EasyChair Preprint
Ne 15200

j‘" 220

Assessing the Necessity and Impact of Localized
Traditional Chinese Function Calling
Benchmarks

Liang Chieh Lee, Cheng Wei Lin, Pei Chen Ho and
Da-Shan Shiu

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 6, 2024

Assessing the Necessity and Impact
of Localized Traditional Chinese Function Calling Benchmarks

Liang-Chieh Lee'

Cheng-Wei Lin'

Pei-Chen Ho' Da-shan Shiu

MediaTek Research
"Internship.

Abstract

The function-calling capability of Large Lan-
guage Models (LLMs) is becoming indispens-
able for their practical applications. For LLMs
to be successfully applied to localized commer-
cial use, function calling refers to the ability
to invoke external tools to obtain real-time in-
formation or interact with additional function-
alities. To develop or select the ideal models
for these tasks, it is crucial to understand the
importance of benchmark localization.

In this study, we introduce our recreation of a
Taiwan-specific standardized function-calling
benchmark, adapted from the Gorilla function-
calling framework for evaluating tool calls in
English. Through experimental evaluation uti-
lizing our formed data, question-answer scor-
ing mechanisms, and additional tools for multi-
lingual performance comparison, we success-
fully completed the zh-TW localization process
and assessed its differences compared to the En-
glish evaluation. This highlights the necessity
of evaluating local Traditional Chinese perfor-
mance, as it provides a clearer perspective on
localized applications in commercial contexts
and other fields in Taiwan.

Keywords: LLM function calling, Traditional
Chinese

1 Introduction

While large language models (LL.Ms) have shown
remarkable abilities in generating text and reason-
ing, relying solely on the model’s internal capabili-
ties presents certain limitations. Traditional LLMs
like GPT-3 depend on static reasoning, which re-
stricts their ability to update information in real-
time(Yao et al., 2023). This often leads to fact
hallucinations and error propagation, especially
in multi-step reasoning processes. Furthermore,
LLMs struggle with integrating external knowl-
edge, as they are limited to the information embed-

ded in their training data. Without the ability to
retrieve and incorporate real-time, domain-specific
information from external environments, LLMs can
generate inaccurate or outdated responses, making
them unreliable for many real-world applications.

Function calling (or tool calling) provides a ro-
bust solution to these limitations by allowing LLMs
to access external tools and APIs. This enables
models to retrieve up-to-date information and per-
form tasks that require specialized knowledge or
computations, such as complex mathematical calcu-
lations or accessing real-time data from databases.
By reducing reliance on static internal reasoning
and outsourcing specific tasks to reliable external
sources, function calling helps minimize halluci-
nations and enhances task accuracy(Schick et al.,
2023; Abdelaziz et al., 2024). In commercial appli-
cations, this capability is crucial as it allows busi-
nesses to leverage LL.Ms for dynamic tasks such
as financial analysis, customer service automation,
and data retrieval, ensuring the responses are accu-
rate, timely, and grounded in the latest information.
To more accurately understand the potential busi-
ness applications within the Taiwan region, we aim
to provide a more precise description of how such
function calls perform.

2 Related Works

Due to the significant differences in the availability
of training data between high-resource and low-
resource languages, we suspect that the function
calling capabilities of Traditional Chinese may dif-
fer from English(Hsu et al., 2024). For example,
English occupies 89.7% of the pretraining corpus,
far surpassing the mere 0.13% for Chinese(Zhu
et al., 2024; Li et al., 2024). High-resource lan-
guages typically perform more stably in large lan-
guage models (LLMs) due to the support of exten-
sive datasets, while low-resource languages like

Traditional Chinese may experience performance
degradation due to insufficient data(Lin and Chen,
2023). Specifically, there are notable differences
in the syntactic structures of Traditional Chinese
and English. For instance, the subject-verb-object
structure in Chinese is more flexible, and the place-
ment of verbs is less fixed compared to English.
Moreover, Chinese employs phrases in a distinct
manner from English, and these features could po-
tentially affect the function calling performance of
LLMs in Traditional Chinese(Chang et al., 2024).
Therefore, we have reason to believe that these syn-
tactic differences may influence the performance
of LLMs in both languages(Nezhad and Agrawal,
2024).

Based on this assumption, we aim to conduct
a comprehensive evaluation of function calling in
Traditional Chinese, using a series of tests to ana-
lyze whether language-specific characteristics af-
fect performance during function calls. These tests
will help us clarify the specific performance of
LLMs in Traditional Chinese contexts and deter-
mine if there are areas that require further adjust-
ments. By doing so, we can more accurately assess
the usability of Traditional Chinese in these scenar-
ios. This approach not only improves the accuracy
of function calling in Traditional Chinese but also
verifies whether linguistic differences play a crucial
role in these technical applications.

3 Methodology

To validate the need for localized large lan-
guage models (LLMs) in Taiwan using Tradi-
tional Chinese for function calling, we adopted
the benchmarking methodology from Gorilla’s
APIBench(Patil et al., 2023). We improved the
original dataset, which was not well-suited for Tra-
ditional Chinese, and refined the evaluation criteria
for return values. Additionally, we retained key
strengths of the framework, such as automated API
generation and invocation. APIBench offers one
of the most comprehensive API datasets in the ma-
chine learning field, significantly reducing data er-
rors and risks, and providing a solid foundation
for handling Traditional Chinese in subsequent pro-
cesses.

Upon completing the data operations, we im-
plemented a language configuration feature and
conducted several bilingual evaluations of well-
known, large-scale LLMs. This allowed us to
assess whether performance differences exist be-

tween languages and to compare their effectiveness
in different linguistic environments.

3.1 Dataset Configuration

The dataset collection for APIBench comes from
recording model cards on the three major platforms:
HuggingFace, PyTorch Hub, and TensorFlow Hub.
Incomplete models were filtered out, resulting in a
total of 1,645 API calls. These model cards were
then converted into JSON format, and GPT-4 was
used to generate synthetic instruction data, creating
10 instruction-API pairs for each model(Patil et al.,
2023).

The dataset utilized in the Gorilla experiment
provides a comprehensive analysis across various
user applications, including its use in proxies and
enterprise workflows. This dataset, encompassing
a wide range of topics and fields, can be able to
hold equivalent evaluative value in the Traditional
Chinese context.

The evaluation metrics are categorized into
Python and non-Python, and corresponding
Traditional Chinese datasets are established.

Python evaluations include:

- Simple function: Evaluates a single function call
using a JSON function document.

- Multiple function: Requires the model to select
the best function to invoke from 2 to 4 JSON
function documents.

- Parallel function: Involves invoking multiple
function calls in parallel for a single user query.

- Parallel multiple functions: Combines parallel
and multiple functions, where multiple function
documents are provided, and each corresponding
function call is invoked zero or more times.

Each category is assessed using both Abstract
Syntax Tree (AST) and executable function
evaluations.

Non-Python evaluations include:

- Function relevance detection: Checks if the
model correctly identifies when no provided
functions are relevant.

- REST API: Tests the model’s ability to generate
executable REST API calls using real-world GET
requests, including path parameters and key/value
pairs.

- SQL: Assesses the model’s capability to construct
reliable SQL queries using customized functions.
- Java and JavaScript: Tests the model’s ability

to handle language-specific types, such as Java’s
‘HashMap’.

We conducted a detailed review of the question-
answer pairs in these datasets, selecting translations
that feature localized Taiwanese terminology for
queries, adjusting both syntax and content. In addi-
tion to invoking external APIs for accurate evalua-
tion, we mapped the results to the standard answers
and incorporated key Chinese keywords. This man-
ual approach ensures that the translated content bet-
ter reflects the authentic usage of Traditional Chi-
nese syntax. After translating the question-answer
pairs, we designed a systematic distribution config-
uration, allowing language-based assignments to be
tested with corresponding datasets. This recreation
provides a more convenient and intuitive method
for evaluating the comparability of large language
models across different languages.

3.2 Benchmarking Framework

In our study, we first utilized the Abstract Syntax
Tree (AST) as a core tool for program compilation
and parsing. AST represents the syntax of a pro-
gram in a tree structure, breaking down syntactic
elements into various nodes, with each node repre-
senting a fundamental unit of the program’s syntax.
By stripping away the syntactic details and preserv-
ing only the semantic structure of the code, AST
aids in more efficient program compilation, opti-
mization, and analysis. In the context of API call
validation, AST is employed to parse the API calls
generated by the model, progressively examining
the syntactic structure to ensure consistency with
reference documentation. AST also plays a critical
role in handling parameter types, nested structures
across different languages, and identifying model
hallucinations, which refer to API calls that do
not match any known API in the database. More-
over, AST proves useful in validating multiple and
parallel function calls by efficiently parsing and
checking the syntactic structure of each function to
ensure the accuracy of API calls.

Following this, we introduced Executable Func-
tion Evaluation, which validates the correctness
of generated API calls by executing them. This
method is divided into non-REST and REST types.
In non-REST evaluation, the output is assessed
based on three criteria: exact match, real-time
match, and structural match. REST evaluation, on
the other hand, focuses on the successful execution

of API calls and ensures the type and structure of
JSON responses are consistent. Given that REST
responses may vary over time, the evaluation em-
phasizes structural consistency rather than static
values. The multiple and parallel function evalua-
tions extend the principles of single-function evalu-
ations by comparing the model-generated outputs
with ground truth values to ensure that all outputs
meet the evaluation criteria.

3.3 Evaluation

In the APIBench framework, test data are provided
in the form of test files across all evaluation cate-
gories (see Table 1), significantly reducing the ef-
fort required to reformat various types of responses.
Leveraging the language configuration feature de-
veloped, we conducted function-calling benchmark
evaluations in both Traditional Chinese and En-
glish. By employing parallel question-answer pairs,
we aim to assess the models’ performance and
function-calling capabilities when posed with ques-
tions in both languages. To ensure robustness and
generalizability of the results, we evaluated sev-
eral widely recognized models, including GPT-3.5,
GPT-40, Claude 3.5, and Gorilla OpenFunctions,
which was trained using APIBench results.

4 Result and Discussion

To enhance the comparability of cross-linguistic
function-calling benchmarks, we executed a bilin-
gual comparison script and created radar charts
based on the most critical evaluation metrics: sim-
ple function calls, multiple function calls, parallel
function calls, parallel multiple function calls, exe-
cutable simple calls, executable multiple calls, exe-
cutable parallel calls, executable parallel multiple
calls, and relevance detection. This functionality
was integrated into our new configuration, along
with a language-switching feature, to provide a reli-
able evaluation across multiple languages. Through
a comparative evaluation of model performance in
Traditional Chinese (see Figure 1) and English (see
Figure 2), we found a noticeable gap in perfor-
mance when models were tested in Traditional Chi-
nese compared to English. This observation sup-
ports our previous hypothesis: the function-calling
capabilities are influenced by linguistic differences,
particularly in the case of Traditional Chinese or
the language culture used in the Taiwan region.

AST EXEC
Model IR S. M. P PM.| S. M. P PM
gpt_35_turbo_0125 (FC) 75 | 70.0 735 67.0 495 | 624 900 760 525
gpt_40_2024_05_13 (FC) 64.2 | 677 73.0 76.0 585 |647 84.0 80.0 70.0
gorilla_openfunctions_v2 (FC) | 52.1 | 66.7 655 59.0 435 |61.2 920 620 575
claude-3.5-sonnet (FC) 82.1 | 749 790 77.0 675 | 660 94.0 860 65.0

Table 1: Function calling benchmark. This table shows the accuracy across the four models with the ability
of function calling. IR denotes irrelevance detection”. AST denotes “abstract syntax tree”. EXEC denotes
“execution”. S. denotes the case of simple function. M. denotes the case of multiple function. P. denotes the case of
parallel function. P. M. denotes the case of parallel multiple function.

—e— GPT-3.5-Turbo-0125
—e— GPT-4-0524

+— Gorilla-OpenFunctions
—s— Claude-3.5-Sonnet

Multiple (AST)

Parallel (AST)

Simple (AST)

Parallel
Multiple (AST)

Simple (Exec)

Parallel Multiple (Exec)

Multiple (Exec)

Parallel (Exec)

Traditional Chinese

—e— GPT-3.5-Turbo-0125
—e— GPT-4-0524

Multiple (AST) —e— Gorilla-OpenFunctions-v2
_——

—e— Claude-3.5-Sonnet
\ Simple (AST)

Parallel (AST) =
\

Parallel
Multiple (AST)

Simple (Exec)"

Parallel Multiple (Exec)

Parallel (Exec)

English

Figure 1: Comparison between our Traditional Chinese benchmark and Berkeley function calling leaderboard.

4.1 Overall Performance

Our study evaluated GPT-3.5, GPT-4, and Gorilla
OpenFunction, and we found that the overall per-
formance in Chinese was slightly lower compared
to English. Additionally, the performance trends
between Traditional Chinese and English across
different categories displayed a discernible pattern.
However, this general trend is not uniform across
all categories, highlighting the complexity of lan-
guage model performance across different tasks
and languages. A notable exception to the overall
trend is observed in the evaluation of executable
multiple function calls. In this specific category,
the performance does not adhere to the observed
pattern of English outperforming Traditional Chi-
nese. For instance, in the Multiple (Exec) category,
the Chinese version of GPT-4 (84%) outperforms
its English counterpart (78%). Similarly, the Chi-
nese version of Gorilla OpenFunctions v2 achieves
92% accuracy in this category, compared to 94%
for its English version, reflecting a much smaller

gap than in other categories.

4.2 TImplications for Traditional Chinese
LLMs

The results highlight several key points for the de-
velopment and application of LLMs in Traditional
Chinese: Language-specific fine-tuning: The per-
formance gap between English and Traditional Chi-
nese suggests a need for more extensive and tar-
geted fine-tuning for Traditional Chinese models.
Task complexity: As task complexity increases, the
performance in Traditional Chinese tends to de-
grade more rapidly than in English. This indicates
a need for more diverse and complex Traditional
Chinese datasets for training. Model architecture:
The varied performance across different models
suggests that certain architectures may be more
suitable for handling Traditional Chinese function
calls. Further research into model architectures op-
timized for Traditional Chinese could yield signifi-
cant improvements. Data quality and quantity: The
generally lower performance in Traditional Chi-

Comparison between Traditional Chinese and English GPT-3.5-Turbo-0125

Language

Chinese

80 = English
70
60
50
40
30
20
10
o

s// 0// s,, .»//

Score

5)

Comparison between Traditional Chinese and English Gorilla-OpenFunctions

100

0
0
0 I | ‘ |
0
0

o ‘9//

Language
Chinese
u English

Score
o ®

N

N

‘9// "// ‘*//

Score
IS

Score

Comparison between Traditional Chinese and English GPT-4-0524

2

)
,(%,
2% //@

%
(
f Q@
2] %, ©
% <

920 Language
s,

Chinese
= English

o o N

s N ow

G//

S

,
e Q@
oY %

%,
%

80
0
0
0
o
0
0
0
° ’a
",
> kY

Comparison between Traditional Chinese and English Claude-3.5-Sonnet

100

0
0
0 | | |
0
0

Language
Chinese
= English

2

%, %,
e 2
% %

®

@

a

N

Figure 2: Performance comparison between Traditional Chinese and English.

nese across most categories underscores the need
for larger, high quality Traditional Chinese datasets,
particularly for complex function calling tasks.
Cross-lingual transfer: The performance discrepan-
cies between languages suggest that cross-lingual
transfer learning techniques could be explored to
leverage the strengths of English models in im-
proving Traditional Chinese models. Task-specific
optimization: The inconsistent performance across
different categories highlights the importance of
task-specific optimization. Rather than applying a
one-size-fits-all approach to improving Traditional
Chinese LLMs, developers should consider tailor-
ing their approaches based on the specific types of
function calls and tasks that are most critical for
their applications.

5 Conclusion

The results of this experiment clearly demonstrate
that there are significant differences in the perfor-
mance of function-calling benchmarks between
Traditional Chinese and English. It is evident that
localized evaluations are crucial in contexts where
Traditional Chinese is used exclusively. Due to
the significant syntactic differences between Tradi-
tional Chinese and English, such as the lack of fixed
part-of-speech positioning and the distinct structure
of phrases, these linguistic disparities are reflected
in function-calling performance. Therefore, evalua-

tion methodologies should be developed somewhat
independently from those used for English mod-
els. In the context of function-calling applications
in Taiwan, the importance of Traditional Chinese
function calls cannot be underestimated. Language-
specific fine-tuning is essential for achieving local-
ized commercial applications. Although English
models generally outperform Traditional Chinese
models, there are certain tasks where the perfor-
mance of Traditional Chinese models exceeds that
of their English counterparts. This suggests that,
when considering the practical application of large
language models, local developers should carefully
consider the appropriate contexts and timing for
Traditional Chinese function-calling models, se-
lecting the models that best suit the tasks at hand.
This approach will further maximize the practical-
ity and reliability of Traditional Chinese models
across various applications.

6 References

References

Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal,
Sadhana Kumaravel, Matthew Stallone, Rameswar
Panda, Yara Rizk, GP Bhargav, Maxwell Crouse,
Chulaka Gunasekara, et al. 2024. Granite-function
calling model: Introducing function calling abili-
ties via multi-task learning of granular tasks. arXiv
preprint arXiv:2407.00121.

Ting-Yun Chang, Jesse Thomason, and Robin Jia. 2024.

Do localization methods actually localize memorized
data in 1lms? a tale of two benchmarks. arXiv
preprint arXiv:2311.09060.

Chan-Jan Hsu, Chang-Le Liu, Feng-Ting Liao, Po-
Chun Hsu, Yi-Chang Chen, and Da-Shan Shiu.
2024. Breeze-7b technical report. arXiv preprint
arXiv:2403.02712.

Zihao Li, Yucheng Shi, Zirui Liu, Fan Yang, Ninghao
Liu, and Mengnan Du. 2024. Quantifying multilin-
gual performance of large language models across
languages. arXiv preprint arXiv:2404.11553.

Yen-Ting Lin and Yun-Nung Chen. 2023. Taiwan
Ilm: Bridging the linguistic divide with a cul-
turally aligned language model. arXiv preprint
arXiv:2311.17487.

Sina Bagheri Nezhad and Ameeta Agrawal. 2024. What
drives performance in multilingual language models?
arXiv preprint arXiv:2404.19159.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
ArXiv preprint arXiv:2302.04761.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Lingxuan Zhu, Weiming Mou, Yancheng Lai, Junda Lin,
and Peng Luo. 2024. Language and cultural bias in ai:
comparing the performance of large language models
developed in different countries on traditional chinese
medicine highlights the need for localized models.
Journal of Translational Medicine, 22(1):319.

