
EasyChair Preprint
№ 7821

Benchmarking Individual Representation in
Grammar-Guided Genetic Programming

Leon Ingelse, Guilherme Espada and Alcides Fonseca

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 20, 2022



Benchmarking Individual Representation in
Grammar-Guided Genetic Programming ⋆

Leon Ingelse[0000−0001−6067−6318], Guilherme Espada[0000−0001−8128−7397], and
Alcides Fonseca[0000−0002−0879−4015]

LASIGE, Faculdade de Ciências da Universidade de Lisboa, Portugal

Abstract. Grammar-Guided Genetic Programming (GGGP) has two
popular flavors, Context-Free Grammar GP (CFG-GP) and Grammati-
cal Evolution (GE).
In this paper, we first review the advantages and disadvantages of both
GE and CFG-GP established in the literature. Then, we identify three
new advantages of CFG-GP over GE: direct evaluation, in-node storage,
and deduplication. We conclude with the need to further evaluate the
comparative performance of CFG-GP and GE.

Keywords: Grammar-Guided GP · Derivation Trees · Grammatical
Evolution.

1 Introduction

Genetic Programming (GP) is praised for its ability to produce useful solutions
from vast solution spaces. Being a search-based method, GP performs best when
the solution space can be restricted without excluding valid solutions. Grammar-
Guided GP (GGGP) [9] uses grammars to solve these issues.

In current research, GGGP has two main approaches for genotype representa-
tion. While both approaches use an individual representation that is eventually
interpreted as a tree, they differ drastically on the representation. Originally,
individuals were represented as derivation trees [9], in a method named Context-
Free-Grammar GP (CFG-GP). This approach uses the grammar throughout
tree construction, mutation, and/or cross-over operations. The other GGGP
approach, called Grammatical Evolution (GE) [7], represents and manipulates
individuals as linear strings. Currently, GE is “one of the most widely applied
GP methods” [3]. The grammar defined in GE is used to translate these repre-
sentations to individuals in a process called genotype-to-phenotype mapping.

GE has found a strong foothold in GGGP, mainly due to its easier implemen-
tation and faster performance of mutation and cross-over operators.
⋆ This work was supported by Fundação para a Ciência e Tecnologia (FCT) in the

LASIGE Research Unit under the ref. (UIDB/00408/2020 and UIDP/00408/2020)
and in the FCT PhD scholarship under ref. (UI/BD/151179/2021), by the CMU–
Portugal project CAMELOT, (LISBOA-01-0247-FEDER-045915), and the RAP
project under the reference (EXPL/CCI-COM/1306/2021).



2 L. Ingelse, et al.

In this paper we attempt to compare both approaches. First, we present the
advantages of GE over CFG-GP in section 2, such as an easier implementation,
faster performance of mutation and cross-over operators and being able to reuse
work from the broader field of Evolutionary Computation [3]. Then, we high-
light the underexposed advantages of CFG-GP, such as better performance [8],
the high locality and the predictable effect of mutation and cross-over opera-
tions [6], and the guaranteed validity of created individuals in section 3. Finally,
we conclude with a discussion in section 4.

2 Advantages of Grammatical Evolution

CFG-GP is the most direct approach to encoding grammars, as genotype and
phenotype are aligned. However, using different representations for the genotype
and the phenotype has advantages. Originally, the introduction of GE as a re-
placement of CFG-GP was mainly motivated by individuals being smaller [7],
which reduces memory usage and allows GGGP to be more scalable. Further-
more, there are advantages of GE, due to the mechanical sympathy of computers
in regard to linear strings. Mainly, GE avoids pointer chasing, making mutation
and cross-over operators more efficient. Moreover, the generation of an individ-
ual, which effectively consists of generating a random array, can be done faster
than the CPU can send the bits to memory.

Correspondingly, on the algorithm implementation side, mutation and cross-
over are more easily implemented: Mutation entails the selecting of a random
location in the string and updating the value of that location. For cross-over, a
location is randomly selected, and two individuals are cut and then concatenated
at that location, producing two individuals.

The separation of genotype and phenotype allows the user to “decouple the
search engine from the problem [at hand]”, so that the same algorithm can be
easily applied to different domains [2]. As such, GE also allows the user to reuse
research from the areas of Genetic Algorithms and Evolution Strategies [3].

Later, the same authors found populations in GE to be more diverse, because
genotypical differences do not necessarily translate to phenotypical differences
in GE [4]. As genotypes may contain a lot of redundant information, multiple
genotypes can translate to the same phenotype. This phenomenon is called high
redundancy. However, this high redundancy is a disadvantage: 90% of mutations
do not have any effect on the phenotype, rendering the mutation useless [6].

In the same study, they showed that the mutations that did have effect,
often produced child individuals very dissimilar to their parents, resulting in low
locality. This is because changing the value in one location of a linear string,
can cascade to the production of other parts of the individual (fig. 1). High
redundancy and low locality result in the fitness of GE resembling a Random
Search algorithm [6].

There have been attempts to diminish above-mentioned disadvantages. To
make sure genotypical differences affect the phenotype, redundant parts of an
individual can be trimmed [7]. By trimming, a maximum length is set for each



Benchmarking Individual Representation in GGGP 3

01133112

00133112

Fig. 1. Example where a mutation cascades to another part of the individual. The
second number is mutated, referring to the left node with value 1 in tree 1. This
mutation cascades to the right node as well.

linear string. If a genotype, after being operated on, needs more genes than its
length allows for, one can apply the wrapper approach and continue translation
from the start of the linear string [4]. Problematically, it results in a lower locality.

Furthermore, the wrapper approach might result to invalid-individual gener-
ation. Look at the grammar fig. 1 and consider the genotype 000. This genotype
maps to never-ending plus operations. The fitness of this individual cannot be
calculated. Methods such as assigning invalid individuals a low fitness, repairing
them, and phenotype-validity checking, are costly and break with the simplicity
of GE. Initial populations often show 70% invalid individuals [5].

To improve on the locality of evolved populations, Structured Grammatical
Evolution (SGE) was proposed [1]. In SGE, individuals are represented by lists of
linear representations. Each list contains all information of one production in the
grammar. As such, mutation only affects that single production, and minimizes
the cascading to other parts of the individual. A comparison with normal GE
shows SGE performing better [1, 2]. Note that SGE breaks with the simplicity of
GE, diminishing certain GE advantages, such as a simple implementation. More-
over, individual representations are more complex and take up more memory as
every individual requires the space of the largest possible one.

3 Advantages of using Derivation Trees as the Genotype

In section 2, we have presented the three main issues of GE, non-effective mu-
tations, low-locality, and non-valid individuals. CFG-GP does not suffer from
these issues as the genotype and the phenotype are aligned. These advantages
are put forward to argue that CFG-GP performs better than GE [8, 2].

Besides the direct advantages resulting from the genotype-phenotype align-
ment, we identify three less discussed advantages of derivation trees: direct eval-
uation, in-node storage, and deduplication.

Direct Evaluation: During fitness evaluation in GE, each individual is first
translated to a string (the program), which is then parsed, and finally evaluated.



4 L. Ingelse, et al.

Fig. 2. Example where in-node storage of evaluation is beneficial. The value 1 is mu-
tated to 2. The mutated tree can be easily reevaluated by summing 2 and the evaluation
of subtree A.

Crucially, translation and parsing are not free, both in execution time and
memory consumption. In languages with a just-in-time compiler, this cost is exac-
erbated even further, as it has extra work to do tracking freshly generated code.
In CFG-GP, derivation trees are traversed only once, evaluating the program
directly, with no parsing required, saving time and memory.

In-Node Storage: Since trees consist of nodes in memory, meta-information
can be stored in each node. One useful example would be to store the partial eval-
uation of that node, to reuse in trees that share genomic material with the current
one. Caching evaluation results (and other meta-information) is beneficial to a
large class of problems, including symbolic regression. Further evaluations can
avoid re-evaluating subtrees (c.f. fig. 2).

Deduplication: Because of cross-over, different individuals frequently have
subtrees in common, that do not need to occupy duplicated space in memory.
Applying deduplication also has the side effect of improving caching (if used
in combination with in-node storage) when a given subtree occurs in different
individuals. Thus, each subtree needs only be evaluated once, even if it is used
in different individuals. This is incredibly difficult in the GE approach: a tree
node might not even correspond to an executable element by itself.

4 Discussion

Practitioners should be aware of these advantages when selecting which approach
to take. In fact, these decisions are relevant when designing a GGGP framework,
and not when implementing a domain-specific grammar. Because one of the
main advantages of GE is the ease of implementation of crossover and mutation
operators, we argue that a single investment in implementing the CGP-GP op-
erators can be worthwhile as it can be applied to different domains. The second
advantage of CGP-GP is the memory saved on the individual representation,
but we identify that this might not compensate the extra memory necessary for
parsing or the potential time savings by caching evaluation or memory saved
by deduplicating common subtrees. Furthermore, despite being less widely used,
CFG-GP can perform better than GE [8, 6].

Future research should consider a wide-range comparison of both approaches,
covering usability, performance, maintainability, interpretation and scalability.



Benchmarking Individual Representation in GGGP 5

References

1. Lourenço, N., Assunção, F., Pereira, F.B., Costa, E., Machado, P.: Structured gram-
matical evolution: a dynamic approach. In: Handbook of Grammatical Evolution,
pp. 137–161. Springer (2018)

2. Lourenço, N., Ferrer, J., Pereira, F., Costa, E.: A comparative study of dif-
ferent grammar-based genetic programming approaches. pp. 311–325 (03 2017).
https://doi.org/10.1007/978-3-319-55696-3_20

3. McKay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based
genetic programming: a survey. Genet. Program. Evolvable Mach. 11(3-4), 365–396
(2010). https://doi.org/10.1007/s10710-010-9109-y, https://doi.org/10.1007/s10710-
010-9109-y

4. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evolutionary
Computation 5(4), 349–358 (2001)

5. ONeill, M., Ryan, C.: Grammatical evolution: Evolutionary automatic programming
in a arbitrary language, volume 4 of genetic programming (2003)

6. Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In: European
conference on genetic programming. pp. 320–330. Springer (2006)

7. Ryan, C., Collins, J., Neill, M.O.: Grammatical evolution: Evolving programs for an
arbitrary language. In: Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 1391,
pp. 83–96 (1998). https://doi.org/10.1007/BFb0055930

8. Whigham, P.A., Dick, G., Maclaurin, J., Owen, C.A.: Examining the" best of both
worlds" of grammatical evolution. In: Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation. pp. 1111–1118 (2015)

9. Whigham, P.A., et al.: Grammatically-based genetic programming. In: Proceedings
of the workshop on genetic programming: from theory to real-world applications.
vol. 16, pp. 33–41 (1995)


