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Abstract. Robin’s criterion states that the Riemann Hypothesis is true
if and only if the inequality σ(n) < eγ × n × log logn holds for all nat-
ural numbers n > 5040, where σ(n) is the sum-of-divisors function of n
and γ ≈ 0.57721 is the Euler-Mascheroni constant. We also require the
properties of superabundant numbers, that is to say left to right maxima
of n 7→ σ(n)

n
. In this note, using Robin’s inequality on superabundant

numbers, we prove that the Riemann Hypothesis is true.

Keywords: Riemann Hypothesis · Robin’s inequality · Sum-of-divisors
function · Superabundant numbers · Prime numbers.

1 Introduction

The Riemann Hypothesis is a conjecture that the Riemann zeta function has
its zeros only at the negative even integers and complex numbers with real part
1
2 . It is considered by many to be the most important unsolved problem in
pure mathematics. It was proposed by Bernhard Riemann (1859). The Riemann
Hypothesis belongs to the Hilbert’s eighth problem on David Hilbert’s list of
twenty-three unsolved problems. This is one of the Clay Mathematics Institute’s
Millennium Prize Problems. As usual σ(n) is the sum-of-divisors function of n∑

d|n

d,

where d | n means the integer d divides n. Define f(n) as σ(n)
n . We say that

Robin(n) holds provided that

f(n) < eγ · log log n,

where the constant γ ≈ 0.57721 is the Euler-Mascheroni constant and log is
the natural logarithm. The Ramanujan’s Theorem stated that if the Riemann
Hypothesis is true, then the previous inequality holds for large enough n. Next
we have the Robin’s Theorem:

Proposition 1. Robin(n) holds for all natural numbers n > 5040 if and only if
the Riemann Hypothesis is true [7, Theorem 1 pp. 188].

It is known that Robin(n) holds for many classes of natural numbers n.
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Proposition 2. Robin(n) holds for all natural numbers n > 5040 such that
p ≤ e31.018189471, where p is the largest prime divisor of n [8, Theorem 4.2 pp. 4].

Superabundant numbers were defined by Leonidas Alaoglu and Paul Erdős
(1944). In 1997, Ramanujan’s old notes were published where he defined the
generalized highly composite numbers, which include the superabundant and
colossally abundant numbers. Let q1 = 2, q2 = 3, . . . , qk denote the first k con-
secutive primes, then an integer of the form

∏k
i=1 q

ai
i with a1 ≥ a2 ≥ . . . ≥ ak ≥ 1

is called a Hardy-Ramanujan integer [4, pp. 367]. A natural number n is called
superabundant precisely when, for all natural numbers m < n

f(m) < f(n).

Proposition 3. If n is superabundant, then n is a Hardy-Ramanujan integer [2,
Theorem 1 pp. 450].

A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n)

n1+ϵ
≥ σ(m)

m1+ϵ
for (m > 1).

Proposition 4. Every colossally abundant number is superabundant [2, pp. 455].

Several analogues of the Riemann Hypothesis have already been proved. Many
authors expect (or at least hope) that it is true. However, there are some impli-
cations in case of the Riemann Hypothesis might be false.

Proposition 5. If the Riemann Hypothesis is false, then there are infinitely
many colossally abundant numbers n > 5040 such that Robin(n) fails (i.e. Robin(n)
does not hold) [7, Proposition pp. 204].

Proposition 6. The smallest counterexample of the Robin’s inequality greater
than 5040 must be a superabundant number [1, Theorem 3 pp. 1].

Putting all together yields the proof of the Riemann Hypothesis.

2 Main Results

Lemma 1. If the Riemann Hypothesis is false, then there are infinitely many
superabundant numbers n such that Robin(n) fails.

Proof. This is a direct consequence of Propositions 1, 4 and 5. ⊓⊔

For every prime number qk, we define the sequence Yk = e
0.2

log2(qk)

(1− 0.01
log3(qk)

)
. As the

prime number qk increases, the sequence Yk is strictly decreasing. In mathemat-
ics, the Chebyshev function θ(x) is given by

θ(x) =
∑
q≤x

log q

with the sum extending over all prime numbers q that are less than or equal to
x. We know that
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Lemma 2. [3, Lemma 2.7 pp. 19]. For x ≥ 7232121212:

θ(x) ≥ (1− 0.01

log3(x)
) · x.

Lemma 3. [3, Lemma 2.7 pp. 19]. For x ≥ 2278382:∏
q≤x

q

q − 1
≤ eγ · (log x+

0.2

log2(x)
).

We will prove another important inequality:

Lemma 4. Let q1, q2, . . . , qk denote the first k consecutive primes such that q1 <
q2 < . . . < qk and qk > 7232121212. Then

k∏
i=1

qi
qi − 1

≤ eγ · log (Yk · θ(qk)) .

Proof. From the Lemma 2, we know that

θ(qk) ≥ (1− 0.01

log3(qk)
) · qk.

In this way, we can show that

log (Yk · θ(qk)) ≥ log

(
Yk · (1− 0.01

log3(qk)
) · qk

)
= log qk + log

(
Yk · (1− 0.01

log3(qk)
)

)
.

We know that

log

(
Yk · (1− 0.01

log3(qk)
)

)
= log

(
e

0.2
log2(qk)

(1− 0.01
log3(qk)

)
· (1− 0.01

log3(qk)
)

)
= log

(
e

0.2
log2(qk)

)
=

0.2

log2(qk)
.

Consequently, we obtain that

log qk + log

(
Yk · (1− 0.01

log3(qk)
)

)
≥ (log qk +

0.2

log2(qk)
).

Due to the Lemma 3, we prove that

k∏
i=1

qi
qi − 1

≤ eγ · (log qk +
0.2

log2(qk)
) ≤ eγ · log (Yk · θ(qk))

when qk > 7232121212. ⊓⊔
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We use the following Lemmas:

Lemma 5. [5, Lemma 1 pp. 2]. Let
∏k

i=1 q
ai
i be the representation of n as

a product of prime numbers q1 < . . . < qk with natural numbers a1, . . . , ak as
exponents. Then,

f(n) =

(
k∏

i=1

qi
qi − 1

)
·

(
k∏

i=1

(1− 1

qai+1
i

)

)
.

Lemma 6. [6, Lemma 3.3 pp. 8]. Let x ≥ 11. For y > x we have

log log y

log log x
<

√
y

x
.

Theorem 1. Let
∏k

i=1 q
ai
i be the representation of a superabundant number n >

5040 as the product of the first k consecutive primes q1 < . . . < qk with the
natural numbers a1 ≥ a2 ≥ . . . ≥ ak ≥ 1 as exponents. Suppose that Robin(n)

fails. Then, n < α2 · (Nk)
Yk , where Nk =

∏k
i=1 qi is the primorial number of

order k and α =
∏k

i=1

(
1− 1

q
ai+1

i

)
.

Proof. When Robin(n) fails, then qk > e31.018189471 by Proposition 2. From the
Lemma 5, we note that

f(n) =

(
k∏

i=1

qi
qi − 1

)
·

k∏
i=1

(
1− 1

qai+1
i

)
.

However, we know that

k∏
i=1

qi
qi − 1

≤ eγ · log (Yk · θ(qk))

by Lemma 4, when qk > e31.018189471 > 7232121212. If we multiply both sides

by the value of α =
∏k

i=1

(
1− 1

q
ai+1

i

)
, then we obtain that

f(n) ≤ eγ · log (Yk · θ(qk)) · α.

Since Robin(n) fails

eγ · log log n ≤ eγ · log (Yk · θ(qk)) · α

because of
eγ · log log n ≤ f(n).

That’s the same as
log log n ≤ log (Yk · θ(qk)) · α
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which is equivalent to
log logn

log (Yk · θ(qk))
≤ α.

We know that
log (Yk · θ(qk)) = log log(Nk)

Yk .

We assume that (Nk)
Yk > n > 5040 > 11 since 0 < α < 1. Consequently,√

n

(Nk)Yk
<

log log n

log log(Nk)Yk

by Lemma 6. In this way, we obtain that

n < α2 · (Nk)
Yk

and therefore, the proof is done. ⊓⊔

Corollary 1. Let
∏k

i=1 q
ai
i be the representation of a superabundant number n

as the product of the first k consecutive primes q1 < . . . < qk with the natural
numbers a1 ≥ a2 ≥ . . . ≥ ak ≥ 1 as exponents. If n > 5040 is the smallest number
such that Robin(n) fails, then n < α2 · (Nk)

1.000208229291, where Nk =
∏k

i=1 qi is

the primorial number of order k and α =
∏k

i=1

(
1− 1

q
ai+1

i

)
.

Proof. The number n is indeed superabundant according to the Proposition 6.
For qk > e31.018189471, we know that Yk < 1.000208229291 after of evaluating in
the value of qk due to Yk is strictly decreasing. ⊓⊔

In number theory, the p-adic order of an integer n is the exponent of the highest
power of the prime number p that divides n. It is denoted νp(n). Equivalently,
νp(n) is the exponent to which p appears in the prime factorization of n. We
also use the following Lemmas:

Lemma 7. [6, Theorem 4.4 pp. 12]. Let n be a superabundant number such
that p is the largest prime factor of n and 2 ≤ q ≤ p, then⌊

log p

log q

⌋
≤ νq(n).

Lemma 8. [2, Theorem 7 pp. 454]. Let n be a superabundant number such that
p is the largest prime factor of n, then

p ∼ log n, (n → ∞).

Lemma 9. [6, Proposition 4.12. pp. 14]. For large enough superabundant num-
ber n

log n < 2ν2(n).

Theorem 2. The Riemann Hypothesis is true.
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Proof. For every prime q, νq(n) goes to infinity as long as n goes to infinity
when n is superabundant by Lemmas 7 and 8. Since Yk is strictly decreasing
and 0 < α2 < 1, then we deduce that the following inequality n ≥ α2 · (Nk)

Yk

is always satisfied for a sufficiently large superabundant number n. Let nk be a
superabundant number such that qk is the largest prime factor of n, then

lim
k→∞

nk

Nk
= ∞,

where Nk is the primorial number of order k. Certainly, for large enough su-
perabundant number nk, we can see that nk

Nk
> 2ν2(nk) > log nk by Lemma 9.

Hence, it is enough to show that

lim
k→∞

log nk = ∞.

Moreover, we would have

lim
k→∞

(Nk)
Yk

Nk
= 1,

since we only need to check that

lim
k→∞

Yk = 1.

Accordingly, Robin(n) holds for all large enough superabundant numbers n. This
contradicts the fact that there are infinite superabundant numbers n, such that
Robin(n) fails when the Riemann Hypothesis is false according to Lemma 1. By
reductio ad absurdum, we prove that the Riemann Hypothesis is true. ⊓⊔

3 Conclusions

Practical uses of the Riemann Hypothesis include many propositions that are
known to be true under the Riemann Hypothesis, and some that can be shown
to be equivalent to the Riemann Hypothesis. Indeed, the Riemann Hypothesis is
closely related to various mathematical topics such as the distribution of primes,
the growth of arithmetic functions, the Lindelöf Hypothesis, the Large Prime
Gap Conjecture, etc. Certainly, a proof of the Riemann Hypothesis could spur
considerable advances in many mathematical areas, such as number theory and
pure mathematics in general.
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hypothesis. Journal de Théorie des Nombres de Bordeaux 19(2), 357–372 (2007).
https://doi.org/10.5802/jtnb.591

5. Hertlein, A.: Robin’s Inequality for New Families of Integers. Integers 18 (2018)
6. Nazardonyavi, S., Yakubovich, S.: Superabundant numbers, their subsequences and

the Riemann hypothesis. arXiv preprint arXiv:1211.2147v3 (2013), version 3 (Sub-
mitted on 26 Feb 2013)

7. Robin, G.: Grandes valeurs de la fonction somme des diviseurs et hypothèse de
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