
EasyChair Preprint
№ 8693

Big Data for Credit Risk Analysis: Efficient
Machine Learning Models Using PySpark

Afshin Ashofteh

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 22, 2022



Chapter 1

Big Data for Credit Risk Analysis:
Efficient Machine Learning Models
Using PySpark

Afshin Ashofteh

Abstract Recently, Big Data has become an increasingly important source
to support traditional credit scoring. Personal credit evaluation based on ma-
chine learning approaches focuses on the application data of clients in open
banking and new banking platforms with challenges about Big Data quality
and model risk. This paper represents a PySpark code for computationally
efficient use of statistical learning and machine learning algorithms for the
application scenario of personal credit evaluation with a performance com-
parison of models including logistic regression, decision tree, random forest,
neural network, and support vector machine. The findings of this study reveal
that the logistic regression methodology represents a more reasonable coef-
ficient of determination and a lower false-negative rate than other models.
Additionally, it is computationally less expensive and more comprehensible.
Finally, the paper highlights the steps, perils, and benefits of using Big Data
and machine learning algorithms in credit scoring.

Keywords: Credit score; Big Data; Machine Learning; Risk Management;
Finance.

1.1 INTRODUCTION

Risk management with the ability to incorporate new and Big Data sources
and benefit from emerging technologies such as cloud and parallel computing
platforms is critically important for financial service providers, supervisory
authorities, and regulators if they are to remain competitive and relevant [1].

Financial institutions’ growing interest in non-traditional data may be seen
as a hypothetical occurrence, a reaction to the most recent financial crisis.

Afshin Ashofteh

NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Cam-
pus de Campolide, 1070-312 Lisboa, Portugal. e-mail: aashofteh@novaims.unl.pt

1



2 Afshin Ashofteh

However, the financial crisis not only prompted several statutory and super-
visory initiatives that require significant disclosure of data but also provided
a positive atmosphere to get the advantages of new data sources such as
non-traditional data sets [2, 3].

There are sources of supply and demand for this increased acceptance
of non-traditional data. On the supply side, technology advancements like
mobile phones [4] that have expanded storage space and computing power
while cutting costs have fueled rises in the new data sources. In addition,
mobile data and social data have recently been used to monitor different
risks [5]. On the demand side, loan providers are becoming more interested
in learning how data analysis may improve credit scoring and lower the risk
of default [6].

Some of the largest and most established financial institutions such as
banks, insurance companies, payday lenders, peer-to-peer lending platforms,
microfinance providers, leasing companies, and payment by installment com-
panies are now taking a fresh look at their customers’ transactional data
to enhance the early detection of fraud. They use innovative machine learn-
ing models that exploit novel data sources like Big Data, social data, and
mobile data. Credit risk management may benefit in the long run if these ad-
vancements result in better credit choices. However, there are shorter-term
hazards if early users of non-traditional data credit scoring mostly disregard
the model risk and technical aspects of new methods that might affect credit
scoring [7]. For instance, one crucial issue in credit evaluation is the class
imbalance resulting from distress situations for loan providers [8]. These dis-
tress situations are relatively infrequent events that make the imbalance data
very common in credit scoring. In addition, the limited information for dis-
tinguishing dynamic fraud from a genuine customer in a highly sparse and
imbalanced environment makes default forecasting more challenging.

Even though banks and loan providers should follow different regula-
tions to reduce or eliminate credit risk, regulatory changes can potentially
change the microfinance environment that generates the distribution of non-
traditional data. It could be the source of changes in the probability dis-
tribution function of credit scores over time. In this case, the reliability of
the models based on historical data will decrease dramatically. This time
dependency of the training process needs new approaches adopted to deal
with these situations and to avoid interruptions of ML approaches for Big
Data over time [9]. These issues in credit evaluation show the importance of
comparing the machine learning techniques for evaluating the model risk for
credit scoring. Figure 1.1 summarizes the application of Big Data and small
data in credit risk analytics.

This paper presents greater insight into how non-traditional data in credit
scoring challenges the model risk and addresses the need to develop new credit
scoring models. The rest of the paper is structured as follows. Section 1.2 de-
scribes the PySpark code for data processing as the first step of a personal
credit evaluation. Section 1.3 represents the model building and model eval-



1 Big Data and Machine Learning for Credit Risk Using PySpark 3

uation methods. The results are shown in section 1.4 for a complete personal
credit evaluation. Finally, section 1.5 contains some concluding remarks.

Fig. 1.1 Graphical summary of Big Data analytics on credit risk evaluation

1.2 Data Processing

In this paper, a public dataset is used, which is provided by Lending Club
Company, a peer-to-peer lending company based in the US, to compare the



4 Afshin Ashofteh

performance of the proposed algorithms. Lending clubs provide a sort of
bridge between investors and borrowers.

The author adopted a consumer loan dataset with 2,260,668 observations
by combining two versions of the lending club loan dataset; one contains
loans issued from 2007 to 2015 and another from 2012 to 2018. As a result,
the funded loans of these two datasets were combined, and the duplicates were
removed to obtain a dataset from 2007 to 2018 with 1,048,575 customers and
145 attributes. The new dataset includes 108,623 default loans (True or 1)
and 939,952, good loans (False or 0).

Table 1.1 Loan status in combined datasets without duplicates includes the personal

credit history of customers 2007-2018.

Loan Status Default loans

(1/TRUE)

Good loans

(0/FALSE)

Current - 603,273

Fully Paid - 331,528

In Grace Period - 5,151
Charged Off 94,285 -

Late (31-120 days) 12,154 -
Late (16-30 days) 2,162 -

Default 22 -

Total 108,623 939,952

Redundant columns were removed by applying the ExtraTreesClassifier
approach for variable importance levels, the correlation of data features was
optimized, and the 145-dimensional data was reduced to 35-dimensional data.
For instance, the correlation coefficient between two attributes funded amnt
as the total amount committed to that loan at that point in time and
funded amnt inv as the total amount committed by investors for that loan
is One, which shows the complete similarity. Based on the dimensionality
reduction idea of preventing overfitting, funded amnt inv can be eliminated.
Almost the same situation is for two variables, loan amnt, and installment,
with a Pearson correlation over 0.94. The dataset includes a row number
column and current loan status feature with seven types of debit and credit
states (Current, Fully paid, Charged off, Late (31–120 days), In grace period,
Late (16–30 days), Default) as target variable (see Table 1.1 and Table 1.2).

Each row includes information provided by the applicant, loan status (cur-
rent, fully paid, charged off, late (31–120 days), in grace period, late (16–30
days), and default), and information on the payments to the Lending Club
Company. The author will use Python and Spark to predict the probabil-
ity of default and identify the credit risk of each customer: Zero/FALSE for
Non-Default and One/TRUE for Default (see Table 1.2). Spark is a tool for
parallel computation with large datasets and integrates well with Python.



1 Big Data and Machine Learning for Credit Risk Using PySpark 5

Table 1.2 Analytical base table for lending club loan dataset.

Row Attribute Description Scale

1 Id A unique LC assigned ID for the loan listing. index

3 annual inc The self-reported annual income provided by the bor-

rower during registration.

continuous

4 delinq 2yrs The number of 30+ days past-due incidences of delin-

quency in the borrower’s credit file for the past two
years.

continuous

5 dti A ratio calculated using the borrower’s total monthly

debt payments on the total debt obligations, exclud-
ing mortgage and the requested LC loan, divided by

the borrower’s self-reported monthly income.

continuous

7 emp length Employment length in years. Possible values are be-
tween 0 and 10, where 0 means less than one year

and 10 means ten or more years.

continuous

9 funded amnt The total amount committed to that loan at that
point in time.

continuous

11 grade LC assigned loan grade categorical
12 home ownership The homeownership status provided by the borrower

during registration. Values: RENT, OWN, MORT-

GAGE, and OTHER.

categorical

31 il util The ratio of total user balance to high credit/credit

limit

continuous

13 inq last 6mths The number of inquiries in the past six months (ex-
cluding auto and mortgage inquiries).

continuous

14 installment The monthly payment owed by the borrower if the

loan originates (Monthly arrears).

continuous

15 int rate Interest Rate on the loan. continuous

16 issue d The month in which the loan was funded. continuous

17 loan amnt The listed amount of the loan is applied for by the
borrower. If the credit department reduces the loan

amount, it will be reflected in this value.

continuous

18 loan status Current status of the loan. categorical

32 mo sin old il acct Number of months since the earliest bank account

was opened

continuous

33 mo sin old rev tl op Number of months since the earliest revolving ac-

count was opened

continuous

19 mths since rcnt il Number of months after the installment account was
opened

continuous

30 mths since rcnt il Number of months after the installment account was
opened

continuous

34 mths since recent bc Number of months since last online payment continuous

35 mths since recent inq Number of months of last loan inquiry continuous
36 num rev tl bal gt 0 Number of revolving accounts continuous

20 open acc The number of open credit lines in the borrower’s
credit file.

continuous

21 out prncp The remaining outstanding principal for the total

amount funded.

continuous

38 percent bc gt 75 Recent income-expenditure ratio continuous
22 pub rec Number of derogatory public records. continuous

24 revol bal Total credit revolving balance. continuous
25 revol util Revolving line utilization rate, or the amount of

credit the borrower uses relative to all available re-

volving credit.

continuous

26 term The number of payments (installments) on loan. Val-
ues are in months and can be either 36 or 60.

categorical

39 tot hi cred lim Credit card credit limit continuous
27 total acc The total number of credit lines currently in the bor-

rower’s credit file.

continuous

40 total bc limit Amount limit of online banking continuous
41 total il high credit limit Limit of overdue repayment amount continuous

28 total pymnt Payments received to date for the total amount

funded.

continuous

29 verification status Indicates if income was verified by LC, not verified,

or if the income source was verified.

categorical



6 Afshin Ashofteh

1.2.1 Data Treatment

We must connect to a cluster to use PySpark1, R, SQL, or Scala for Big
Data. Our cluster was hosted on a machine in Databricks Community Edi-
tion, connected to all other nodes. Typically, we have one computer as the
master that manages splitting up the data and the computations. The master
connects to the rest of the computers in the cluster, called workers. The mas-
ter sends data and calculations to the workers to run. The workers also send
their results back to the master. When we are just getting started with Spark
on a local computer, we might just run a cluster locally. If we are using only
one local node for Big Data computations in a simulated cluster, we should
monitor this node (i.e., computer) if, for instance, the fan is working very
hard or one process is wasting a long time to preserve the node when dealing
with Big Data. However, in Databricks and cloud platforms, we safely use
online resources.

For this use case in credit scoring, this study uploaded the dataset into the
data repository of Databricks. When we create a notebook in our cloud plat-
form, we build a SparkContext as our connection to the cluster. This Spark-
Context will recognize the specified clusters after running the first command
in the notebook. This paper uses Spark MLlib, the Apache Spark library of
algorithms and transformers included in a distributed Spark, to be used for
ETL work and to build our models.

1.2.2 Data storage and distribution

The dataset is in CSV format, and Spark can convert it into a Universal Disk
Format (UDF). Additionally, it is exportable to MLeap, a standard serializa-
tion format and execution engine for machine learning pipelines. It supports
Spark, Scikit-learn, and TensorFlow for training pipelines and exporting them
to an MLeap Bundle. As a result, if we continue leveraging Spark contents,
it would be easy to import a batch in the batch stream, a collection of data
points grouped within a specific time interval. Another term often used for
this process is a data window (see Appendix 1 – Lines 1-7).

This study started with the CSV file format. However, it is not an optimal
format for Spark. The Parquet format is a columnar data store, allowing
Spark to only process the data necessary to complete the operations versus
reading the entire dataset. Parquet gives Spark more flexibility in accessing
the data and improves performance on large datasets (see Appendix 1 – Line
9).

Before starting to work with Spark, it could be recommended first to
check the Spark Context and the Spark version to check the version and

1 See PySpark program and dataset here: https://github.com/AfshinAshofteh/creditscore pyspark.git



1 Big Data and Machine Learning for Credit Risk Using PySpark 7

compatibility of our packages and program (see Appendix 1 – Lines 10-11).
Second, check the dataset available on our cluster with the catalog to check
the metadata or the data describing the structure of the data (see Appendix
1 – Line 12-13).

1.2.3 Munge Data

According to the data schema, the types of attributes are String. Before
continuing with Spark, it is essential to covert the data types to numeric types
because Spark only handles numeric data. That means all the data frame
columns must be either integers or decimals (called ”Doubles” in Spark).
Therefore, the .cast() method is used to convert all the numeric columns
from our loan data frame (for instance, see Appendix 1 – Lines 14-17). The
other attributes are treated similarly according to Table 1.3.

Additionally, the emp length column was converted into numeric type (see
Appendix 1 – Lines 18-20) and map multiple levels of the verification status
attribute into a one-factor level (see Appendix 1 – Line 21). Finally, the target
vector default loan was created from the loan status feature by classifying
the data into two values: users with poor credit (default) including Default,
Charged Off, Late (31-120 days), Late (16-30 days), and users with good
credit (not default) including Fully Paid, Current, and In Grace Period (see
Table 1.4 and Appendix 1 – Line 22).

1.2.4 Creating New Measures

Three new measures were created to increase the model’s accuracy and de-
crease the data dimension by removing less critical attributes according to
the ExtraTreesClassifier approach. For this purpose, we must know that the
Spark data frame is immutable. It means it cannot be changed, and columns
cannot be updated in place. If we want to add a new column in a data frame,
we must make a new one. To overwrite the original data frame, we must
reassign the returned data frame using the .withColumn command.

The first measure refers to the length of credit in years to know how much
each person returned to the bank from the total loan amount. Therefore, we
need to make a new column by subtracting the “loan payment” from the
“total loan amount” (see Appendix 1 – Line 23).

The second measure is the total amount of money earned or lost per loan
to show how much of the total amount of the loan should be repaid to the
bank by each person (see Appendix 1 – Line 24).

Finally, the third measure is the total loan. Customers in this database
could have multiple loans, and it is necessary to aggregate the loan amounts



8 Afshin Ashofteh

Table 1.3 Attributes data format modification and their description.

Characteristic Data format Description

Original Current
annual inc string integer

credit length in years string integer (issue year - earliest year)
delinq 2yrs string integer

dti string integer

funded amnt string float
earliest year string double substring(loan df.earliest cr line,5, 4)

emp length string float Delete characters: ” () [] * + [ a-z A-Z

] . , * | (n/a)
Delete values lower than 1

Replace 10+ with 10

funded amnt string float
il util string float

inq last 6mths string integer
instalment string integer [loan amnt + sum(remain(t) ×

int rate(t); t from 1 to term)]/term

int rate string float In percentage (%)
issue year string double substring(loan df.issue d, 5, 4)

loan amnt string integer

mo sin old il acct string float
mo sin old rev tl op string float

mths since rcnt il string float

mths since rcnt il string float
mths since recent bc string float

mths since recent inq string float

num rev tl bal gt 0 string float
open acc string integer

out prncp string Integer
percent bc gt 75 string float

pub rec string Integer

remain string integer (loan amnt - total pymnt)
revol bal string Integer

revol util string integer In percentage (%)

tot hi cred lim string float
total acc string integer

total bc limit string float

total il high credit limit string float
total pymnt string float

Table 1.4 Lending status as a binary target label vector.

Loan status Default loan

Poor credit (default) Default, Charged Off, Late (31-120
days), Late (16-30 days)

true/1

Good credit (not default) Fully Paid, Current, In Grace Period false/0



1 Big Data and Machine Learning for Credit Risk Using PySpark 9

based on the member IDs of the customers. Then according to the Basel
accords and routine of the banking risk management, the maximum and
minimum amounts could be reported and reviewed by risk managers to be
checked for concentration risk in the risk appetite statement of the financial
institutions (see Appendix 1 – Lines 25-29).

1.2.5 Missing Values Imputation and Outliers
Treatment

The primary purpose of this section is to make a decision for the imputation
of the missing values and deal with outliers.

For this large-scale dataset, it is reasonable to have NULL values, and
handling the missing values in Spark is possible with three options: keep,
replace, and remove. With missing data in our dataset, we would not be
able to use the data for modeling in Spark if we have empty or N/A in
the dataset. It would cause training errors. Therefore, we must impute or
remove the missing data, and we could not keep them for the modeling step.
This PySpark code uses the fillna() command to replace the missing values
with an average for continuous variables, the median for discrete ordinal
ones, and mode (the highest number of occurrences) for nominal features.
Additionally, the variables with more than half of the data in a sample as
null were discarded (see example in Appendix 1 – Lines 30-34).

The processing of outliers in this paper follows the following principles:

1. We need to consider the reasonable data range in each attribute and delete
the sample data with outliers. This paper uses a simple subsetting for
indexing the rows with outliers, removes the outliers with an index equal
to TRUE, and checks again if the outliers are removed according to the
criteria (see example in Appendix 1 – Lines 35-36).

2. Then, this paper uses cross tables to find possible errors. Cross tables
for paired attributes with min and max functions as aggregate functions
(aggfunc = “min” and aggfunc = “max”) could show the possible errors
which exceed the minimum or maximum of attributes (see example in
Appendix 1 – Lines 37).

3. Finally, box plots with the interquartile rule are used to measure the spread
and variability in our dataset. According to this rule, data points below
Q1-1.5*IQR or above Q3+1.5*IQR are viewed as being too far from the
central values.



10 Afshin Ashofteh

1.2.6 One-Hot Code and Dummy Variables

This paper discretizes the continuous variables by the chi-square box-dividing
method and standardizes the discrete variables by transforming them into
dummy variables. In machine learning, the standard encoding method is one-
hot encoding. For encoding class variables, we have to import the one-hot
encoder class from the machine learning library of Spark and create an in-
stance of the one-hot encoder to apply to the discrete features of the dataset
(see example in Appendix 1 – Lines 38-42).

Additionally, this paper considers the predictive power of discrete variables
by looking at the Information Value (IV) to understand the possible transfor-
mations in categorical variables and to create multiple categories with similar
IVs. IV for each class of categorical variable is the Weight of Evidence (WoE)
times the difference between the proportion of all good loans in the class and
the proportion of all bad loans in the class. Generally speaking, WoE is the
logarithm of the proportion of good loans to the bad loans in a class. The
calculation formula of WOE and IV are shown in equations (1.1), (1.2), and
(1.3).

WoEi = ln (gi/gT ) − ln (bi/bT ) (1.1)

IV i = WoE × [(gi/gT )− (bi/bT )] (1.2)

where gi/bi represents the number of good/bad loans in the grouping, and
gT /bT denotes the total number of good/bad loans in all data. Formula 3
represents the IV value of the whole variable, which is an aggregation of the
corresponding IV values of each group:

IV =
∑

IV i (1.3)

Table 1.5 shows the criteria for excluding some variables or grouping certain
variables.

Table 1.5 Criteria for IV values.

Prediction Power Useless Weak Medium Strong Suspicious

IV < 0.02 0.02 to 0.1 0.1 to 0.3 0.3 to 0.5 > 0.5

For example, the variable “issue d” shows similar IVs for its first four
categories (Aug-18, Dec-18, Oct-18, and Nov-18) and the following five
categories (Sep-18, Dec-15, Jun-18, Jul-18, and May-18). Therefore, they
could be grouped into two new categories. Furthermore, the results from
IV show strong prediction power for most variables (e.g., term, grade,
home ownership, verification status, etc.), and none were transformed.



1 Big Data and Machine Learning for Credit Risk Using PySpark 11

1.2.7 Final Dataset

When the data treatment is completed, there are 1,043,423 customers in rows
and 35 features in the dataset, including four categorical and 31 numeric at-
tributes in addition to one binary target variable with two values default and
not default. After finalizing the data treatment, the Spark Cache is used to
optimize the final dataset for iterative and interactive Spark applications and
improve Jobs’ performance (see Appendix 1 – Line 43). The dataset contains
331,528 fully paid loans. (see Table 1.1 and Appendix 1 – Lines 44-45). Con-
sidering the imbalance of default and non-default loans in the dataset, good
customers are much fewer than bad customers, which may cause prediction
deviation in some modeling approaches such as logistic regression. For these
models, the paper applies a paired sample technique to the training base by
randomly selecting bad customers as the same number of total good clients.
This undersampling method or equivalent approach, such as the synthetic
minority oversampling technique (SMOTE), is essential to increase the effi-
ciency of the models, which suffer from imbalanced datasets [10].

Table 1.6 shows that the data set was randomly divided into two groups,
65% for model training (678,548 observations) and the other 35% for the test
set (364,875 observations) to apply different algorithms.

Table 1.6 Loan status in training and test datasets.

Loan Status Training set Test set

Default 607,981 326,820

Not default 70,567 38,055

Total 678,548 364,875

For dividing the dataset into test and train sets, the function .random-
Split() was used in PySpark, equivalent to test train split() in python (see
Appendix 1 – Line 46). The training dataset for developing the model would
normally have twelve months dedicated to the training to have a full annual
cycle to recover the seasonality of each month. Additionally, some recent
months could be considered just for testing the optimal model with an un-
seen dataset.

1.3 Method and Models

Financial institutions must predict the customers’ credit risk over time with
minimum model risk. Recently, machine learning models have been applied
to Big Data to determine if a person is eligible for receiving a loan. However,
the pre-processing for the data quality and finding the best hyper parameters



12 Afshin Ashofteh

in model development are necessary to overcome the overfitting problems and
instability of model accuracy over time.

1.3.1 Method

According to the dataset, we have a credit history of the customers, and this
study tries to predict the loan status of the customers by applying statisti-
cal learning and machine learning algorithms. It helps the loan providers to
guess the probability of default to determine whether or not a loan should be
granted. For this purpose, this paper makes a preliminary statistical analysis
of the credit dataset. Then, different models were developed to predict the
probability of default. The models include Logistic regression, Decision tree,
Random Forest, Neural network, and Support vector machine.

Finally, the results (predictive power of models) were evaluated by evalu-
ation metrics such as the Area Under the ROC Curve (AUC) and the Mean
F1-Score. Receiver operating curves (ROC) show the statistical performance
of the models. In the ROC chart, the horizontal axis represents the speci-
ficity, and the vertical axis shows the sensitivity. The greater the area be-
tween the curve and the baseline, the better the feature performance in de-
fault prediction. After investigating the characteristics of the new credit score
model, the research employs the area ratio of ROC curves to compare the
classification accuracy and evaluates how well this credit scoring model per-
forms. The F1 score, is commonly used in information retrieval, measures the
model’saccuracy using precision (p) and recall (r). Precision is the ratio of
true positives (tp) to all predicted positives tp + fp. A recall is the ratio of
true positives to all actual positives tp+ fn. The F1 score where p = tp

tp+fp

and r = tp
tp+fn is given by:

F1 = 2
p.r

p+ r

The F1 metric weights recall and precision equally, and a good retrieval
algorithm will simultaneously maximize precision and recall. Thus, moder-
ately good performance on both will be favored over excellent performance
on one and poor performance on the other.

For creating a ROC plot in PySpark, we need a library that is not in-
stalled by default in Databricks Runtime for Machine Learning. First, we
have to install plotnine and its dependencies based on the ggplot2 package
(see Appendix 1 – Lines 47-48). Second, PyPI mlflow package could be in-
stalled into the cluster to track the model development and packaging code
into reproducible runs.



1 Big Data and Machine Learning for Credit Risk Using PySpark 13

1.3.2 Model Building

This section builds and evaluates supervised models in PySpark for personal
credit rating evaluation. This paper applies the obtained dataset to Logis-
tic regression, Decision tree, Random Forest, Neural network, and Support
vector machine.

The model-building phase started with three statistical learning methods
and penalized linear regression models: Lasso, Ridge, and ElasticNet. They
eliminate variables that contribute to overfitting without compromising out-
of-sample accuracy. They have L1 and L2 penalties during training and some
hyperparameters (maxIter, elasticNetParam, and regParam), which should
be set to assign how much weight is given to each of the L1 and L2 penalties
and which model should be fitted. The elasticNetParam For Ridge regression
is 0, for LASSO is 0.99, and for ElasticNet regression is 0.5 (see Appendix
1 – Lines 64-66). The results from this notebook in Databricks were tracked
for storing the results and comparing the accuracy of different models. (see
Appendix 1 – Lines 67-80). Then the logistic regression model was built (see
Appendix 1 – Line 81). A pipeline was defined, which includes standardizing
the data, imputing missing values, and encoding for categorical columns (see
Appendix 1 – Lines 82-83). Setting the mlflow of model tracking and repro-
ducibility of the input parameters is useful to log the model and review later
(see Appendix 1 – Lines 84-88). Finally, the accuracy measures were calcu-
lated by Logging the ROC Curve (see Appendix 1 – Lines 89-93), setting
Max F1 Threshold for predicting the loan default with a balance between
true-positives and false-positives (see Appendix 1 – Lines 94-99), scoring the
customers (see Appendix 1 – Lines 100-114), and logging the results (see
Appendix 1 – Lines 115-116).

The leave-one-out cross-validation method examines the between-sample
variation of default prediction. This paper divides the available data into ten
disjoint subsets to train the models on nine subsets and evaluate the model
selection criterion on the tenth subset. This procedure is then repeated for all
combinations of subsets by the Python API of Apache Spark (see Appendix
1 – Lines 117-118). Finally, this paper uses the MLflow UI built-in as part of
the Community Edition of Databricks to compare the models and choose the
ultimate best model. The best model might be selected with an AUC greater
than a threshold (see Appendix 1 – Lines 124-127) or maximum AUC (see
Appendix 1 – Lines 126-130). The details of the best model with maximum
AUC could be checked (see Appendix 1 – Lines 131-132), and the model’s
score with the test data (see Appendix 1 – Lines 133-134). This final model
could predict the amount of money earned or lost per loan (remain=loan pay-
ments - total loan amount) and the outstanding loan balance (see Appendix
1 – Line 135).

As a result, the Ridge method represents a better performance than Lasso.
The Logistic regression in this paper is based on the Ridge penalty with elas-
tic net regularization zero and regparam 0.3 as the best hyperparameters.



14 Afshin Ashofteh

In addition to the Logistic regression classifier as an industry standard for
building credit scoring models, this paper uses other binary classifiers such
as random forests and linear support vector machines for the empirical anal-
ysis. Although they are more complex and powerful than Logistic regression
in the application, the outputs explainability of these models could not be
guaranteed.

The codes are almost the same for the other models, such as Random
Forest and Linear Support Vector Machine, with the possibility to use Scala
for more complicated models and to use some features that are not available
in PySpark.

1.4 Results and Credit Score Card Conversion

The results show that A-grade loans have the lowest interest rate because
of the minimum evaluated risk for these customers. A significant amount of
loans is allocated to grade A and B customers with the minimum interest
rate and minimum risk of default. We have a descending trend for the grades
D, E, F, and G because banks typically have some sort of criteria to reject
high-risk applications. The optimal cut-off for logistic regression is considered
0.167.

Table 1.7 Evaluation results of the algorithms on personal credit data.

Algorithm Confusion matrix

Predict Label [[11,10] [01,00]]

AUC value F1 score

Logistic regression [[9%,2%] [2%,87%]] 0.909 0.815
Decision tree [[7%,0.5%] [3.5%,89%]] 0.901 0.766

Random Forest [[10%,13%] [2%,75%]] 0.884 0.577

Neural network [[2%,2.5%] [9%,86.5%]] 0.580 0.258
Support vector machine [[1%,0%] [10%,89%]] 0.530 0.113

This study discovers a high level of False Negative Rate in any approach.
This rate represents an unexpected loss for the bank. A False Negative rate
also shows a loss in the bank’s balance sheet since it does not let the new
business increase. These two rates are summarized in the F1 score, indicating
a trade-off between False-positive and False Negative. As a trade-off between
model sensitivity and specificity, AUC in Table 1.7 shows almost the same
performance among the logistic regression, decision tree, and random forest.
However, the logistic regression model obtained a higher F1 score (i.e., 0.815)
than the decision tree and random forest, with F1 scores of 0.766 and 0.577,
respectively (see Appendix 2). Overall, the logistic regression performs the
best, and the support vector machine performs the worst with three times
more training time compared to other algorithms.



1 Big Data and Machine Learning for Credit Risk Using PySpark 15

1.5 Conclusion

This study described machine learning approaches to assess credit candidate
applicants’ profiles and continued credit scoring based on the non-traditional
dataset of Lending Club Company. Regarding the classification accuracy, the
results showed that the logistic regression is more accurate, informative, and
conservative for personal credit evaluation. Furthermore, the model predic-
tions could be used to score new and old clients in an accurate scorecard
complementary to traditional credit evaluation methods.

For further study, the following items could be suggested for more inves-
tigation:

For data treatment, one might consider the following new attributes for a
possible increase in the model’s accuracy:

1. Effort rate by dividing the installment by the annual income.
2. The ratio between the number of open accounts and the total number of

accounts.
3. Percentage of the loan that is still left to be paid. It would be similar to

the ”remain” variable but divided by the total amount.
4. A continuous variable to represent the duration of the client’s credit line.

It could be built based on ”earliest cr line” by subtracting the earli-
est cr line’s values from the current time.

5. Decomposing issue d into months and years to lead to better insight into
any eventual seasonal events.

For model development, one might consider other machine learning ap-
proaches as the author did a preliminary study on Gradient Boosted Trees,
and the AUC was increased to 0.966 with a longer run time compared with
other models in this paper. For the hyperparameter tuning stage and finding
the best hyper-parameters that enable a higher F1-Score, one could use the
GridSearchCV. Instead of the undersampling approach in this paper for the
imbalanced dataset, one might use StratifiedKFold in the Cross-Validation
stage.

Acknowledgment
The author of this paper would like to thank José L. CERVERA-FERRI

(CEO of DevStat) for his invitation to CARMA 2018 (International Con-
ference on Advanced Research Methods and Analytics) at the Polytechnic
University of Valencia, which motivated this research.

Data and Code Availability
Data and code used to support the findings of this paper are available

from the author upon request, his GitHub or Kaggle page.



16 Afshin Ashofteh

Appendix 1

1. file location = ”/FileStore/tables/loan.CSV”
2. file location = ”/FileStore/tables/loan complete.CSV”
3. file type = ”CSV”
4. infer schema = ”false”
5. first row is header = ”true”
6. delimiter = ”,”
7. loan df = Spark.read.format(file type).option(”inferSchema”, infer schema).option(”header”,

first row is header).option(”sep”, delimiter).load(file location)
8. print(” >>>>>>> ” + str(loan df.count())+ ” loans opened in this

data set!”)
9. loan df.write.parquet(“AA DFW ALL.parquet”, mode=“overwrite”)

10. print(sc)
11. print(sc.version)
12. Spark.catalog.listTables()
13. display(loan df)
14. loan df = loan df.withColumn(”loan amnt”, loan df.loan amnt.cast(”integer”))\
15. .withColumn(”int rate”, regexp replace(”int rate”, ”%”, ””).cast(”float”))\
16. .withColumn(”revol util”, regexp replace(”revol util”, ”%”, ””).cast(”float”))\
17. .withColumn(”issue year”, substring(loan df.issue d, 5, 4).cast(”double”))
18. loan df = loan df.withColumn(”emp length”, trim(regexp replace(loan df.emp length,

”([ ]*+[a-zA-Z].*)|(n/a)”, ””) ))
19. loan df = loan df.withColumn(”emp length”, trim(regexp replace(loan df.emp length,

”< 1”, ”0”) ))
20. loan df = loan df.withColumn(”emp length”, trim(regexp replace(loan df.emp length,

”10\\+”, ”10”) ).cast(”float”))
21. loan df = loan df.withColumn(”verification status”, trim(regexp replace(loan df.verification status,

”Source Verified”, ”Verified”)))
22. loan df = loan df.filter(loan df.loan status.isin([”Default”, ”Charged Off”,

”Late (31-120 days)”, ”Late (16-30 days)”, ”Fully Paid”,”Current”] )).with-
Column( ”default loan”, (∼(loan df.loan status.isin([”Fully Paid”, ”In Grace
Period” , ”Current”]))).cast(”string”))

23. loan df = loan df.withColumn(”credit length in years”, (loan df.issue year
- loan df.earliest year))

24. loan df = loan df.withColumn(”remain”, round( loan df.loan amnt - loan df.total pymnt,
2))

25. customer df = loan df.groupBy(”member id”).agg(f.sum(”loan amnt”).alias(”sumLoan”))
26. loan max df = customer df.agg({”sumLoan”: ”max”}).collect()[0]
27. customer max loan = loan max df[”max(sumLoan)”]
28. print(customer df.agg({”sumLoan”: ”max”}).collect()[0],customer df.agg({”sumLoan”:

”min”}).collect()[0])
29. print(customer df.filter(”sumLoan = ” +str(customer max loan)).collect())
30. pandas df = loan intrate income.toPandas()
31. null columns = pandas df.columns[pandas df.isnull().any()]
32. pandas df[null columns].isnull().sum()



1 Big Data and Machine Learning for Credit Risk Using PySpark 17

33. pandas df.int rate.fillna(pandas df.int rate.median())
34. loan intrate income=loan intrate income.dropna()
35. indices = pandas df[padas df[”income”] >= 1500000].index
36. pandas df.drop(indices, inplace=TRUE)
37. pd.crosstab(pandas df.grade, pandas df.default loan, values=pandas df.annual inc,

aggfunc=”min”).roundGrindEQ2

38. from PySpark.ml.feature import OneHotEncoderEstimator
39. onehot = OneHotEncoderEstimator(inputCols=[”grade”], outputCols=[”grade dummy”])
40. model df3 = model df.select(”int rate”,”annual inc”,”loan amnt”, ”label”,”grade”)
41. onehot = onehot.fit(model df3)
42. str to dummy df onehot = onehot.transform(model df3)
43. loan df.cache()
44. loan df.filter(col(”loan status”) == ”Default”).count()
45. loan df.filter(col(”loan status”) == ”NOTDefault”).count()
46. train, valid = dataLogReg.randomSplit([.65, .35])
47. %sh
48. /databricks/python/bin/pip install plotnine matplotlib==2.2.2
49. import sklearn.metrics as metrics
50. import pandas as pd
51. from plotnine import *
52. from plotnine.data import meat
53. from mizani.breaks import date breaks
54. from mizani.formatters import date format
55. from PySpark.ml import Pipeline
56. from PySpark.ml.feature import StandardScaler, StringIndexer, OneHo-

tEncoder, Imputer, VectorAssembler
57. from PySpark.ml.classification import LogisticRegression
58. from PySpark.ml.evaluation import BinaryClassificationEvaluator
59. from PySpark.ml.tuning import CrossValidator, ParamGridBuilder
60. import mlflow
61. import mlflow.Spark
62. from PySpark.mllib.evaluation import BinaryClassificationMetrics
63. from PySpark.ml.linalg import Vectors
64. maxIter = 10
65. elasticNetParam = 0
66. regParam = 0.3
67. with mlflow.start run():
68. labelCol = ”default loan”
69. indexers = list(map(lambda c: StringIndexer(inputCol=c, outputCol=c+” idx”,

handleInvalid = ”keep”), categoricals))
70. ohes = list(map(lambda c: OneHotEncoder(inputCol=c + ” idx”, output-

Col=c+” class”), categoricals))
71. imputers = Imputer(inputCols = numerics, outputCols = numerics)
72. featureCols = list(map(lambda c: c+” class”, categoricals)) + numerics
73. model matrix stages = indexers + ohes + \



18 Afshin Ashofteh

74. [imputers] + \
75. [VectorAssembler( inputCols=featureCols, outputCol=”features” ), \
76. StringIndexer( inputCol= labelCol, outputCol=”label” )]
77. scaler = StandardScaler(inputCol=”features”,
78. outputCol=”scaledFeatures”,
79. withStd=True,
80. withMean=True)
81. lr = LogisticRegression(maxIter=maxIter, elasticNetParam=elasticNetParam,

regParam=regParam, featuresCol = ”scaledFeatures”)
82. pipeline = Pipeline(stages=model matrix stages+[scaler]+[lr])
83. glm model = pipeline.fit(train)
84. mlflow.log param(”algorithm”, ”SparkML GLM regression”) #put a name

for the algorithm.
85. mlflow.log param(”regParam”, regParam)
86. mlflow.log param(”maxIter”, maxIter)
87. mlflow.log param(”elasticNetParam”, elasticNetParam)
88. mlflow.Spark.log model(glm model, ”glm model”) #log the model.
89. lr summary = glm model.stages[len(glm model.stages)-1].summary
90. roc pd = lr summary.roc.toPandas()
91. fpr = roc pd[”FPR”]
92. tpr = roc pd[”TPR”]
93. roc auc = metrics.auc(roc pd[”FPR”], roc pd[”TPR”])
94. fMeasure = lr summary.fMeasureByThreshold
95. maxFMeasure = fMeasure.groupBy().max(”F-Measure”).select(”max(F-

Measure)”).head()
96. madFMeasure = maxFMeasure[”max(F-Measure)”]
97. fMeasure = fMeasure.toPandas()
98. bestThreshold = float ( fMeasure[ fMeasure[”F-Measure”] == maxFMea-

sure] [”threshold”])
99. lr.setThreshold(bestThreshold)
100. def extract(row):
101. return (row.remain,) + tuple(row.probability.toArray().tolist()) + (row.label,)

+ (row.prediction,)
102. def score(model,data):
103. pred = model.transform(data).select(”remain”, ”probability”, ”label”, ”pre-

diction”)
104. pred = pred.rdd.map(extract).toDF([”remain”, ”p0”, ”p1”, ”label”, ”pre-

diction”])
105. return pred
106. def auc(pred):
107. metric = BinaryClassificationMetrics(pred.select(”p1”, ”label”).rdd)
108. return metric.areaUnderROC
109. glm train = score(glm model, train)
110. glm valid = score(glm model, valid)
111. glm train.registerTempTable(”glm train”)



1 Big Data and Machine Learning for Credit Risk Using PySpark 19

112. glm valid.registerTempTable(”glm valid”)
113. print( ”GLM Training AUC :” + str( auc(glm train)))
114. print( ”GLM Validation AUC :” + str(auc(glm valid)))
115. mlflow.log metric(”train auc”, auc(glm train))
116. mlflow.log metric(”valid auc”, auc(glm valid))
117. cv = CrossValidator(estimator=pipeline rf, estimatorParamMaps=params,

evaluator=BinaryClassificationEvaluator(), numFolds=5)
118. rf model = cv.fit(train)
119. import mlflow
120. import mlflow.Spark
121. from mlflow.tracking import MlflowClient
122. from PySpark.sql.functions import *
123. from PySpark.ml import PipelineModel
124. client = MlflowClient()
125. runs = client.search runs(experiment ids =[”#number#”], filter string =

”metrics.valid auc >= .65”)
126. run id1 = runs[0].info.run uuid
127. client.get run(run id1).data.metrics
128. runs = client.search runs(experiment ids=[”#number#”], order by=

[”metrics.valid auc DESC”], max results=1)
129. run id = runs[0].info.run uuid
130. client.get run(run id).data.metrics
131. runs = mlflow.search runs(experiment ids=[”1636634778227294”],

order by=[”metrics.valid auc DESC”], max results=1)
132. runs.loc[0]
133. score df = Spark.table(”final scoring table”)
134. predictions = model1.transform(”score df”)
135. display(predictions.groupBy(”default loan”, ”prediction”).agg((sum(col(”remain”))).alias(”sum net”)))

Appendix 2
The first branch of the decision tree shows that if the value of out prncp is

more extensive than 0.01, we will automatically receive that probability de-
fault value of 0.03%. When an individual does not meet demanded value, the
proposal should be checked for total payment with a limit of 5,000. Finally,
the branches show how the application should go through the confirmation
process.



20 Afshin Ashofteh

Fig. 1.2 A decision-tree sample with selected attributes.

References

1. C. Onay and E. ÖztürkA review of credit scoring research in the age of Big Data J.
Financ. Regul. Compliance, vol. 26, no. 3, pp. 382–405, Jul. 2018.

2. A. AshoftehMining Big Data in statistical systems of the monetary financial institu-
tions (MFIs) in International Conference on Advanced Research Methods and Ana-
lytics (CARMA), 2018, p. doi: 10.4995/carma2018.2018.8570.

3. M. Óskarsdóttir, C. Bravo, C. Sarraute, J. Vanthienen, and B. BaesensThe value of

big data for credit scoring: Enhancing financial inclusion using mobile phone data
and social network analytics Appl. Soft Comput. J., vol. 74, pp. 26–39, Jan. 2019.

4. J. S. Pedro, D. Proserpio, and N. OliverMobiscore: Towards universal credit scoring

from mobile phone data in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015,
vol. 9146, pp. 195–207.

5. D. Björkegren and D. GrissenBehavior revealed in mobile phone usage predicts credit
repayment arXiv. arXiv, 09-Dec-2017.



1 Big Data and Machine Learning for Credit Risk Using PySpark 21

6. B. M. Henrique, V. A. Sobreiro, and H. KimuraLiterature review: Machine learning

techniques applied to financial market prediction Expert Syst. Appl., vol. 124, pp.
226–251, Jun. 2019.

7. G. dos Reis, M. Pfeuffer, and G. SmithCapturing Model Risk and Rating Momentum

in the Estimation of Probabilities of Default and Credit Rating Migrations Quant.
Financ., vol. 20, no. 7, pp. 1069–1083, Sep. 2018.

8. H. Zhang and Q. LiuOnline learning method for drift and imbalance problem in client

credit assessment Symmetry (Basel)., vol. 11, no. 7, Jul. 2019.
9. A. Ashofteh and J. M. BravoA non-parametric-based computationally efficient ap-

proach for credit scoring in Atas da Conferencia da Associacao Portuguesa de Sis-
temas de Informacao, 2019.

10. A. Gicić and A. SubasiCredit scoring for a microcredit data set using the synthetic

minority oversampling technique and ensemble classifiers Expert Syst., vol. 36, no.
2, p. e12363, Apr. 2019.


