
EasyChair Preprint
№ 6844

When the Riemann Hypothesis Might Be False

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 15, 2021



Noname manuscript No.
(will be inserted by the editor)

When the Riemann Hypothesis might be false

Frank Vega

the date of receipt and acceptance should be inserted later

Abstract Robin criterion states that the Riemann Hypothesis is true if and only if the
inequality σ(n) < eγ × n× log logn holds for all natural numbers n > 5040, where
σ(n) is the sum-of-divisors function and γ ≈ 0.57721 is the Euler-Mascheroni con-
stant. Let q1 = 2,q2 = 3, . . . ,qm denote the first m consecutive primes, then an integer
of the form ∏

m
i=1 qai

i with a1 ≥ a2 ≥ ·· · ≥ am ≥ 0 is called an Hardy-Ramanujan
integer. If the Riemann Hypothesis is false, then there are infinitely many Hardy-
Ramanujan integers n > 5040 such that Robin inequality does not hold and n <
(4.48311)m×Nm, where Nm = ∏

m
i=1 qi is the primorial number of order m.
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1 Introduction

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta func-
tion has its zeros only at the negative even integers and complex numbers with real
part 1

2 [4]. As usual σ(n) is the sum-of-divisors function of n [2]:

∑
d|n

d

where d | n means the integer d divides to n and d - n means the integer d does not
divide to n. Define f (n) to be σ(n)

n . Say Robins(n) holds provided

f (n)< eγ × log logn.
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The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, and log is the natural
logarithm. The importance of this property is:

Theorem 1.1 If the Riemann Hypothesis is false, then there are infinitely many nat-
ural numbers n > 5040 such that Robins(n) does not hold [4].

We recall that an integer n is said to be square free if for every prime divisor q of n
we have q2 - n [2]. Robins(n) holds for all natural numbers n > 5040 that are square
free [2]. In addition, we show that Robins(n) holds for some n > 5040 when π2

6 ×
log logn′ ≤ log logn such that n′ is the square free kernel of the natural number n. Let
q1 = 2,q2 = 3, . . . ,qm denote the first m consecutive primes, then an integer of the
form ∏

m
i=1 qai

i with a1 ≥ a2 ≥ ·· · ≥ am ≥ 0 is called an Hardy-Ramanujan integer [2].
Based on the theorem 1.1, we know this result:

Theorem 1.2 If the Riemann Hypothesis is false, then there are infinitely many nat-
ural numbers n > 5040 which are an Hardy-Ramanujan integer and Robins(n) does
not hold [2].

We prove if the Riemann Hypothesis is false, then there are infinitely many Hardy-
Ramanujan integers n> 5040 such that Robins(n) does not hold and n< (4.48311)m×
Nm, where Nm = ∏

m
i=1 qi is the primorial number of order m.

2 A Central Lemma

These are known results:

Lemma 2.1 [2]. For n > 1:

f (n)< ∏
q|n

q
q−1

. (2.1)

Lemma 2.2 [3].
∞

∏
k=1

1
1− 1

q2
k

= ζ (2) =
π2

6
. (2.2)

The following is a key lemma. It gives an upper bound on f (n) that holds for all
natural numbers n. The bound is too weak to prove Robins(n) directly, but is critical
because it holds for all natural numbers n. Further the bound only uses the primes
that divide n and not how many times they divide n.

Lemma 2.3 Let n > 1 and let all its prime divisors be q1 < · · ·< qm. Then,

f (n)<
π2

6
×

m

∏
i=1

qi +1
qi

.

Proof We use that lemma 2.1:

f (n)<
m

∏
i=1

qi

qi−1
.
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Now for q > 1,
1

1− 1
q2

=
q2

q2−1
.

So

1
1− 1

q2

× q+1
q

=
q2

q2−1
× q+1

q

=
q

q−1
.

Then by lemma 2.2,
m

∏
i=1

1
1− 1

q2
i

< ζ (2) =
π2

6
.

Putting this together yields the proof:

f (n)<
m

∏
i=1

qi

qi−1

≤
m

∏
i=1

1
1− 1

q2
i

× qi +1
qi

<
π2

6
×

m

∏
i=1

qi +1
qi

.

3 A Particular Case

We can easily prove that Robins(n) is true for certain kind of numbers:

Lemma 3.1 Robins(n) holds for n > 5040 when q≤ 5, where q is the largest prime
divisor of n.

Proof Let n > 5040 and let all its prime divisors be q1 < · · ·< qm ≤ 5, then we need
to prove

f (n)< eγ × log logn

that is true when
m

∏
i=1

qi

qi−1
≤ eγ × log logn

according to the lemma 2.1. For q1 < · · ·< qm ≤ 5,
m

∏
i=1

qi

qi−1
≤ 2×3×5

1×2×4
= 3.75 < eγ × log log(5040)≈ 3.81.

However, we know for n > 5040

eγ × log log(5040)< eγ × log logn

and therefore, the proof is complete when q1 < · · ·< qm ≤ 5.
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4 Helpful Lemmas

For every prime number pn > 2, we define the sequence Yn =
e

1
2×log(pn)

(1− 1
log(pn)

)
.

Lemma 4.1 For every prime number pn > 2, the sequence Yn is strictly decreasing.

Proof For every real value x≥ 3, we state the function

f (x) =
e

1
2×log(x)

(1− 1
log(x) )

which is equivalent to
f (x) = g(x)×h(u)

where g(x) = e
1

2×log(x) and h(u) = u
u−1 for u = log(x). We know that g(x) decreases as

x≥ 3 increases, Moreover, we note that h(u) decreases as u > 1 increases where u =
log(x)> 1 for x≥ 3. In conclusion, we can see that the function f (x) is monotonically
decreasing for every real value x≥ 3 and therefore, the sequence Yn is monotonically
decreasing as well. In addition, Yn is essentially a strictly decreasing sequence, since
there is not any natural number n > 1 such that Yn = Yn+1.

In mathematics, the Chebyshev function θ(x) is given by

θ(x) = ∑
p≤x

log p

where p≤ x means all the prime numbers p that are less than or equal to x.

Lemma 4.2 [5]. For x≥ 41:

θ(x)> (1− 1
log(x)

)× x.

Besides, we know that

Lemma 4.3 [5]. For x≥ 286:

∏
q≤x

q
q−1

< eγ × (logx+
1

2× log(x)
).

We will prove another important inequality:

Lemma 4.4 Let q1,q2, . . . ,qm denote the first m consecutive primes such that q1 <
q2 < · · ·< qm and qm > 286. Then

m

∏
i=1

qi

qi−1
< eγ × log(Ym×θ(qm)) .



When the Riemann Hypothesis might be false 5

Proof From the theorem 4.2, we know that

θ(qm)> (1− 1
log(qm)

)×qm.

In this way, we can show that

log(Ym×θ(qm))> log
(

Ym× (1− 1
log(qm)

)×qm

)
= logqm + log

(
Ym× (1− 1

log(qm)
)

)
.

We know that

log
(

Ym× (1− 1
log(qm)

)

)
= log

 e
1

2×log(qm)

(1− 1
log(qm)

)
× (1− 1

log(qm)
)


= log

(
e

1
2×log(qm)

)
=

1
2× log(qm)

.

Consequently, we obtain that

logqm + log
(

Ym× (1− 1
log(qm)

)

)
≥ (logqm +

1
2× log(qm)

).

Due to the theorem 4.3, we prove that

m

∏
i=1

qi

qi−1
< eγ × (logqm +

1
2× log(qm)

)< eγ × log(Ym×θ(qm))

when qm > 286.

5 Proof of Main Theorems

The next theorem implies that Robins(n) holds for a wide range of natural numbers
n > 5040.

Theorem 5.1 Let π2

6 × log logn′ ≤ log logn for some n > 5040 such that n′ is the
square free kernel of the natural number n. Then Robins(n) holds.

Proof Let n′ be the square free kernel of the natural number n. Let n′ be the product
of the distinct primes q1, . . . ,qm. By assumption we have that

π2

6
× log logn′ ≤ log logn.
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For all square free n′≤ 5040, Robins(n′) holds if and only if n′ /∈{2,3,5,6,10,30} [2].
However, Robins(n) holds for all natural numbers n> 5040 when n′ ∈{2,3,5,6,10,15,30}
due to the lemma 3.1. When n′ > 5040, we know that Robins(n′) holds and so

f (n′)< eγ × log logn′.

By the previous lemma 2.3:

f (n)<
π2

6
×

m

∏
i=1

qi +1
qi

.

Suppose by way of contradiction that Robins(n) fails. Then

f (n)≥ eγ × log logn.

We claim that
π2

6
×

m

∏
i=1

qi +1
qi

> eγ × log logn.

Since otherwise we would have a contradiction. This shows that

π2

6
×

m

∏
i=1

qi +1
qi

>
π2

6
× eγ × log logn′.

Thus
m

∏
i=1

qi +1
qi

> eγ × log logn′,

and
m

∏
i=1

qi +1
qi

> f (n′),

This is a contradiction since f (n′) is equal to

(q1 +1)×·· ·× (qm +1)
q1×·· ·×qm

.

Theorem 5.2 If the Riemann Hypothesis is false, then there are infinitely many Hardy-
Ramanujan integers n> 5040 such that Robins(n) does not hold and n< (4.48311)m×
Nm, where Nm = ∏

m
i=1 qi is the primorial number of order m.

Proof Let ∏
m
i=1 qai

i be the representation of some natural number n > 5040 as a prod-
uct of primes q1 < · · ·< qm with natural numbers as exponents a1, . . . ,am. The primes
q1 < · · · < qm must be the first m consecutive primes and a1 ≥ a2 ≥ ·· · ≥ am ≥ 0
since the natural number n > 5040 could be an Hardy-Ramanujan integer. We as-
sume that Robins(n) does not hold. Indeed, we know there are infinitely many Hardy-
Ramanujan integers such as n > 5040 when the Riemann Hypothesis is false accord-
ing to the theorem 1.2. From the lemma 4.4, we know that

m

∏
i=1

qi

qi−1
< eγ × log(Ym×θ(qm)) = eγ × log log(NYm

m )
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when qm > 286. In this way, if Robins(n) does not hold, then n < NYm
m since by the

lemma 2.1 we have that

f (n)<
m

∏
i=1

qi

qi−1
.

That is the same as n < NYm−1
m ×Nm. We can check that qYm−1

m is monotonically de-
creasing for all primes qm > 286 due to the lemma 4.1. Certainly, the function

g(x) = x

 e
1

2×log(x)

(1− 1
log(x) )

−1



complies that its derivative is lesser than zero for all real numbers x > 286. Indeed,
a function g(x) of a real variable x is monotonically decreasing in some interval if
the derivative of g(x) is lesser than zero and the function g(x) is continuous over that
interval [1]. We know that qm could comply with qm ≥ 1000000! for infinitely many
Hardy-Ramanujan integers n > 5040 such that Robins(n) does not hold, where (. . .)!
is the factorial function. Certainly, if qm would have an upper bound by some positive
value, then there would not be infinitely many natural numbers n > 5040 which are
an Hardy-Ramanujan integer and Robins(n) does not hold because of the theorem
5.1. Consequently, it is enough to show that

qYm−1
m ≤ g(1000000!)< 4.48311

for all primes qm ≥ 1000000!. Moreover, we would obtain that

qYm−1
m > qYm−1

j

for every integer 1 ≤ j < m. Finally, we can state that n < (4.48311)m×Nm since
NYm−1

m < (4.48311)m when n > 5040 could be any of the infinitely many Hardy-
Ramanujan integers such that Robins(n) does not hold and qm ≥ 1000000!.
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