2c), mechan-

ically clamped to the structure and sealed, which improves the ingress protection

rating compared to previous work. O-rings and sealants have been used for all the

matching surfaces. Water-proof cable glands and connector have been used for the

cables.

3 Tactile inspection motion

The scratching motion we use to collect the data needs to be repeatable and reliable

across the entire range of possible surface areas. The motion, therefore, needs to be

specified in such a way that it can adapt to local terrain geometry and surface rough-

ness. We implemented a Cartesian-space impedance controller [19], which allows

a motion design on both force and position level. Specifying and executing these

motions was done by extending the free-gait framework [20]. The full sequence of

the inspection motion, shown in Figure 3, can be split into several phases.

A predefined position relative to the three stance legs is approached in (a) and

contact is established in (b). In (c), a straight line trajectory is followed until a target

location (d). In (e) and (f), the foot is re-positioned to return to a nominal stance

on four feet. For the part (c) of the inspection motion, where data is collected, the

desired end-effector force is computed as seen in the following equation.

Fig. 3: Picture sequence of the tactile inspection motion with the foot placement

phase (a), inspection motion start location (b), main inspection phase (c), motion

target (d), re-positioning movement (e), and final position (f).
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fff des = fff re f +ΛΛΛ(qqq)ẍxxre f +KKK p(xxx− xxxre f )+KKKd(ẋxx− ẋxxre f )+ cµ

ẋxxre f

‖ẋxxre f ‖
|nnnT fff re f |, (1)

where fff re f is the designed Cartesian end-effector force reference, and xxxre f , ẋxxre f , ẍxxre f

are the designed position, velocity and acceleration references. ΛΛΛ(qqq) is the reflected

inertia matrix, which depends on the generalized coordinates qqq. KKK p and KKKd are the

position and velocity gain matrices. Finally, cµ is a scalar value used to provide

a feedforward friction compensation in the direction of the motion, scaled by the

reference force along the surface normal, nnn.

For the main part of the inspection motion, we apply a force of 10 N on the

surface. The target location is set 100 mm forward and 50 mm sideways from the

start location. Together with a total duration of 2 s and an initial and final ve-

locity of zero, a quintic spline interpolation is defined between the start and end

location to generate the motion reference. Impedance gains are set with stiffness

KKK p = diag(200,200,0) in N/m, and damping KKKd = diag(20,20,20) in Ns/m.

Friction compensation cµ was set to 1.0 after experimental tuning in the field.

We found the high friction compensation to be important for successful motion ex-

ecution on the rougher surfaces. The value of 1.0 served as a safe upper bound for

the roughest terrain encountered. For more slippery surfaces the compensation is

too high, but this does not pose a problem as the damping terms quickly regulate the

velocity and stabilize the motion.

4 Sewer inspection with quadruped robots

4.1 Field test campaign

We conducted multiple field test campaigns in the sewage system of Zurich to iterate

the hardware, practice operations and collect datasets. Generally, the robot can be

easily deployed through a common utility hole (d = 0.8 m). To do so, the robot’s legs

are tucked up and the system is lowered into the sewer with a tethered rope (Figure

4). During our tests, the robot was operated from a base station which was located

outside the sewer, nearby the utility hole.

The base station consists of the operator PC, an additional screen and outlets for

electricity and communication links to the robot. Additionally, the base station is

easy to transport and quick to set up. A directional Wi-Fi antenna (Ubiquiti airMAX)

was deployed into the utility hole via a tripod with reversed column and enabled

a reliable communication link to the robot. During the test, an operator stayed in

the sewers with a professional inspector and communicated with the robot operator

outside via walkie-talkies (Figure 5).

The dataset was collected in two rectangular shaped sewers. Both sewers were

accessible through a utility hole and large enough to be traversable by humans. A

slight inclination towards the center and towards the direction of flow, resulted in a

higher accumulation of water in the center.
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Fig. 4: Depiction of the field test setup and the deployment of ANYmal into the

sewer. The operator base station and warnings signs are visible in the background.

(a) ANYmal setup in the sewer

(b) Walking on biofilm

(c) Walking through wastewater

Fig. 5: Depictions of ANYmal walking in the sewer. A professional sewer inspector

accompanies the testing and assesses the state of the concrete.
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Thus, to avoid over-fitting during classification later on, we moved and reoriented

the robot frequently to capture different areas and poses of the robot with respect to

the sewer floor. In order to construct the dataset, we defined a scale of five condition

ratings for the sewers. The scale was developed with professional sewer inspectors

who use a similar scheme to assess the state of the sewers.

• Good: Smooth concrete, no problems noticeable

• Satisfactory: Minor signs of deterioration, increased roughness

• Fair: Medium signs of deterioration, increased roughness and scratches/spalling

• Critical: Major deterioration noticeable, large cracks, imminent failure

• Failure: Loss of structural integrity, leakage

The condition of the concrete we encountered in the sewers ranged from good

to fair, while critical or extremely bad structural failures were not encountered.

In total, we were able to collect 355 samples (good: 119 samples, satisfactory: 79

samples, fair: 157 samples) in different parts of the sewers, which were classified

together with a professional sewer inspector who provided the ground truth. The

dataset named STINK (Sewer Terrain Inspection Knowledge) is openly available3.

4.2 Classifying concrete deterioration

We chose a machine learning approach to capture and classify the diverse appear-

ance of concrete deterioration together with the varying environmental conditions.

As mentioned, the surface condition is not only expressed by the roughness of the

concrete, but also by macroscopic features such as holes, scratches or cracks. At

the same time, the surface can be dry, wet, submerged and/or covered by a biofilm

(Figure 6).

(a) good state, water (b) satisfactory state, biofilm (c) fair state, wet

Fig. 6: An exemplary set of pictures illustrating the various surface conditions en-

countered in the sewers.

3 DOI: 10.3929/ethz-b-000336822
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(a) Concrete in good condition
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(b) Concrete in fair condition

Fig. 7: Comparing the angular velocities of two samples recorded by the foot sole

IMU show a correlation between signal magnitudes and concrete deterioration.

We extracted the raw sensor data acquired while performing the inspection motion

in the sewers without further cleanup or filtering. The acquired data consists of 18

signals (Force/Torque, IMU shank (linear acceleration/angular velocity), IMU sole

(linear acceleration/angular velocity).

The data is cropped to three seconds, starting at the point of first lift-off (Figure

3a). The raw sensor signals showed a correlation between signal magnitudes and

concrete deterioration level (Figure 7). Thus, each sensor signal was decomposed

using a fast Fourier transform (FFT) to express the vibrations in the frequency do-

main. Next, we took the magnitude of the frequency components and standardized

the data to have zero mean and unit standard deviation. Last, the dimensionality of

the feature vector was reduced with a principal component analysis (PCA) with 30

principal components.

We trained a support vector machine (SVM) with linear Kernel (LIBSVM for

Matlab [21]) on randomly chosen 70% of the dataset (248 Samples). The linear

Kernel was chosen since it resulted in high overall accuracy. More complex, non-

linear or radial basis Kernels were omitted since they increase the chance of over-

fitting while only supplying a marginal increase in performance. We trained on the

data using five-fold cross-validation combined with a grid search to find an opti-

mal C-setting. We trained three binary one-vs-all classifiers to solve the multi-class

problem. The accuracy was determined by predicting the degradation level of the

remaining 30% of the dataset (107 Samples), which was left out during training.

4.3 Classification results

We classified the deterioration levels with good accuracy and achieved an overall

classification accuracy of more than 92% on the three assigned classes. Compar-

ing the individual sensor contributions to the classification performance shows, that

the IMU’s, and especially the IMU in the sole provide a high accuracy (Table 1).

The IMU in the shank achieves a slightly lower accuracy compared to the IMU in

the sole, which experiences higher excitations when slipping over rough surfaces.
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Table 1: Classification accuracy related to selected sensor signals (average perfor-

mance over 25 evaluations).

Sensor

signal

Classification accuracy

Poor Fair Good Overall

Force 92.9% 68.8% 87.0% 82.9%

Torque 92.9% 65.1% 88.0% 82.0%

Force & Torque 88.5% 72.8% 81.5% 80.9%

IMU Sole (lin acc) 93.2% 83.8% 93.1% 90.0%

IMU Sole (ang vel) 93.0% 88.0% 95.3% 92.1%

IMU Sole 93.7% 84.3% 92.3% 90.1%

IMU Shank (lin acc) 91.8% 84.9% 92.1% 89.6%

IMU Shank (ang vel) 90.0% 65.1% 91.2% 82.1%

IMU Shank 89.8% 84.6% 92.2% 88.9%

IMU Sole & Shank 95.1% 88.2% 95.2% 92.8%

F/T + IMU Sole & Shank 94.4% 87.7% 93.9% 92.0%

The contribution of the Force/Torque sensor to the classification accuracy is lower

compared to the IMU’s. Nevertheless, high accuracy was achieved when using all

available sensors, but also a minimal setup consisting of only the IMU in the sole

achieves a good performance. This matches previous findings on planetary soil clas-

sification [15].

Performing the classification with the two IMU’s resulted in the highest accuracy

and further investigations were performed with this setup. Investigating the misclas-

sified samples showed no specific preference to location or surface condition. Fewer

samples were available for the satisfactory class compared to the good and fair class,

which might explain the general lower classification performance on the validation

set. An exemplary confusion matrix for evaluating the validation set can be seen in

Figure 8. Investigating the sampling time shows that the signals should be captured

for at least one second after the motion is initiated to achieve a high classification

accuracy. Longer sampling times increase the performance only marginally. In prac-

tice, human inspectors are scratching the sewer frequently with their feet during a

walk through to get a better understanding of the damages.

The same approach can be followed by the robot to increase the accuracy and

confidence in the classification. While a critical or fatal concrete condition was not

encountered during the acquisition of the dataset, we are confident that these could

also be detected with this approach.
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(a) Exemplary confusion matrix
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(b) Accuracy increase over signal duration

Fig. 8: Few misclassification events occur between classes. Correlation between

classification accuracy and signal length indicates that samples should be collected

for at least one second after initializing the inspection motion.

5 Conclusion

We show how a legged robot inspects concrete deterioration in medium to large

sewers. Through multiple consecutive field test campaigns, we developed a method

which allows the quadruped robot ANYmal to walk in the sewage system of Zurich,

perform a tactile inspection of the concrete, and classify the deterioration level. To

cope with the wet and slippery environment in the sewer environment, we have de-

veloped adaptive planar feet. Through an impedance controlled scratching motion,

the robot is able to probe the terrain with one of its limbs, while maintaining balance

with the other. We acquired and open sourced a dataset with 355 samples during two

consecutive days in the sewers. Training a support vector machine on the dataset al-

lowed us to predict the current state of the concrete deterioration within three classes

with over 92% accuracy. Analysis of the data shows that also a minimal set of sen-

sors is sufficient for classification.

While the inspection approach worked well, further improvements are required

to increase robustness and reliability. First, the system needs to be able to traverse

several hundred meters autonomously through inclined and partially flooded sew-

ers to demonstrate a similar capability to a human inspector. Secondly, more data

needs to be collected to confirm robustness on a diversified set of sewers, improve

accuracy, and eventually precision of the prediction. Overall, we believe that these

shortcomings will be overcome and that legged robots will become a valuable part-

ner in the inspection of sewers.

Acknowledgements The authors want to thank Roman Weiss and his colleagues from ERZ -

Entsorgung + Recycling Zurich for their support during the field tests and Klajd Lika as well as

Ilias Patsiaouras from Bota Systems for their help in integrating the Force/Torque sensors into the

feet. This work has been supported by the European Unions Horizon 2020 research and innovation

programme under grant agreement No 780883 and by the European Space Agency (ESA) and

Airbus DS in the framework of the Network Partnering Initiative 481-2016. This work has been

conducted as part of ANYmal Research, a community to advance legged robotics.



Tactile Inspection of Concrete Deterioration in Sewers with Legged Robots 13

References

1. Christian Berger and Christian Falk. Zustand der Kanalisation in Deutschland - Ergebnisse

der DWA-Umfrage 2009. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall

e. V. (DWA), Hennef, 2009.

2. Cornelia Dyk and Johannes Lohaus. Der Zustand der Kanalisation in Deutschland - Ergeb-

nisse der ATV-Umfrage 1997. ATV (Abwassertechnische Vereinigung e.V.), Hennef, 1997.

3. Christian Berger, Christian Falk, Friedrich Hetzel, Johannes Pinnekamp, Silke Roder, and

Jan Philip Ruppelt. Zustand der Kanalisation in Deutschland - Ergebnisse der DWA-Umfrage

2015. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA), Hennef,

2016.

4. A. K. Parande, P. L. Ramsamy, S. Ethirajan, C. R. K. Rao, and N. Palanisamy. Deterioration of

reinforced concrete in sewer environments. Proceedings of the Institution of Civil Engineers -

Municipal Engineer, 159(1):11–20, 2006.

5. Emilie Hudon, Saeed Mirza, and Dominic Frigon. Biodeterioration of concrete sewer pipes:

State of the art and research needs. Journal of Pipeline Systems Engineering and Practice,

2(2):42–52, 2011.

6. T. Wells and R.E. Melchers. Modelling concrete deterioration in sewers using theory and field

observations. Cement and Concrete Research, 77:82 – 96, 2015.

7. Josep M. Mirats Tur and William Garthwaite. Robotic devices for water main in-pipe inspec-

tion: A survey. Journal of Field Robotics, 27(4):491–508, 2010.

8. Christoph Walter, Jos Saenz, Norbert Elkmann, Heiko Althoff, Sven Kutzner, and Thomas

Stuerze. Design considerations of robotic system for cleaning and inspection of large-diameter

sewers. Journal of Field Robotics, 29(1):186–214, 2012.

9. Redzone robotics responder description. https://www.redzone.com/technology/responder. Ac-

cessed: 2019-04-07.

10. G. Seet, S.H. Yeo, W.C. Law, Burhan, C.Y. Wong, S. Sapari, and K.K. Liau. Design of tunnel

inspection robot for large diameter sewers. Procedia Computer Science, 133:984 – 990, 2018.

International Conference on Robotics and Smart Manufacturing (RoSMa2018).

11. Pure technologies smartball description. https://puretechltd.com/technology/smartball-leak-

detection/. Accessed: 2019-04-07.

12. M. Hutter, R. Diethelm, S. Bachmann, P. Fankhauser, C. Gehring, V. Tsounis, A. Lauber,

F. Guenther, M. Bjelonic, L. Isler, H. Kolvenbach, K. Meyer, and M. Hoepflinger. Towards a

Generic Solution for Inspection of Industrial Sites. In Field and Service Robots (FSR), 2017.

13. C. Dario Bellicoso, Marko Bjelonic, Lorenz Wellhausen, Kai Holtmann, Fabian Günther,

Marco Tranzatto, Peter Fankhauser, and Marco Hutter. Advances in real-world applications

for legged robots. Journal of Field Robotics, 35(8):1311–1326, 2018.

14. M. A. Hoepflinger, C. D. Remy, M. Hutter, L. Spinello, and R. Siegwart. Haptic terrain

classification for legged robots. In 2010 IEEE International Conference on Robotics and

Automation, pages 2828–2833, May 2010.
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